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Non-Coherent Multipath Fading Relay Networks in the 
Wideband Regime – Fawaz, Medard

ACHIEVEMENT DESCRIPTION 

1) Achievable rate in non-
coherent multipath fading 
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MAIN ACHIEVEMENT:
ACHIEVEMENT DESCRIPTION 
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relay channel
• coincides with generalized 

block-Markov lower bound of 
AWGN-FD channel -> LB

• coincides with cut-set upper-
bound for                  -> Capacity

2) Non-coherent peaky 

Capacity of general relay channel 
unknown
•Bounds on general relay channel 
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) o co e e t pea y
frequency binning scheme

3) Min-cut on hypergraph
model

g y
•Bounds on AWGN relay channel

HOW IT WORKS: 
• Source: Low-duty cycle peaky FSK signaling G

O
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Wideband regime: not interference-
limited, but energy-limited

point-to-point:
Hypergraph Model: min-cut on 

Source: Low duty cycle peaky FSK signaling
• Relay: Decode, Frequency Binning and Forward
• Destination: decodes relayed signal, then source signal 

using relayed information
ASSUMPTIONS AND LIMITATIONS:
• Wideband regime

Extension to larger 
networks: multiple relays, layers...

Open question: closing the 
gap to Cut-set UB?
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hypergraph

Towards characterizing the capacity of the building block of MANETs

• Relay decodes fully Virtual MIMO gain in the wideband 
regime?N
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Linear Representation in Network Coding 
Cohen, Effros, Avestimehr, and Koetter

ACHIEVEMENT DESCRIPTION
Sufficient conditions under which 
linear operations at the internal 
nodes  (combined with possible 
non-linear operations at the 
terminals) suffice to achieve 
optimalityC

T

ACHIEVEMENT DESCRIPTION
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H(E )1

- Linear network codes are simple 
to design and operate.  
- Linear network codes are 
sufficient for multicast demands.  
- Linear network codes are 
insufficient in general.  

optimality.

The same conditions are also 
sufficient to show that the rate 
region can be described without 
non-Shannon information
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How it works: 
- Characterize space of possible entropy vectors 

representing node inputs and outputs.
- Use nodes’ functional constraints to restrict this 

characterization.
If this space has a linear representation then we

non Shannon information 
inequalities.
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- If this space has a linear representation, then we 
can show that linear coding at all internal nodes 
suffices.

Assumptions and limitations:
• Requires demonstration of the existence of a linear 

representation for the space of possible entropy 
vectors H
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- Linear coding  is optimal at 
encoders and decoders of a 
network code only under very 
special  circumstances.  
- Studying problems where linearity 
suffices only at internal nodes may 
b d h l f d f

vectors.  
• Linear representations don’t always exist.  
• The complexity of finding them when they do exist 

restricts our attention to smaller networks.  

- Use the proposed tool to test 
small example networks for 
sufficiency of linear network 
codes
- Understand the design 
implications of codes with linear 
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broaden the class of codes for 
which we can prove optimality.  

p
operations at interior nodes.

Removing the linearity constraint at edge nodes increases the family of problems for 
which (mostly) linear codes are optimal.  
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Continuity for Network Coding Capacity Regions
Gu and Effros

ACHIEVEMENT DESCRIPTION

Question: Can a small change in T

ACHIEVEMENT DESCRIPTION
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- For non-functional source 
coding, reliable source 
distribution estimations result in 

Question:  Can a small change in  
source distribution mean a big 
change in capacity region?

-Previous ITMANET results:    
•Inner semi-continuity for 
many networks.  
•Outer semi-continuity only 
for a few simple networks.
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How it works: 
- Assume that the source alphabet is known.
- In this case, p(x)>0 for all x in the known alphabet.
- Prove continuity under this assumption (called S-

continuity).

reliable approximations of 
capacity regions.
- For functional source coding, 
estimated source distributions 
should have the same support of 
the true distribution.

Assumptions and limitations:
S-continuity results apply quite generally
• Zero-error coding (arbitrary demands – including 

functions)
• Lossless coding (arbitrary demands – including 

functions)
Upper bound approximation 
errors of capacity regions 
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- The difference between p(x)=0 
and p(x)=ε can be very large.
- Capacity regions probably are 
NOT outer semi-continuous in the 
source distribution in general!  

)
• Lossy coding (non-functional and separable)
• Lossy coding (functional when all demands have 

distortion constraints  greater than 0)

when using  estimated source 
distributions.

Investigate other abstract 
properties (for example, 
strong converses) that we can 
possibly exploit in practicalX
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possibly exploit in practical 
code design.

S-Continuity holds for broad classes of network coding capacity regions.
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Achievable Rate Regions for BC With Cognitive Relays
Goldsmith, Jiang, Maric, Cui

ACHIEVEMENT DESCRIPTION

(MAIN RESULT:

T

ACHIEVEMENT DESCRIPTION
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Cognitive radio channel (CRC) & 

New coding scheme effectively integrates superposition 
coding, Gel’fand-Pinsker coding, and Marton’s binning 
scheme, and applies simultaneous joint decoding

• New achievable rate regions for 
both the CRC and the BCCR
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 Cognitive radio channel (CRC) & 

interference channel with a 
cognitive relay (ICCR) have been 
studied as variants of the IC

Known interference assumption 
imposing a constraint on the 

Encoding Decoding

• New regions generalize 
Marton’s region for BC

• A simple achievable rate region 
obtained for a special case 
Gaussian CRC (potentially tight)

encoding order cannot include 
Marton’s Region for the BC

HOW IT WORKS:Relay 1

GP
Marton
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HOW IT WORKS:
Rate splitting of both messages (common and private)
Private messages are encoded with two layers:
(1) Inner layer serves as cooperation base between relays 
and the sender
(2) Outer layer performs Generalized GP coding against 
each other’s inner layer  and perform Marton’s binning 

Base Station

To be determined

R2

Viewing both models as variants of 
the broadcast channel (BC):

