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Introduction

Motivation

Game-theoretic analysis has been used extensively in the study of
networks in general and in wireless networks in particular for two major
reasons:

Game-theoretic tools enable a flexible control paradigm where
agents autonomously control their resource usage to optimize their
own selfish objectives
Even when selfish incentives are not present, game-theoretic
models and tools provide potentially tractable decentralized
algorithms for network control

Most work on network games has focused on:

Static equilibrium analysis without establishing how an equilibrium
can be reached dynamically
Properties of equilibria without systematically considering incentive
mechanisms that can implement general system-wide objectives

Natural distributed user dynamics converge to an equilibrium in very
restrictive classes of games; potential games is an example
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Introduction

This Work

These considerations motivate two important questions:
Can we extend the class of games with desirable dynamic
properties beyond potential games?
Can we develop simple pricing schemes that will steer the limit
point of these dynamics to a desirable operating point on the
performance region?

In this project, we introduce the potential game approach:
Approximate the original game with a potential game that has an
(additively) separable structure in the individual resources
Enables design of a simple pricing scheme that induces the
equilibrium of the potentialized game to align with the optimum of
any system objective
We use the proximity of the two games to establish through
Lyapunov-based analysis that natural user dynamics (applied to the
original game) converge “within a neighborhood" of the
system-wide optimum

3



Introduction

Our Contributions

We apply the potential game approach to study power control in a
CDMA wireless system.

We provide a general distributed power control scheme that would
(approximately) achieve any system objective despite the selfishness of
the mobiles.

Our approach can be used for network regulation under any SINR
regime with explicit performance guarantees.

More generally, we introduce a general framework that shows that any
game has a canonical decomposition that has 3 components: potential,
harmonic, and nonstrategic components

Enables a new approach for studying dynamics in arbitrary games
by considering their potential components
More details in the poster!
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The Model

The Network Model

A set of mobiles (users)M = {1, . . . ,M} share the same wireless
spectrum (single channel).

We denote by p = (p1, . . . ,pM) the power allocation (vector) of the
mobiles.

Power constraints: Pm = {pm | Pm ≤ pm ≤ P̄m}, with Pm > 0.
Upper bound represents a constraint on the maximum power usage
Lower bound represents a minimum QoS constraint for the mobile

The rate (throughput) of user m is given by

rm(p) = log (1 + γSINRm(p)) ,

where, γ > 0 is the spreading gain of the CDMA system and

SINRm(p) =
hmmpm

N0 +
∑

k 6=m hkmpk
.

Here, hkm is the channel gain between user k ’s transmitter and user m’s
receiver.
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The Model

User Utilities and Equilibrium

Each user is interested in maximizing a net rate-utility, which captures a
tradeoff between the obtained rate and power cost:

um(p) = rm(p)− λmpm,

where λm is a user-specific price per unit power.

We refer to the induced game among the users as the power game and
denote it by G.

Existence of a pure Nash equilibrium follows because the underlying
game is a concave game.

We are also interested in “approximate equilibria" of the power game, for
which we use the concept of ε-(Nash) equilibria.

For a given ε, we denote by Iε the set of ε-equilibria of the power
game G, i.e.,

Iε = {p | um(pm,p−m) ≥ um(qm,p−m)−ε, for all m ∈M, qm ∈ Pm}
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The Model

System Utility

Assume that a central planner wishes to impose a general performance
objective over the network formulated as

max
p∈P

U0(p),

where P = P1 × · · · × Pm is the joint feasible power set.

We refer to U0(·) as the system utility-function.

We denote the optimal solution of this system optimization problem by
p∗ and refer to it as the desired operating point.

Our goal is to set the prices such that the equilibrium of the power game
can approximate the desired operating point p∗.
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Potential Game Approximation

Potential Game Approximation

We approximate the power game with a potential game.

A game G = 〈M, {um}, {Pm}〉 is a potential game if there exists a
functionΦ : P → R such that

Φ(pm,p−m)− Φ(qm,p−m) = um(pm,p−m)− um(qm,p−m),

for all m ∈M, pm,qm ∈ Pm, and p−m ∈ P−m.

The potential function Φ aggregates the preferences of all players.

Every finite potential game has a pure equilibrium.
Many learning dynamics (such as better-reply dynamics, fictitious
play, spatial adaptive play) “converge” to a pure Nash equilibrium
[Monderer and Shapley 96], [Young 98], [Marden, Arslan, Shamma
06, 07].
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Potential Game Approximation

Potentialized Game

We consider a slightly modified game with player utility functions given
by

ũm(p) = r̃m(p)− λmpm

where r̃m(p) = log (γSINRm(p)).

We refer to this game as the potentialized game and denote it by
G̃ = 〈M, {ũm}, {Pm}〉.

For high-SINR regime (γ satisfies γ � 1 or hmm � hkm for all k 6= m),the
modified rate formula r̃m(p) ≈ rm(p) serves as a good approximation for
the true rate, and thus ũm(p) ≈ um(p).
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Potential Game Approximation

Pricing in the Modified Game

Theorem

The modified game G̃ is a potential game. The corresponding potential
function is given by

φ(p) =
∑

m

log(pm)− λmpm.

G̃ has a unique equilibrium.

The potential function suggests a simple linear pricing scheme.

