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Wireless Network
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Constraints:

◦ Two simultaneously transmitting nodes interfere with each other.

Question : Scheduling
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Question:

◦ Which nodes should transmit simultaneously using “local information”.
– CSMA Information: Each node can sense whether the medium is busy

or not.

◦ So that it is throughput-optimal.
– It keeps queues finite when the network is underloaded.

Mathematical Model
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◦ Network interference graph G = (V,E) of N queues.

◦ Independent Poisson packet-arriving process with rate λi for queue i.

◦ Q(t) = [Qi(t)] ∈ R
N
+ be the queue-sizes at time t.

◦ σ(t) = [σi(t)] ∈ {0, 1}N be the schedule at time t.
– σi(t) = 1 means the queue i is transmitting at time t.
– σi + σj ≤ 1 if (i, j) ∈ E.

Main Result : Our Algorithm and Its Stability

◦ Each queue has an independent Exponential clock of rate 1.

◦ When the clock of the queue i ticks at time t,

– i checks whether the medium is free i.e. no neighbor of i is transmitting.
– If yes,

σi(t
+) =

{

1 with probability exp[Wi(t)]
1+exp[Wi(t)]

0 otherwise.
.

– Else, do nothing.

Theorem 1 The algorithm is throughput-optimal with

Wi(t) = max
{

f(Qi(t)),
√

f(Qmax(t))
}

and f(·) = log log(·).

Example

For simplicity, consider Wi(t) = f(Qi(t)).
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Proof Intuition I : Time-varying Glauber Dynamics

◦ Our algorithm runs Glauber Dynamics with time-varying weight W (t).

◦ The stationary distribution π of Glauber Dynamics with weight W satisfies

π(σ) ∝ exp

[

∑

i

Wi · σi

]

.

– High mass on large weighted schedules.

◦ Therefore, sampling σ w.r.t π is essentially a MW (maximum weight) choice!
– With respect to weight W ≈ f(Q).

Proof Intuition II : µ(t) ≈ π(t)

◦ Let µ(t) be the actual distribution of σ(t) under our algorithm.

◦ Assume µ(t) ≈ π(t).
– Our algorithm samples essentially the f -MW schedule.
– The f -MW choice leads to throughput-optimality [Tassiulas and Ephremides 92].

◦ Main Question: µ(t) ≈ π(t)?
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◦ If π(t) moves slower than µ(t), µ(t) eventually catch up π(t)!

Proof Intuition III : Choice of f

Speed of π and µ:

◦ ∆π ≈ ∆W ≈ ∆f(Q) ≈ f ′(Q).

◦ ∆µ ≈ 1
exp[W ] ≈

1
exp[f(Q)] .

Therefore,
∆π < ∆µ if f(·) = log log(·).

Discussions and Simulation

Q1: Why we need Qmax in the weight?

◦ Due to some technical reasons.

◦ We believe that it is not necessary.

Q2: How each node know the global information Qmax in a distributed manner?

◦ Its estimation can be maintained via 1-bit message-passing per unit time.

◦ Throughput-optimal property does not change under the estimation.

Q3: How about other choices of f?

Comparison between log and log log