Both models are regarded as the 
BC with cognitive one relay or two 

• Outer-bound of the capacity 
region to be developed from the 
BC perspectiveX
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ASSUMPTIONS AND LIMITATIONS:
• Cognition is non-causal, but is practical in certain sensor 
network scenarios 
• Region is derived in its implicit form

each other s inner layer, and perform Marton s binning 
against each otherRelay 2

R1

BC with cognitive one relay or two 
relays (BCCR)

p p

• Special capacity results to be 
identified

Exploiting the broadcasting nature of CR channels leads to better achievable rates
N

E
X• Region is derived in its implicit form



Tilted Matching for Feedback Channels
ACHIEVEMENT DESCRIPTION

B. Nakiboglu, L. Zheng
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ACHIEVEMENT DESCRIPTION
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O • Feedback is an 
efficient way for error 
correcting, but often 
used for ACK/NACK

MAIN RESULT:
Tilted a posteriori matching achieves 

the best error exponent

• Break away from 
uniform increment, 
allow coding to be 
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used for ACK/NACK 
and retransmissions
• Using feedback to 
guide FEC has only 
limited examples

considered as a 
dynamically changing 
optimization
• New performance 
metric and the resulting ed e a p es

• Performance metric 
for Dynamic coding is 
missing HOW IT WORKS: 

g
coding schemes for 
dynamic problems 
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By finding the a 
posteriori matching 
scheme with the

• Smooth upper bound to error prob.

• Make sure at each time t, conditioned 
on any history, the above metric

The dynamic aspect of FEC 
coding, which is crucial in 
understanding dynamic
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optimal error 
exponent, we expose 
the limitation of error 
exponent optimal FB 

on any history, the above metric 
decreases by a multiplicative factor;

• Match tilted a posteriori distribution to 
the desired input distribution. 

AP tilting

understanding dynamic 
information exchange 
requires new formulation
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coding
AP tilting   

Uniform Belief Increment Limits Performance



Lyapunov Exponents and the Posterior Matching Scheme
Coleman

ACHIEVEMENT DESCRIPTION
MAIN RESULT:

T

ACHIEVEMENT DESCRIPTION

The use of feedback is of the utmost 
importance in designing scalable  

101

111

•For the posterior matching scheme with encoder 
(*), the following dynamical system decoder -
with arbitrary initial condition u in (0,1) -

hi  itQ
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• Provides explict capacity-
achieving recursvie encoders 
and decoders
• Can be extended to networks

ith ti ht 
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C
Timportance in designing scalable, 

robust, reliable communication schemes

Deep understanding of feedback is still 
work in progress.  Are there simple 
provably good iterative feedback 
encoders/decoders/

HOW IT WORKS:
•Since the Y’s are independent and identically 

111

Ŵ [njn] = u, Ŵ [ijn] = S ¡ 1
Yi

(Ŵ [i+ 1jn]), (2)

achieves capacity:
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with tight conversesencoders/decoders/ Since the Y s are independent and identically 
distributed, the decoder dynamical system is a 
Markov chain and has a Lyapunov exponent of   
–C for any initial condition u on (0,1)

Dynamical System Encoder (2008):

W 1 = W , W i + 1 = SYi (W i ) (1) Ŵ [1jn] = gn (u,Y n )
¯ ¯

•Converse to coding theorem: next 
input should be independent of 
everything decoder has seen so far
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X i = F ¡ 1

X (W i ) 1
n

log
¯̄
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∂gn (u,Y n )

∂u

¯̄
¯! a:s: ¡ C,any u 2 (0,1)
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¯> 2¡ n C
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•With an optimal decoder, such 
“posterior matching” schemes achieve 
capacity

• Does this motivate a simple iterative 
decoder, that achieves capacity?

•How do we analyze this easily  

Use Stochastic Control 
methodology for a principled, 
canonical approach to address:

• noisy feedback (POMDP)

•Unknown channel (Q-learning)

• Delayed feedback X
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ASSUMPTIONS AND LIMITATIONS:
•Noiseless feedback

•Side benefit: provides a conceptually 
simple understanding of how PM scheme 
uses feedback to achieves capacity

How do we analyze this easily, 
exploiting the dynamics?

Delayed feedback 

A Canonical Controls Methodology to Design Iterative Feedback Coding Systems in MANETs
N

E
X

•Memoryless Channels



Efficient Codes using Channel Polarization
Bakshi, Jaggi, and Effros

ACHIEVEMENT DESCRIPTION

At each encoder:

Practical capacity achieving

ACHIEVEMENT DESCRIPTION
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How it works: 
- Divide input of blocklength N into N/f(N) sub-blocks 

of length f(N) each

- Practical coding schemes for 
several different types of 
channels that have the following 
properties:

- Practical capacity achieving 
schemes are not known for general 
multi-input multi-output channels

- Codes based on channel 
polarization that achieve capacity 
for point-to-point, degraded 
broadcast and MAC  have poor 
error performance

S
TA High rate 

R-S code Polar Code
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of length f(N) each
- Apply high rate R-S code on the entire input 

followed by a polar code on each sub-block
- Decode the two stages one by one
- When the polar code fails on few of the sub-blocks, 

the R-S code can correct the error
- P(error) decays as exp(-o(N)); Complexity is O(N 

- Low complexity
- Low delay
- Capacity achieving

Concatenating Polar and R-S codes 
gives the best properties of both
- Use Polar codes as Code 2 as

poly log N); excess rate goes to 0 asymptotically
Assumptions and limitations:
• Works for channels where capacity-achieving 

codes are known (e.g. point-to-point channels, 
degraded broadcast channels, multiple access 
channels)

Find Polar codes or a 
modification that work for a 
bigger class of channels

S

Code 1 Code 2

G
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Use Polar codes as Code 2 as 
they achieve capacity
- Use R-S codes as Code 1 to 
reduce error probability
- Complexity of encoding and 
decoding is almost linear in 
blocklength 

• Dependence of error probability on excess rate 
unknown

Use insight from the two-stage 
design to construct a better 
single stage code – currently 
works for special cases. W
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Concatenating Polar and R-S codes leads to more efficient codes for several different channels  
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Performance Bounds for the Interference Channel with a RelayPerformance Bounds for the Interference Channel with a Relay
Ivana Ivana MarićMarić, Ron Dabora and Andrea Goldsmith, Ron Dabora and Andrea Goldsmith

