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Due to the shared nature of the wireless do-
main, the performance of each mobile de-
pends on the resources allocated to others

The power control problem, even as a central-
ized optimization problem with full information,
Is a fairly complex problem.

An additional concern: self-interested behavior
of mobiles.

We consider the power allocation problem
from the viewpoint of a central planner who
wishes to impose a certain power-dependent
objective in the network, using pricing.

Using a potential-game approach, we provide
a general distributed power control scheme
that would (approximately) achieve any under-
lying system objective despite the selfishness
of the mobiles.

Set of mobiles M = {1,...,M} share the
same wireless spectrum (single channel).

The power allocation of the mobiles p =
(p1,-..,00m) (Where O < P, < pm < Pp.)

The rate of user m Is given by:

rm(p) = log (1 + vSINR,,.(p)),

where, v > 0 Is the spreading gain of the
CDMA system and
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The payoff of player m: w,(p) = rm(p) —
AmDm.-

A 1S set by the central planner, to maximize a
system utility-function Uy ().
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ACHIEVEMENT DESCRIPTION

MAIN ACHIEVEMENT:
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= Most work on wireless games

< focus on static equilibrium

¢ properties without establishing
convergence of distributed
dynamics.

-There is no systematic framework
for providing simple incentive
mechanisms that can achieve an
arbitrary system objective.
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«Simple pricing scheme that can
be used for any system

objective

Distance between current

The evolution of power levels , _
and desired power allocation

The Potential-Game Approach (approximately)
enforces any power-dependent system-
objective among competing users under
natural dynamics.

HOW IT WORKS:

» Approximate the underlying power control
game with a “close” potential game

«Performance guarantees in the
dynamical sense.

A new paradigm for regulation
of wireless networks

Power

Potential
trol
contro -/ game

game

» Derive prices that induce an optimal power
allocation in the potential game

Lyapunov pricing

analysis

Optimal power
allocation

* The proximity between the two games
establishes near optimal performance in the
original game in the limit of distributed

dynamics.
ASSUMPTIONS AND LIMITATIONS:

 Single-band networks
- Approximation is better for high-SINRs

*Approximate a game with a
“close” potential game

» Exploit the appealing properties *Multichannel networks

of potential games, such as
convergence of distributed (best-
response) dynamics

*Enhanced pricing schemes for
low-SINR regime

NEW INSIGHTS

Distributed implementation of
price generation

We use the properties of potential games in our approach. A game is a potential game if 4¢ : £ — R
such that

D(Tr, ) — P(Yrms T—mm) = Ui (Tons T ) — U (Yoms T— )

Let 7,,(p) = log (vSINR,,,(p)). Consider a related game G with utilities @,,(p) = 7m(p) — Ampm. Note
that @,,(p) = U (p). for v > 1 or Ay > hg, for all k& £ m.

e G is a potential game with potential ¢(p) = > log(pm) — Ampm. Additionally, G has a unique equilib-
rium.

e A simple linear pricing scheme can be used to set a desired operating point as an equilibrium in G.

Theorem 1. Given a desired operating point p*, the unique equilibrium of G is p* if the prices \* are chosen as

1
Ay = —, forallme M

BR dynamics: p,, = Bn(P—m) —pm  forallm € M, where 3,,(p—) = argmax,_cp,. Um(Pm, p_m~).
Our idea: Use perturbed system analysis to study dynamics and equilibria in G using properties of G .

Near-Optimal Power Controlin Wireless Networks: A Potential
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Let SINR, = No TS b P and denote by

7. the set of e-equilibria of G.

Theorem 2. In the original game, best-response dy-
namics converges uniformly to the set L., where
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The above characterization is used to bound the
deviation from the optimal system utility. For ex-
ample, for the sum-rate objective:

Theorem 3. Let p* be a maximizer of Up(p) =
> Tm(P). Then for every p € I,

Uo(p*) — Uo(B)] < Vae(M —1) 3~ F=

meM — M

25

% Deviation from Optimal Sum—Rate

05

Percent loss in the system utility with respect to
change in ~
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e Multichannel networks.

e Distributed methods for calculating the optimal
prices.

e Applications of the potential-game approach to
additional wireless network domains.



