Canonical Decompositions of Games and Near Potential Games

Background and Motivation

- Potential games are (noncooperative) games that are easier to analyze, have pure Nash equilibria, and natural dynamics convergences to equilibria.
- Can the properties of potential games be used to analyze games that are "close" to a potential game?
- We present here a fundamental result: Any game has a canonical decomposition that includes three components: The potential, harmonic, nonstrategic components.
- This decomposition allows us to develop a new framework for studying dynamics and equilibria in games, by considering their potential components.

Flows and the Difference Operator

Define the difference operator D_m as:

$$(D_m\phi)(\mathbf{p},\mathbf{q}) = W^m(\mathbf{p},\mathbf{q}) (\phi(\mathbf{q}) - \phi(\mathbf{p})).$$

where $\mathbf{p}, \mathbf{q} \in E$, $W^m(\mathbf{p}, \mathbf{q}) = 1$ if \mathbf{p}, \mathbf{q} differ in the strategy of player m and 0 otherwise.

- A game is a potential game iff there exists ϕ such that $D_m u^m = D_m \phi$ for all $m \in \mathcal{M}$
- Note that $\Pi_m = D_m^* D_m$ is the projection operator to the orthogonal complement of the kernel of D_m .

The pairwise comparisons of payoffs are **similar to flows**: the tools for decompositions of flows can be used for decompositions of games.

Utku Ozan Candogan, Ishai Menache, Asuman Ozdaglar, Pablo Parrilo **Department of Electrical Engineering and Computer Science, MIT**

The Canonical Decomposition

Theorem 1. Given a game with utilities $\{u^m\}$, its orthogonal components (Nonstrategic(NS), Potential(P), Harmonic(H)) and the corresponding potential function (ϕ) are given by:

 $u_{NS}^{m} = (I - \Pi_{m})u^{m}, \quad \phi = (\sum_{k} \Pi_{k})^{\dagger} \sum_{k} \Pi_{k} u^{k}, \quad u_{P}^{m} = \Pi_{m} \phi, \quad u_{H}^{m} = \Pi_{m} (u^{m} - \phi).$

- The NS component vanishes under difference operation.
- The H component is always a "zero-sum game" (i.e., $\sum_k u_H^k(\mathbf{p}) = 0$).
- The closest potential game (equivalently, the projection to the space of potential games) has utilities $\{u_P^m + u_{NS}^m\}_{m \in \mathcal{M}}.$
- We refer to games with $u_P^m = 0$ for all m, as harmonic games. Harmonic games generically have no pure equilibria.

			1		
L I	Р	S			
⊦2y	y-z	-x+z			
z	2x-2z	x-y			
⊦z	х-у	-2y+2z			
Potential Function					
R			Р	S	
0, 0		-(x+y	+z), $(x+y+z)$	(x+y+z), -(x+y+z)	
-z), $-(x+y+z)$)	0, 0	-(x+y+z), (x+y+z)	
+z), (x+y+z)) (x+y+	-z), -(x+y+z)	0, 0	
(d) Harmonic Game Component					

Let $\hat{\mathcal{G}}$ be the closest potential game to a given game \mathcal{G} , and let $d(\mathcal{G})$ be the distance between \mathcal{G} and \mathcal{G} . The equilibria of the two games are related:

Consider the following (smoothened) bestresponse dynamics:

This dynamics is known to converge (approximately) to a Nash equilibrium for potential games. For near potential games,

Theorem 3. The above dynamics converges to the set of ϵ -equilibria of \mathcal{G} , where ϵ is smaller than

- works.

Properties of Games by Projection

Theorem 2. Any equilibrium of $\hat{\mathcal{G}}$ is an ϵ equilibrium of \mathcal{G} , and any equilibrium of \mathcal{G} is an ϵ equilibrium of $\hat{\mathcal{G}}$, where $\epsilon \leq \sqrt{2} \cdot d(\mathcal{G})$.

 $\dot{x}^{m} = \beta_{u^{m}}^{m}(x^{-m}) - x^{m}$, where $\beta_{u^m}^m(x^{-m}) = \arg \max_{y \in \Delta E^m} \left\{ u^m(y, x^{-m}) + H^m(y) \right\},\$ $H^m(x^m) = -\tau \sum x_{q^m} \log(x_{q^m}).$

$$\bar{2} + \sqrt{h} \frac{2\phi_c + d(\mathcal{G}) + \tau \log 2h}{4\tau} + \tau \log h,$$

where $\phi_c = \max_{m, \mathbf{p}^m, \mathbf{q}^m, \mathbf{p}^{-m}} |\phi(\mathbf{p}^m, \mathbf{p}^{-m}) - \phi(\mathbf{p}^m, \mathbf{p}^{-m})|$ $\phi(\mathbf{q}^m, \mathbf{p}^{-m})|$ and h = |E|.

Future Work

• Properties of near-harmonic games.

 Applications – Better understanding of noncooperative behavior in wired and wireless net-