ACHIEVEMENT DESCRIPTION 

MAIN ACHIEVEMENT:
A new sum-rate outer bound to the 
performance of the Gaussian interference 
channel with a relay T

ACHIEVEMENT DESCRIPTION 
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Several relaying strategies for 
forwarding information to a single 
receiver exist 1) Tighter outer bound than cut-set 

bound and than existing cognitive 
ICR bounds

4
Outer Bounds

channel with a relay

HOW IT WORKS: 
A genie gives to a receiver minimum 
information  needed  for decoding both 
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Capacity of networks are still 
unknown; one of the key 
obstacles: how to handle and 
exploit interference?
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ASSUMPTIONS AND LIMITATIONS:
• The considered channel model: 

the interference channel with a relay
Wh t i th f h

2) Close to achievable rates in 
strong interference

0 0.5 1 1.5 2 2.5 3 3.5 4
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R
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2.5
Rate Regions of Gaussian Channels

A genie-added approach for an 
interference channel outer bound

• The genie cannot be turned-off even when 
not needed i.e., in strong interference 
regime.
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What is the performance when 
relaying for multiple sources?
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interference channel outer bound 
extended to the interference 
channel with a relay. Genie gives 
a receiver noisy inputs from 
sources and the relay. Although 
inputs are dependent (unlike in 
interference channels) one can

•Apply interference 
forwarding and the outer 
bound to larger networksE
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interference channels), one can 
still optimize inputs to obtain a 
bound.

A sum-rate outer bound for the Gaussian interference channel with a relay developed
NN



Joint Source/Channel Coding with Limited Feedback
Deniz Gündüz, Andrea Goldsmith and Vincent Poor

FLOWS & NEQUIT ACHIEVEMENT

High SNR behavior of the average distortion in 
transmitting Gaussian sources over MIMO 
f di h l “di t ti t”

• Improves our 
understanding of how 
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fading channels: “distortion exponent”

Multi-layer source coding followed by multi-
rate channel coding
Each so rce la er is transmitted ntil

g
to utilize feedback 
optimally in 
communication 
systemsSeparate source and channel 

coding
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Each source layer is transmitted until 
successfully decoded by the receiver

g
Theoretically optimal for static 
channels
Optimality fails over fading 
channels with delay constraints

-We study the high SNR 
regime

To find the optimal 
transmission scheme 
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regime
- Consider 1 bit/channel 
use feedback
- Use feedback as 
i t t ARQ

when the feedback 
resources are limited

N
E

X
T-

P
H

A
S

N
E

W
 I

N
S

IG

instantaneous ARQ

One-bit instantaneous feedback helps us achieve the optimal distortion exponent in 
MIMO systems. Feedback also helps us simplify the transmission scheme.



Capacity and Achievable Rates for the Interference 
Channel:Deniz Gündüz, Nan Liu, Andrea Goldsmith and Vincent Poor

FLOWS & NEQUIT ACHIEVEMENT

MODEL:
Interference Ch. with Message Side Information • More general 

models for 

Classical interference 
channel:
- Each user has one 
message destined for A

C
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interference channels 
are proposed
•These can model 
more complicated 

message destined for 
its own receiver
- Receivers have no 
side information
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Each receiver knows a part of the interfering message
X-Channel with Degraded Message Sets

p
and realistic networks

Networks are more 
complicated:

Achievable rates for general channel models

complicated:
-Some common 
messages might be 
destined for both 
receivers

• Extend the finite-bit 
capacity results for the 
classical Gaussian S
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Achievable rates for general channel models
These are shown to be capacity achieving for two 
special classes:
- a class of deterministic interference channels

a special class of Z channels

receivers
- Each receiver 
might know a part 
of the interfering 
message

interference channel to 
these new models
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- a special class of Z-channels message 

Achievable rates for more general interference channel models.



Multicasting with a Relay
D. Gündüz, O. Simeone, A. Goldsmith, V. Poor and S. Shamai

FLOWS & NEQUIT ACHIEVEMENT

In multicasting multiple 
messages over a 
network, common 
t t i A
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MAIN RESULT:
We develop structured codes that exploit 
the network topology such that the relay 

strategies are:
- Routing
- Decoding both 
messages at the relay 
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sum of the messages
Linear codes achieve the capacity region for 
finite-field modulo additive channels 
Nested-lattice codes for Gaussian channels:g y

and using network 
coding

Nested-lattice codes for Gaussian channels: 
approach the upper bound and surpass 
standard random coding schemes.

Relay need not decode 
the messages
Design codes that 
enable decoding of the • Extension to multiple 

relaysE
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g
modulo sum of the 
messages at the relay:

Structured coding 

relays
• Combine structured 
and random codes for 
uniformly higher rates
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Structured codes improve multicasting rates over a relay network.



The Multi-Way Relay Channel
Deniz Gündüz, Aylin Yener, Andrea Goldsmith and Vincent Poor

FLOWS & NEQUIT ACHIEVEMENT

• Joint source/channel 
coding helps achieve 
higher rates in 

Exact capacity regions 
are hard to obtain even 
with three nodes.
Random codes are

MAIN RESULT:
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g
networks
• Compress and 
forward relaying 
outperforms other 

Random codes are 
capacity achieving for 
many models.
Decode-and-forward 
relaying used in most
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p
strategies for this 
network topology

relaying used in most 
practical systems.

MODEL:
Clusters of users: Each user in a cluster 
wants messages of all other users in the

Joint source-channel 
coding techniques to 
achieve higher rates

• Consider inter and/or 
intra cluster reception
• Combine structured 

wants messages of all other users in the 
same cluster.
Communication is enabled by the relay.

