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S ACHIEVEMENT DESCRIPTION Let G be the closest potential game to a given

MAIN ACHIEVEMENT: game G, and let d(G) be the distance between

« Any game can be decomposed to 3 G and ¢g. The equilibria of the two games are
orthogonal components: Nonstrategic, lated:
Potential, Harmonic relatea.

e Potential games are (noncooperative) games
that are easier to analyze, have pure Nash

equilibria, and natural dynamics convergences

ST = properties of non-cooperative
to eqU | “brla- ﬁ user interaction is usually hard.
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-However, potential games is a small HOW IT WORKS Simpler analysis of dynamics and A

game ? subset of games. equilibrium of G, where ¢ < /2 - d(G).

-Can we extend the class of games
with desirable properties?
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equilibrium properties in

« Decomposition of the vector flows of any general games

game to gradient, harmonic and curl flows. _
Natural dynamics converge to a

small neighborhood of a pure
equilibrium

Consider the following (smoothened) best-
response dynamics:

e We present here a fundamental result: Any
game has a canonical decomposition that in-
cludes three components: The potential, har-
monic, nonstrategic components.
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games. For near potential games,

Theorem 3. The above dynamics converges to the
set of e-equilibria of G, where € is smaller than

d(G) (\/5 +Vh 2. + d(gi: Tlog 2h> +7log h,

Define the difference operator D,,, as:

(Do) (p,a) = W™ (p,q) (¢(q) — ¢(p)) .

where p,q € E, W™ (p,q) = 1 if p, q differ in the
strategy of player m and 0 otherwise.

Theorem 1. Given a game with utilities {u' }, its orthogonal components (Nonstrategic(NS), Potential(P), Har-
e A game iIs a potential game iff there exists ¢ monic(H)) and the corresponding potential function (¢) are given by: &(q™, p~™)| and h = |E)|.

where ¢, = MaX,, pm gqm, p—m o(p™,p™ ") —

such that D,,u™ = D,,,¢ for all m ¢ M
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