Dynamic Resource Allocation for Delay-Sensitive Applications

Motivation

- Dynamic allocation of resources. Examples:
 - Cloud computing
 - Wireless-spectrum access
 - More...
- Delay or completion-time as a central performance metric.
- Twofold objective: (i) Design simple allocation mechanisms, (ii) Develop tools for their analy-SiS

The Allocation Mechanism

• Ideal scheme: $z_i(t) = Z_0 \frac{w_i}{w_i + \sum_{j \in J_i(t)} w_j}$, where $J_{-i}(t)$ is the set of other jobs that are active at time t.

• Implementable scheme: $z_i = \frac{w_i}{P}$. The price P is determined according to

 $P = \frac{1}{Z_0} \sum_{j \in J_a(i)} w_j$, where $J_a(i)$ is the set of other active jobs at job i's arrival moment.

- The implementable scheme approximates the ideal scheme under plausible conditions.
- Total monetary transfer: $w_i T_i(z_i)$, where T_i is the delay (completion time).

Ishai Menache[†], Asuman Ozdaglar[†] and Nahum Shimkin[‡] **Department of Electrical Engineering and Computer Science, MIT** ‡ Faculty of Electrical Engineering, Technion, Israel

Delay, User-Cost and Demand

• Assumption 1 [Marginal effectiveness of adding resources is decreasing]: Let $\mu_i(z_i) = \frac{1}{T_i(z_i)}$ be the effective service rate. We assume that $\mu_i(z_i)$ is a differentiable, strictly concave and strictly increasing function of $z_i \ge 0$, with $\mu_i(0) = 0$ and $\mu_i(\infty) < \infty$. Consequently, the delay $T_i(z_i)$ is convex-decreasing in z_i .

- Example:
$$T_i(z_i) = a_i + \frac{D_i}{z_i}$$
.

• Assume a finite-set of user (or job) classes. The cost function J_s for a class-s is given by

$$J_s(w_i) = (c_s + w_i)T$$

where c_s is the delay-disutility parameter.

• Assumption 2 [Effective arrival rates decrease with price]: For every service class s, the arrival rate $\lambda_s(P)$ is continuous and strictly decreasing in $P \ge 0$, and $\lambda_s(P) \to 0$ as $P \to \infty$.

 $r_s(z_i),$

dynamics:

Theorem 1. Under Assumptions 1 and 2, there exists a unique class-homogeneous Nash equilibrium.

Theorem 2. (i) The equilibrium decision of whether to join the system or not is a simple index-rule:

no efficiency loss.

Fluid Scaling and Nash Equilibrium

• With n a large scaling factor, let the arrival rate of class s be $n\lambda_s$, the system resources nZ_0 . After re-scaling, the arrival stream may be approximated by a deterministic rate λ_s (in fluidunits per unit time).

• Let Q_s denote the queue-size (in fluid units) of class-s users in the system. Corresponding

$$\frac{dQ_s(t)}{dt} = \lambda_s(t) - Q_s(t)\mu_s(t) \,.$$

• A class-homogeneous Nash equilibrium is characterized by the following equations:

$$Q_s = \lambda_s T_s, \qquad P = \frac{1}{Z_0} \sum_s Q_s w_s,$$

where $J_s(w_i) = (c_s + w_i)T_s(\frac{w_i}{P})$ and $w_s \in rg\max_{w_i > 0} J_s(w_i)$

Summary of Results

CASE STUDY: Let $T_s(z_s) = a_s + \frac{D_s}{z_s}$. Consider demand functions of threshold type: Users of class s join if $J_s(T_s, w_s) \equiv c_s T_s + w_s T_s \leq v_s$, where v_s is a 'value of service' parameter. Then:

$$\sqrt{P} \gtrless \frac{\sqrt{v_s} - \sqrt{a_s c_s}}{\sqrt{D_s}}$$

(ii) For $a_s \rightarrow 0$, the equilibrium delays are zero for all classes ($T_s = 0$); additionally, the equilibrium coincides with the socially optimal working point, i.e.,