ASSUMPTIONS AND LIMITATIONS:
No signal received from other users S
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Structured codes 
provide higher rates 
than random coding in 
some networks

and random codes
• Characterize non-
symmetric achievable 
rate points

No signal received from other users 
Symmetric capacity for a symmetric system 
is analyzed

* Achievable symmetric rate is characterized 
and compared to the upper bound N
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Both compress-and-forward relaying and lattice coding achieve symmetric rates within 
a constant gap of  capacity. 
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Communication Requirements for Inducing CooperationCommunication Requirements for Inducing Cooperation
Paul Cuff, Haim Permuter and Thomas CoverPaul Cuff, Haim Permuter and Thomas Cover

ACHIEVEMENT DESCRIPTION 

The result yields results in 
distributed game theory, 
task assignment and rate 
distortion theory. 

MAIN ACHIEVEMENT:
Mutual information I(X;Y) characterizes the 

amount of information that must be sent in 
order to generate a desired joint distribution.

T

ACHIEVEMENT DESCRIPTION 
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theory of exchange of 
information among nodes.

Specifically what is the set 
of all distributions 
p(x1,x2,...,xm) inducible 
under communication rate 
constraints Rij, i,j = 
1,2,...,m?

We characterize the tradeoff between the rate 
of available common randomness and the 
communication needed for achieving the 
desired coordination. IM
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HOW IT WORKS: 
The coordination scheme requires

We shift emphasis away from 
information exchange. One of 
the main purposes of distributed 
communication is the induced 
cooperation of the nodes of the 
network How much

The coordination scheme requires 
randomization at both encoder and decoder. 
A codebook of independently drawn 
sequences Un is overpopulated so that the 
encoder can choose one randomly from 
many that are jointly typical with Xn. The 
decoder then randomly generates Yn We propose investigation of G
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network. How much 
dependence can be set up with 
a given set of communication 
constraints?

decoder then randomly generates Y
conditioned on Un.

ASSUMPTIONS AND LIMITATIONS:
We assume that the desired joint distribution is 

known.

We propose investigation of 
universal coordination schemes 
that work uniformly well over a 
family of problems.
We seek a theory of 
dependence and cooperation in 
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There exists an optimal tradeoff between the amount of common
randomness used and the required communication rate

mobile ad hoc networks. N



3-Receiver Broadcast Channels with Confidential Messages

ACHIEVEMENT DESCRIPTION

Y.K. Chia, A. El Gamal

T

ACHIEVEMENT DESCRIPTION

A
T

U
S

 Q
U

O •Information-theoretic 
secrecy provides a 
strong notion of 
secrecy.

MAIN RESULT:
• New rate-equivocation tradeoff regions for 3 

receivers broadcast channels with 1 and 2 
eavesdroppers

•Secrecy capacity 
regions for new
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secrecy.
•But, capacity results 
are known only for a 
small number of setups 
(the wiretap channel 

pp
• Achieves capacity for several nontrivial special 

cases
• Generalizes inner bounds obtained in previous 

work

HOW IT WORKS:

regions for new 
classes of networks
• New coding 
techniques for 
secrecy capacity( e e ap c a e

and 2 receivers 
broadcast channels 
with degraded message 
set)

• Via indirect decoding, legitimate receivers can 
decode a larger set of messages carried by 
auxiliary random variables. This improves the rate 
region

• Coding scheme uses randomization to confuse 
the eavesdropper but in a way which makes the 
message still decodable by the legitimate receiver

secrecy capacity 
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•Use a newly introduced 
technique of “indirect 

message still decodable by the legitimate receiver

Secret message and 
key capacities for 

l t k f
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Intended 
receiver
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decoding” and the 
standard techniques of 
random binning, Marton 
binning and superposition 
coding to obtain new 
bounds on secrecy 

general network of 
legitimate receivers 
and eavesdroppers

Through indirect 
decoding and 
randomization, some  
information about the 
private message is 
kept secret from 

R

R
eavesdropper

N
E capacity that are tight is 

several cases of interest.
eavesdropper 

Indirect coding is the key to secrecy



Sum Rate of Cyclically Symmetric Interference Channels Sum Rate of Cyclically Symmetric Interference Channels 
Bernd Bandemer, Gonzalo Vazquez-Vilar, Abbas El Gamal

ACHIEVEMENT DESCRIPTION 

Progress has been made in 
understanding the capacity of 
the Gaussian interference 

h l

MAIN ACHIEVEMENT:
Sum capacity is established for a K-user-pair, 
cyclically symmetric, deterministic interference 
channel with local interference (Wyner model). 

ACHIEVEMENT DESCRIPTION 
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T R

channel

Worst- and best-case 
interference conditions can 
be identified

• The Gaussian interference channel 
(IC) is practically relevant

• Its capacity is a long-standing open 
problem 
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Immediate practical 
implications in full-reuse 
multi-user wireless systems

p
• Asymptotic results and bounds with 

constant gap have been obtained

Normalized symmetric capacity 
as function of cross gainsChannel model with cross gain

shifts alpha and beta

A finite-field deterministic IC 
correctly reflects the asymptotic 
behavior of Gaussian IC.

Coding in this model takes the 

HOW IT WORKS: 
Achievability: Established using bit pipe 
assignments that depend on the interference 
parameters α β • Transform asymptotic result G

O
A
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G
H

T
S

shifts alpha and beta

form of simple single-letter bit 
pipe assignments.

The sum capacity for a cyclically 
symmetric, locally connected 
interference channel has been 
found using this model.

parameters α,β.
Converse: The optimality of the assignments is 
proved via standard weak converse techniques. 