Theorem

Let p∗ be the desired operating point. Assume that the prices λ∗ are given by

λ∗m =
1

p∗m
, for all m ∈M.

Then the unique equilibrium of the potentialized game coincides with p∗.
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Near-optimal Dynamics

Near-Optimal Dynamics

We will study the dynamic properties of the power game G when the
prices are set equal to λ∗.

A natural class of dynamics is the best-response dynamics, in which
each user updates his strategy to maximize its utility, given the strategies
of other users.

Let βm : P−m → Pm denote the best-response mapping of user m, i.e.,

βm(p−m) = arg max
pm∈Pm

um(pm,p−m).

Discrete time BR dynamics:

pm ← pm + α (βm(p−m)− pm) for all m ∈M,

Continuous time BR dynamics:

ṗm = βm(p−m)− pm for all m ∈M.

The continuous-time BR dynamics is similar to continuous time fictitious
play dynamics and gradient-play dynamics [Flam, 2002], [Shamma and
Arslan, 2005], [Fudenberg and Levine, 1998].
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Near-optimal Dynamics

Convergence Analysis – 1

If users use BR dynamics in the potentialized game G̃, their strategies
converge to the desired operating point p∗.

This can be shown through a Lyapunov analysis using the potential
function of G̃, [Hofbauer and Sandholm, 2000]
Our interest is in studying the convergence properties of BR
dynamics when used in the power game G.

Idea: Use perturbation analysis from system theory

The difference between the utilities of the original and the
potentialized game can be viewed as a perturbation.
Lyapunov function of the potentialized game can be used to
characterize the set to which the BR dynamics for the original
power game converges.
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Near-optimal Dynamics

Convergence Analysis – 2

Our first result shows BR dynamics applied to game G converges to the
set of ε-equilibria of the potentialized game G̃, denoted by Ĩε.
We define the minimum SINR:

SINRm =
Pmhmm

N0 +
∑

k 6=m hkmPk

We say that the dynamics converges uniformly to a set S if there exists
some T ∈ (0,∞) such that pt ∈ S for every t ≥ T and any initial
operating point p0 ∈ P.

Lemma
The BR dynamics applied to the original power game Gconverges uniformly
to the set Ĩε, where ε satisfies

ε ≤ 1
γ

∑
m∈M

1
SINRm

.

The error bound provides the explicit dependence on γ and SINRm.
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Near-optimal Dynamics

Convergence Analysis – 3

We next establish how “far" the power allocations in Ĩε can be from the
desired operating point p∗.

Theorem

For all ε, p ∈ Ĩε satisfies

|p̃m − p∗m| ≤ Pm
√

2ε for every p̃ ∈ Ĩε and every m ∈M

Idea: Using the strict concavity and the additively separable structure of
the potential function, we characterize Ĩε.
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Near-optimal Dynamics

Convergence and the System Utility

Under some smoothness assumptions, the error bound enables us to
characterize the performance loss in terms of system utility.

Theorem
Let ε > 0 be given. (i) Assume that U0 is a Lipschitz continuous function, with
a Lipschitz constant given by L. Then

|U0(p∗)− U0(~p)| ≤
√

2εL
√ ∑

m∈M
P

2
m, for every ~p ∈ Ĩε.

(ii) Assume that U0 is a continuously differentiable function so that | ∂U0
∂pm
| ≤ Lm,

m ∈M. Then

|U0(p∗)− U0(~p)| ≤
√

2ε
∑

m∈M
PmLm, for every ~p ∈ Ĩε.
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Near-optimal Dynamics

Numerical Example – 1

Consider a system with 3 users and let the desired operating point be
given by p∗ = [5,5,5].

We choose the prices as λ∗m = 1
p∗M

and pick the channel gain coefficients
uniformly at random.

We consider three different values of γ ∈ {5,10,50}.

(a) The evolution of the power lev-
els under best response dynamics.

(b) The distance ||pt − p∗|| be-
tween the current and desired
power allocations.
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Sum-rate Objective

Sum-rate Objective

We next consider the natural system objective of maximizing the
sum-rate in the network.

U0(p) =
∑

m

rm(p).

The performance loss in our pricing scheme can be quantified as follows.

Theorem

Let p∗ be the operating point that maximizes sum-rate objective, and let Ĩε be
the set of ε-equilibria of the modified game to which the BR dynamics
converges. Then

|U0(p∗)− U0(~p)| ≤
√

2ε(M − 1)
∑

m∈M

Pm

Pm
, for every ~p ∈ Ĩε.
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Sum-rate Objective

Numerical Example – 2

Consider M = 10 users and assume that the power bounds are given by
Pm = 10−2, Pm = 10 for all m ∈M.

(c) The change in sum-rate as a
function of time for γ = 10.

(d) The effect of γ on performance
loss.
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Concluding Remarks

Summary and Future Work

We have introduced the potential-game approach for distributed power
allocation, which (approximately) enforces any power-dependent
system-objective.

By exploiting the relation between the power game and its approximation
(with a potential game), the prices in the potential game induce
near-optimal performance in the underlying system.

We provide bounds on deviation from the maximum system utility in a
dynamical sense.

Future Work:

Distributed implementation of optimal desired operating point.
Potential game approach for other wireless resource allocation
problems.
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