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Motivation

• Due to the shared nature of the wireless do-
main, the performance of each mobile de-
pends on the resources allocated to others

• The power control problem, even as a central-
ized optimization problem with full information,
is a fairly complex problem.

• An additional concern: self-interested behavior
of mobiles.

• We consider the power allocation problem
from the viewpoint of a central planner who
wishes to impose a certain power-dependent
objective in the network, using pricing.

• Using a potential-game approach, we provide
a general distributed power control scheme
that would (approximately) achieve any under-
lying system objective despite the selfishness
of the mobiles.

The Model

• Set of mobiles M = {1, . . . ,M} share the
same wireless spectrum (single channel).

• The power allocation of the mobiles p =
(p1, . . . , pM ) (where 0 < Pm ≤ pm ≤ P̄m.)

• The rate of user m is given by:

rm(p) = log (1 + γSINRm(p)) ,

where, γ > 0 is the spreading gain of the
CDMA system and

SINRm(p) =
hmmpm

N0 +
∑
k 6=m hkmpk

,

• The payoff of player m: um(p) = rm(p) −
λmpm.

• λm is set by the central planner, to maximize a
system utility-function U0(·).

Summary

•!Simple pricing scheme that can 
be used for any system 
objective 

•!Performance guarantees in the 
dynamical sense. 

•!A new paradigm for regulation 
of wireless networks 

Near-Optimal Power Control in Wireless Networks: A Potential 
Game Approach  (Candogan, Menache, Ozdaglar, Parrilo)!

MAIN ACHIEVEMENT: 

 The Potential-Game Approach (approximately) 
enforces any power-dependent system-
objective among competing users under 
natural dynamics. 

HOW IT WORKS: 

•! Approximate the underlying power control 
game with a  “close” potential game 

•!  Derive prices that induce an optimal power 

allocation in the potential game 

•!  The proximity between the two games 

establishes near optimal performance in the 
original game in the limit of distributed 

dynamics. 

ASSUMPTIONS AND LIMITATIONS: 

•! Single-band networks  

•! Approximation is better for high-SINRs 

Most work on wireless games 
focus on static equilibrium 
properties without establishing 
convergence of distributed 
dynamics. 

-There is no systematic framework 
for providing simple incentive 
mechanisms that can achieve an 
arbitrary system objective. 
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ACHIEVEMENT DESCRIPTION 
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•!Approximate a game with a 

“close” potential game 

•! Exploit the appealing properties 

of potential games, such as 

convergence of distributed (best-

response) dynamics 

Power 
control 

game 

Potential 
game 

approximate 

pricing Lyapunov 
analysis 

Optimal power 
allocation 

The evolution of power levels 
Distance between current 

and desired power allocation 

Potential-game approximations lead to simple pricing schemes for any system objective. 

•!Multichannel networks 

•!Enhanced pricing schemes for 
low-SINR regime  

•!Distributed implementation of 
price generation 

The Incentive Mechanism

We use the properties of potential games in our approach. A game is a potential game if ∃Φ : E → R
such that

Φ(xm, x−m)− Φ(ym, x−m) = um(xm, x−m)− um(ym, x−m),

Let r̃m(p) = log (γSINRm(p)). Consider a related game G̃ with utilities ũm(p) = r̃m(p) − λmpm. Note
that ũm(p) ≈ um(p). for γ � 1 or hmm � hkm for all k 6= m.

• G̃ is a potential game with potential φ(p) =
∑
m log(pm)− λmpm. Additionally, G̃ has a unique equilib-

rium.

• A simple linear pricing scheme can be used to set a desired operating point as an equilibrium in G̃.

Theorem 1. Given a desired operating point p∗, the unique equilibrium of G̃ is p∗ if the prices λ∗ are chosen as

λ∗m =
1
p∗m

, for all m ∈M

BR dynamics: ṗm = βm(p−m)− pm for all m ∈M, where βm(p−m) = arg maxpm∈Pm
um(pm,p−m).

Our idea: Use perturbed system analysis to study dynamics and equilibria in G using properties of G̃ .

Analysis of Dynamics

Let SINRm = Pmhmm

N0+
P

k 6=m hkmPk
and denote by

Ĩε the set of ε-equilibria of G̃.

Theorem 2. In the original game, best-response dy-
namics converges uniformly to the set Ĩε, where

ε ≤ 1
γ

∑
m∈M

1
SINRm

.

The above characterization is used to bound the
deviation from the optimal system utility. For ex-
ample, for the sum-rate objective:

Theorem 3. Let p∗ be a maximizer of U0(p) =∑
m rm(p). Then for every p̃ ∈ Ĩε,

|U0(p∗)− U0(p̃)| ≤
√

2ε(M − 1)
∑
m∈M

Pm
Pm

.

Percent loss in the system utility with respect to
change in γ

Future Work

• Multichannel networks.

• Distributed methods for calculating the optimal
prices.

• Applications of the potential-game approach to
additional wireless network domains.
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