ASSUMPTIONS AND LIMITATIONS:
Channel gains are known globally. Symmetry is 
assumed in the channel and the data rates

y
into upper and lower bound on 
capacity  with finite gap

• Extension to 
• Non-symmetric rates
• Non-symmetric channel
• Fully connected channel

Systematic ways to find optimalE
X

T-
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H
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S
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N
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We compute the sum capacity of a K-user deterministic interference channel

assumed in the channel and the data rates. • Systematic ways to find optimal 
assignmentsN

E



Towards Harnessing Relay Mobility in MANETs
Naini, Moulin

ACHIEVEMENT DESCRIPTION

A step towards establishing 
optimal node locations to 
maximize throughput in a large 
net ork

MAIN RESULT:

T

ACHIEVEMENT DESCRIPTION

Q
U

O Network configuration dependent Optimal Relay 
Locations and Schemes under restricted mobility

t d 2 network

Illustrates the potential of 
Compress-Forward scheme in a 
highly correlated noise regime
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Relay Locations are taken as a given

Link-level Relaying Protocol is 
independent of network configuration

Mobility of nodes viewed in a passive 
optimal
locationrelay

ext node 1

ext node 2

ext node 3

Establishes need for node 
cooperation in a large network 
with multiple end-end streams to 
maximize throughput

y f p
setting

source

relay

destination

Investigate parallel data-streams 
with dedicated mobile relays in a  

G
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T
S HOW IT WORKS:

Correlated Noise at the Relay and the Destination due to 
the rest of the network
Optimal Location chosen based on available mobility region
C t i  i  f  D d F d hil  th  t il 

Relay location  and  scheme are 
crucial especially in a network 
with  other  interfering  nodes

y
multi-objective game-theoretic 
setting.

Understand the role of mobility in 
other adhoc network blocks.

Devise mobility strategies for 
cooperative multi-hop relayingX
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ASSUMPTIONS AND LIMITATIONS:
Gaussian Channel Models are assumed
An adjusted Quadratic Path Loss exponent is used
N k C fi i  h ld b  k   h  l

Certain scenarios favor Decode-Forward while others entail 
Interference Mitigation through Compress-Forward

Relay mobility can improve Network Capacity
N

E
XNetwork Configuration should be known to the relay



Transmission over composite channels with combined source-
channel outage: Goldsmith and Mirghaderi

ACHIEVEMENT DESCRIPTION

MAIN RESULT:
We define an end‐to‐end distortion metric, Distortion vs. Combined 
Outage and prove the optimality of source and channel code 
separation to minimize this metric. 

T

ACHIEVEMENT DESCRIPTION

S
 Q

U
O

a1a2a3a4a5a6a7…

???????...

???????...

Composite channel model captures
non‐ergodic nature of MANET

Transmission with channel outage
over a composite channel leads to
the total loss of data with a certain

HOW IT WORKS: 
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Considerably lower distortion as 
compared with pure channel 
outage
Design flexibility provided by 
source channel code separation

f
probability in exchange for higher
rates in non‐outage states

• Useful when partial loss of information is acceptable and only the 
low distortion of the retrieved data is concerned.

• Select the optimal source outage set (with prob q ) from the

Consider a more general case with
different end-to-end distortion
requirements for different subsets of
the source alphabet

• Select the optimal source outage set (with prob. qs) from the 
source alphabet and also the channel outage set (prob. qc).

• Compress the non‐outage subsequence of the source output and 
transmit along with the source outage indices using a separate 
channel code.

• In non‐outage channel states, identify the source outage indices 
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a1?a3a4?a6? a8…

a1?a3a4?a6? a8…

???????... the source alphabet.
Extend the work to a network
scenario where different
reconstructions of a common
information source are available at
multiple nodes and are to be
transmitted to a single receiver

and then reconstruct the non‐outage subsequence.

ASSUMPTIONS AND LIMITATIONS:

• Perfect CSI at Rx., Statistics (channel capacity vs. outage) known 
at Tx. Given a certain loss prob. trade‐off b/w qs and qc

E
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IG Allow partial loss in each block of data to
lower the probability of total loss.
Tx. declares source outage with certain
probability to avoid “high rate” source
outputs,Less distortion for other outputs.
Does separation theorem hold in a

bi d h l Investigate the effect of a feedback
channel to this problem

Combination of source and channel outage can improve the performance of 
lossy transmission systems

• Source is stationary and ergodic

N
Ecombined source‐channel outage

scenario?



Information Theory for Mobile Ad-Hoc Networks (ITMANET): The 
FLoWS Project

Thrust 3
Application Metrics and Network Performance

Asu Ozdaglar and Devavrat Shah



Asymptotic Analysis for Large Scale Dynamic Stochastic Games 
S. Adlakha, R. Johari, G. Weintraub, A. Goldsmith

ACHIEVEMENT DESCRIPTION 

MAIN RESULT: Taxonomy of Stochastic 
Games General Framework for 

interaction of multiple devices

F th ltT

ACHIEVEMENT DESCRIPTION 
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General Stochastic Games
Further, our results:
• provide common thread to analyze 
both competitive and coordination 
models.
• provide exogenous conditions for 
existence and AME for competitive 

Many cognitive radio models do not
account for reaction of other devices
to a single device’s action.
In prior work, we developed a general
stochastic game model to tractably
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Competitive Model

• Non-cooperative 
games.

Coordination Model

• Cooperative games.
• Super modular 

HOW IT WORKS:

models
• provide results on a special class 
of coordination model – linear 
quadratic tracking games.

stochastic game model to tractably 
capture interactions of many devices.

g
• Sub modular payoff 
• Existence results 
for OE.
• AME property.

p
payoff structure.
• Results for special 
class of linear 
quadratic games.

• Existence results for competitive model are 
based on continuity arguments.

• AME property for a competitive model is 
derived from the fact that opponents at higher 
states lead to lower payoff.

State of device i

State of other devices

G
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Provide existence and AME results 
for general class of coordination 
games.y

ASSUMPTIONS AND LIMITATIONS:

• Mean field requires all nodes to interact with 
each other – applies to Dense networks only

• Coordination model requires different

In principle, tracking state of other 
devices is complex.
We approximate state of other 
devices via a mean field limit.

Action of device i
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Our main goal is to develop a
related model that applies when a
single node interacts with a small 

b f th d hCoordination model requires different 
existence proof

de ces a a ea e d t

N
E

N number of other nodes each 
period. 

New Paradigm for analyzing large scale competitive and coordination games



Adaptive modulation with smoothed flow utility
Boyd, Akuiyibo, O’Neill

ACHIEVEMENT DESCRIPTION 

MAIN RESULT:
Flow allocation to optimally trade off average 
smoothed flow utility and power.

