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Motivation

• Dynamic allocation of resources. Examples:

– Cloud computing

– Wireless-spectrum access

– More...

• Delay or completion-time as a central perfor-
mance metric.

• Twofold objective: (i) Design simple allocation
mechanisms, (ii) Develop tools for their analy-
sis

The Allocation Mechanism

• Ideal scheme: zi(t) = Z0
wi

wi+
P

j∈J−i(t) wj
,

where J−i(t) is the set of other jobs that are
active at time t.

• Implementable scheme: zi = wi

P . The price P
is determined according to
P = 1

Z0

∑
j∈Ja(i) wj , where Ja(i) is the set of

other active jobs at job i’s arrival moment.

• The implementable scheme approximates the
ideal scheme under plausible conditions.

• Total monetary transfer: wiTi(zi), where Ti is
the delay (completion time).

General Summary

Delay, User-Cost and Demand

• Assumption 1 [Marginal effectiveness of adding resources is decreasing]: Let µi(zi) = 1
Ti(zi)

be the
effective service rate. We assume that µi(zi) is a differentiable, strictly concave and strictly increasing
function of zi ≥ 0, with µi(0) = 0 and µi(∞) <∞. Consequently, the delay Ti(zi) is convex-decreasing
in zi.

– Example: Ti(zi) = ai + Di

zi
.

• Assume a finite-set of user (or job) classes. The cost function Js for a class-s is given by

Js(wi) = (cs + wi)Ts(zi),

where cs is the delay-disutility parameter.

• Assumption 2 [Effective arrival rates decrease with price]: For every service class s, the arrival rate
λs(P ) is continuous and strictly decreasing in P ≥ 0, and λs(P )→ 0 as P →∞.

Fluid Scaling and Nash Equilibrium

• With n a large scaling factor, let the arrival rate
of class s be nλs, the system resources nZ0.
After re-scaling, the arrival stream may be ap-
proximated by a deterministic rate λs (in fluid-
units per unit time).

• Let Qs denote the queue-size (in fluid units)
of class-s users in the system. Corresponding
dynamics:

dQs(t)
dt

= λs(t)−Qs(t)µs(t) .

• A class-homogeneous Nash equilibrium is
characterized by the following equations:

Qs = λsTs, P =
1
Z0

∑
s

Qsws,

where Js(wi) = (cs + wi)Ts(wi

P ) and
ws ∈ arg maxwi≥0 Js(wi)

Summary of Results

Theorem 1. Under Assumptions 1 and 2, there ex-
ists a unique class-homogeneous Nash equilibrium.

CASE STUDY: Let Ts(zs) = as + Ds

zs
. Consider

demand functions of threshold type: Users of
class s join if Js(Ts, ws) ≡ csTs + wsTs ≤ vs,
where vs is a ‘value of service’ parameter. Then:

Theorem 2.
(i) The equilibrium decision of whether to join the
system or not is a simple index-rule:

√
P ≷

√
vs −

√
ascs√

Ds

.

(ii) For as → 0, the equilibrium delays are zero for
all classes (Ts = 0); additionally, the equilibrium co-
incides with the socially optimal working point, i.e.,
no efficiency loss.
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