Prevailing wireless network

ACHIEVEMENT DESCRIPTION 

U
O

Different levels of smoothing 
lead to different optimal 
policies; different trade offs

HOW IT WORKS:
Optimal flow policy is a complicated function of 

smoothed flow and channel gain

Prevailing wireless network 
utility maximization and 
resource allocation methods 
focus on  per period 
optimization 
These methods ignore the 
heterogeneous time scales
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heterogeneous time scales 
over which network 
applications need resources 
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S Stochastic 

Control Theory

Network Utility 
Maximization

ASSUMPTIONS AND LIMITATIONS:
• Utilities are strictly concave, power is strictly 

convex; linear dynamics represent time averaging
• At each time period assumes the transmitter N
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• Derive network utility from 
smoothed flows
•Smoothing allows us to 
model the demands of an 
application that can tolerate 
variations in flow it receives

Dynamic 
Optimization

Approximate dynamic 
programming (ADP) for 
MANETs

Optimally trade off average utility and power using smoothed flow utilities 

At each time period, assumes the transmitter 
learns  random channel state through feedback

variations in flow it receives 
over a time interval • computationally tractable



Network Aware Design: Dynamic/Stochastic NUM
Boyd, Goldsmith, ONeill

ACHIEVEMENT DESCRIPTION 

MAIN ACHIEVEMENT:
Wireless NUM – Learning Based
• Data Delivery Contracts and prioritization

ACHIEVEMENT DESCRIPTION 
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Improved performance and 

• Distributed approaches
• Multi-time scale convergence applications

Multi-Period NUM
• Optimal control policies for infinite horizons

MANET performance sub-optimal. 
Not linked to changes in
•Tactical wireless environment
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p o ed pe o a ce a d
optimal resource allocation. 

Quantify cost of traffic (QoS)
Explore rate-delay-energy 
trade-offs

• Average cost infinite horizon Markov models
• Approximate relative value functions

HOW IT WORKS:
• Multi-period statistical approach to model properties of 

•Traffic needs: Delay, Throughput, 
Priority. 

p pp p p
environment and traffic learn parameters
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Complex dynamics
•Random time varying RF

ASSUMPTIONS AND LIMITATIONS:
Unbiased CSI

Performance on Energy-
Delay-Capacity Surface
•Approx MDP -Dimensionality 
reduction, Value function 
approximation and online learning
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New tools based on
•Stochastic Optimization
•Approx MDP

Random time varying RF 
environment – new opportunities
•Time based QoS

Dynamically Optimize Network Resources to Match Traffic Needs 

Unbiased CSI
Explicit QoS requirements  •Approx. optimal policies N

EN
E •Model Predictive Control



Supermodular Network Games
V. Manshadi and R. Johari

ACHIEVEMENT DESCRIPTION 

MAIN RESULT:

Payoff of agent i:

ACHIEVEMENT DESCRIPTION 
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i
j

…

…

We assume utility exhibits strategic complementarities.

Πi(xi, xj, xk) =
u(xi, xj+xk) – c(xi)

Local interaction does not imply 
weak correlation between far 
away nodes in cooperation 
settings.

Centrality measures need to be 
used to quantify the effect of 
th t k
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Supermodular games:
Games where nodes have strategic
complementarities
N t k ( hi l)

k1

We show:
• Membership in larger k-core implies higher actions in 
equilibrium
• Higher centrality measure implies higher actions in
equilibrium
• If nodes don’t know network structure, largest

ilib i d d d ti d

the network.Network (or graphical) games:
Games where nodes interact through
network structure

equilibrium depends on edge perspective degree 
distribution

HOW IT WORKS: 
We exploit monotonicity of the best response to
prove our results:

The best action for node i is
i i i it i hb ’ ti

This model assumed a static
interaction between the nodes.

A node’s actions can have significant
effects on distant nodes.
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increasing in its neighbor’s actions.

ASSUMPTIONS AND LIMITATIONS:
We study equilibria of a static game between nodes.
The eventual goal is to understand dynamic network 
games.

Our end-of-phase goal is to
develop dynamic game models of
coordination on networks.

Centrality, coreness: Global measures
of power of a node

We characterize equilibria in terms of
such global measures E

X
T-
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The power of a node in a networked coordination system depends on its centrality 
(global properties) not just on its degree (a local property)

N
E

N
E



Q-learning Techniques for Network Optmization: W. Chen & S. Meyn

ACHIEVEMENT DESCRIPTION
What is the state of the art and 
what are its limitations? 
Control by learning: obtain a 
routing/scheduling policy for the 
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ACHIEVEMENT DESCRIPTION
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O MAIN RESULT:
Q-Learning for network routing:  by observing 

the network behavior, we can learn the 
optimal priority for each buffer or a small 

• Implementation –
Consensus algorithms & 
Information distribution

g g p y
network that is approximately 
optimal with respect to delay & 
throughput.

Can these techniques be  
extended to wireless models? N
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class of buffers,  depending on the range of 
available local information.

Q-learning with steepest descent or Newton 
Raphson Method via stochastic approximation

• Theoretical analysis for the convergence 

Near optimal performance with simple solution:

• Adaptation – kernel based 
TD-learning and Q-learning

• Integration with Network 
Coding projects:  Code 
around network hot-spots

KEY NEW INSIGHTS:
• Extend to wireless? YES

eo et ca a a ys s o t e co e ge ce
and properties.

• Simulation experiments are on-going.

7

8

9

10
param eter trajec tories

10

20

30
parameter trajectories

• Extend to wireless? YES 
Complexity is similar to 
MaxWeight. Policies are 
distributed and throughput 
optimal.
• Learn the approximately • Un-consummated unionTT

S HOW IT WORKS:

1 2 3 4 5 6 7 8

x  104

6

0 2 4 6 8 10 12 14 16 18
0

5

10

15

state trajec tories

1 2 3 4 5 6 7 8

x 104

0

0 2 4 6 8 10 12 14 16 18
0

5

10

15

state trajectories

Learn the approximately 
optimal solution by Q-learning 
is feasible, even for complex 
networks.
• New application: Q-learning 
and TD-learning for power 

Un consummated union 
challenge:  Integrate coding 
and resource allocation

• Generally, solutions to fluid 
model should offer insight for 
the stochastic model
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Step 1:  Generate a state trajectory.
Step 2:  Learn the best value function 

approximation by stochastic approximation.
Step 3:  Policy for routing: h-MW policy derived 

from value function approximationcontrol.

Algorithms for dynamic routing: Visualization and Optimization 

N
E from value function approximation



Distributed Scheduling via Reversible Dynamics
Devavrat Shah  Jinwoo Shin

ACHIEVEMENT 

MAIN ACHIEVEMENT:
An efficient MAC protocol 
• Random backoff  style with access probability 

f ti f i

ACHIEVEMENT 
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function of queue-size
• Totally distribute

Medium Access Control (MAC) is 
fundamental protocol of modern 
wireless communication
•Random backoff protocols popular
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Finally, after a long history, we 
have a fully distributed MAC 
protocol that is indeed optimal

Random backoff protocols popular
•But, they usually perform poorly

1/1+log q

log q/1+log q

New theory for distributed 
algorithm design

HOW IT WORKS:
• Random backoff probability proportion to the 

logarithm of queue-size G
O

A
LS

S g q
• Performs literally unit amount of computation per 

time step

ASSUMPTIONS AND LIMITATIONS:
• Carrier sensing information

Beyond oblivious MAC

• dealing with  hidden terminal
•Improving delay through utilization 
of geometryE
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Distributed Algorithms via 
Reversible Dynamics

• A new theory for efficient 
distributed, simple network 
algorithm design

Resolution of a long standing challenge for network & info. Th.: efficient MAC protocol

• Carrier sensing information  g y

N
E

N
E algorithm design



A Distributed Newton Method for Network Utility Maximization
(Wei , Ozdaglar, Jadbabaie)

ACHIEVEMENT DESCRIPTION 

MAIN ACHIEVEMENT:
• A Newton method that solves general network utility 

maximization problems in a distributed manner
Simulations indicate the superiority of the distributed

ACHIEVEMENT DESCRIPTION 
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• Simulations indicate the superiority of the distributed 
Newton method over dual subgradient methods
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tion algorithms rely on first order 
methods
•These algorithms are easy to distribute
•However, they can be quite slow to 
converge limiting their use in rapidlyconverge, limiting their use in rapidly 
changing dynamic networks

Significant improvements with the 
distributed Newton method compared 
to subgradient methods

HOW IT WORKS: 
• Turning inequality constraints into barrier functions
• Employing matrix splitting techniques on the dual graph 

to solve the dual Newton step
Using a consensus based local averaging scheme which G
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Second order methods for 
distributed network utility 
maximization

• Using a consensus-based local averaging scheme, which 
requires local information only

ASSUMPTIONS AND LIMITATIONS:
• Routing information and capacity constraints are fixed
• Dual and primal steps are computed separately

Combine Newton (second order) 
methods with consensus 
policies to distribute the 
computations associated with 
the dual Newton step
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convergence of our methods
•Understand the impact of network 
topology on algorithm performance
•Design algorithms that compute 
primal and dual steps simultaneously

Novel Distributed Second Order Methods for Network Utility Maximization Problems
N

E
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Dynamic Resource Allocation for Delay-Sensitive Applications 
(Menache, Ozdaglar, Shimkin)

ACHIEVEMENT DESCRIPTION

•Our model allows for fairly 
general dependence of delay 
on the allocated resource, thus 
suitable for different 

MAIN ACHIEVEMENT:
A tractable and general framework for the 

analysis of delay performance of a dynamic 
resource allocation mechanism

Most existing work on resource 
allocation in networks considers:
• “Static” scenarios
•Rate (throughput) related 
performance metrics 

ACHIEVEMENT DESCRIPTION
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suitable for different 
applications.

•The fluid approximation is 
appropriate under overloaded 
systems, where the user arrival 
rate and system resources 
become large.

resource allocation mechanism.
Existence and uniqueness of a Nash 
equilibrium
Preliminary results on efficiency loss

However, in many applications: 
•Resource not required when “job is 
done” -> Dynamic resource allocation
•Relevant performance metric: Delay
or Completion Time
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•Possible applications:

Cloud-computing facility

Dynamic spectrum access in 
wireless networks

HOW IT WORKS
• Each (price-taker) user solves a simple 

optimization problem, accounting for a delay-
price tradeoff.

• We employ a fluid-scale approximation of p y pp
the stochastic service system.

• Under the approximation, queue sizes 
“freeze”, giving rise to a fixed steady-state 
price. •Efficiency loss bounds for 

different delay functions.

A
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T
S Allocation mechanism should be

ASSUMPTIONS AND LIMITATIONS:
While the proposed fluid model is motivated 
by the stochastic system, we do not provide 
here a formal convergence result that relates 
the two.

•Dynamic stability properties

Higher-level goals:
•Comparisons with other resource 
allocation mechanisms.
•General network architecturesX
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simple; users should have a clear 
notion of price.
•Natural candidate: Proportional
fair mechanism, where the 
allocated capacity remains 
constant and is proportional to General network architectures

N
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the bid.

A fluid-Scale approximation is used to gain insights on the equilibrium of a dynamic resource 
allocation mechanism 



Canonical Decompositions of Games and Near Potential Games 
(Candogan, Menache, Ozdaglar, Parrilo)

ACHIEVEMENT DESCRIPTION

MAIN ACHIEVEMENT:
• Any game can be decomposed to 3 

orthogonal components: Nonstrategic, 
Potential Harmonic

The analysis of the dynamic 
properties of non-cooperative

ACHIEVEMENT DESCRIPTION
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Simpler analysis of dynamics 
and equilibrium properties in 

Potential, Harmonic
• The dynamic properties of near potential 

games are analyzed by considering the 
properties of their potential component

HOW IT WORKS

properties of non cooperative 
user interaction is usually hard.
-Potential games is a class of 
games in which natural dynamics 
converge to a Nash equilibrium
-However, potential games is a small 
subset of games
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Dynamics and the 
potential component

and equilibrium properties in 
general games 

Natural dynamics converge to a 
small neighborhood of a pure 
equilibrium

• Decomposition of the vector flows of any 
game to gradient, harmonic and curl flows.

subset of games.
-Can we extend the class of games 
with desirable properties? 

• The potential component corresponds to the 
gradient flow

• The dynamic and equilibrium properties of G
O
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potential games are approximately carried 
over to near potential games

ASSUMPTIONS AND LIMITATIONS:
It is not clear how to find the closest ordinal

potential game to a given game

Applications of the paradigm to 
non-cooperative scenarios in 
networks:
•Implications in the design of 
network protocols.
•Supplemental mechanisms forE
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•Analysis of the global structure of 
preferences in games
•Canonical decomposition
•Approximating any game with its 
closest potential game

Helmholtz decomposition of vector fields

•Supplemental mechanisms for 
regulating networks to desirable 
working points (e.g., pricing)
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The canonical decompositions of games are useful for understanding their static and dynamic 
equilibrium properties



Near-Optimal Power Control in Wireless Networks: A Potential 
Game Approach  (Candogan, Menache, Ozdaglar, Parrilo)

ACHIEVEMENT DESCRIPTION

MAIN ACHIEVEMENT:

Most work on wireless games 

ACHIEVEMENT DESCRIPTION
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•Simple pricing scheme that can 
be used for any system 
objective

focus on static equilibrium 
properties without establishing 
convergence of distributed 
dynamics.
-There is no systematic framework 
for providing simple incentive 

h i th t hi

IM
PA

C
T

S
TA

The evolution of power levels Distance between current 
and desired power allocation j

•Performance guarantees in the 
dynamical sense.

•A new paradigm for regulation 
of wireless networks

The Potential-Game Approach (approximately) 
enforces any power-dependent system-
objective among competing users under 
natural dynamics.

HOW IT WORKS:

mechanisms that can achieve an 
arbitrary system objective.

Power approximate • Approximate the underlying power control 
game with a “close” potential game

• Derive prices that induce an optimal power 
allocation in the potential game

• The proximity between the two games 
establishes near optimal performance in the G
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Power 
control 
game

Potential 
game

approximate

pricingLyapunov
analysis Optimal power 

ll i establishes near optimal performance in the 
original game in the limit of distributed 
dynamics.

ASSUMPTIONS AND LIMITATIONS:
• Single-band networks 
• Approximation is better for high-SINRs
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•Approximate a game with a 
“close” potential game
• Exploit the appealing properties 
of potential games, such as 
convergence of distributed (best-
response) dynamics

allocation

•Multichannel networks
•Enhanced pricing schemes for 
low SINR regime

N
E

N
E response) dynamics

Potential-game approximations lead to simple pricing schemes for any system objective.

low-SINR regime 
•Distributed implementation of 
price generation



Information Theory for Mobile Ad-Hoc Networks (ITMANET): The 
FLoWS Project

Thrusts 1 & 3



On the stability region of networks with instantaneous decoding Traskov, 
Medard, Sadeghi, Koetter

ACHIEVEMENT DESCRIPTION 

MAIN ACHIEVEMENT:
Derive stability region under instantaneous 
decoding and provide online scheduling and 
network coding algorithm

ACHIEVEMENT DESCRIPTION 
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Network coding (red) increases

network coding algorithm.

HOW IT WORKS: 

•Opportunistic XOR-coding shows 
significant gains.
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Network coding (red) increases 
the stability region over routing 
(blue) and leads, on average, to 
smaller delays.

•However, stability region of 
instantenous decoding is not known.
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• Can formulate decoding 
constraints in a graphical model

ASSUMPTIONS AND LIMITATIONS:
• Need ACKs or NACKs • Include analog network coding. 

Here nodes a and b coordinateE
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• Constrained queuing system

Instantaneous decoding increases the stability region and reduces delay.

• Network coding limited to relay Here, nodes a and b coordinate 
their transmission.N

E

N
E



Information Theory for Mobile Ad-Hoc Networks (ITMANET): The 
FLoWS Project

Thrusts 1, 2 & 3



Distributed Lossy Averaging
Han-I Su and Abbas El Gamal

ACHIEVEMENT DESCRIPTION 

•New problem formulation

•Upper and lower bounds on 

MAIN ACHIEVEMENT:
•Found the rate distortion function for 2-node 
network with correlated Gaussian sources 

•Most work on distributed averaging 
has involved the noiseless 
communication and computation of 
real numbers, which is unrealistic.

•The distributed lossy averaging 
problem is a generalization of the

ACHIEVEMENT DESCRIPTION 
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pp
the network rate distortion 
function for centralized and 
distributed protocols are 
given

•The results suggest that 
using distributed protocols 

•A cutset lower bound on the network rate 
distortion function for general networks with 
independent white Gaussian noise sources
•A centralized protocol over a star network which 
achieves the cutset bound within a factor of 2
•A lower bound on the network rate distortion

problem is a generalization of the 
CEO problem, for which the rate 
region is known for Gaussian 
sources and MSE distortion. 
The averaging protocol in our 
setting is more complex since it 
allows for interactivity, relaying, and 
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g p
results in a factor of (log m) 
increase in order relative to 
centralized protocols.

A lower bound on the network rate distortion 
function for distributed weighted-sum protocols, 
which is larger then the cutset bound by a factor of 
(log m) in order
•An upper bound on the expected weighted-sum 
network rate distortion function for gossip-based 
weighted-sum protocols, which is at most 

local computing, in addition to 
multiple access. 

•We present a lossy source 
coding formulation of the 
distributed lossy averaging 
problem. 

•The information-theoretic

g p ,
(log log m) larger than the above lower bound

HOW IT WORKS: 
The bounds are obtained using a mix of 

information theory, linear systems and results from 

•Characterize the 
improvement of using the 
correlation (sideG

O
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S The information theoretic 
results shed light on the 
fundamental tradeoff in 
distributed computing between 
communication and 
computation accuracy.

y, y
gossip protocols. 

ASSUMPTIONS AND LIMITATIONS:
•The upper bounds generalize to non-Gaussian 
sources, but the lower bounds do not. 

correlation (side 
information) between the 
node estimates 

•Establish bounds for 
computing general 
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An information-theoretic formulation of the distributed lossy averaging is presented.
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