More Than 3 Users

Abbas El Gamal

Stanford University

ITMANET 2009

A. El Gamal (Stanford University)

More Than 3 Users

ITMANET 2009 1 / 28

-

- **(())) (())**

3

• Real-world MANETs have many users

3

< ロ > < 同 > < 回 > < 回 > < 回

- Real-world MANETs have many users
- However, most known results on their capacity/rate region (and bounds therein) are for \leq 3 users

- Real-world MANETs have many users
- However, most known results on their capacity/rate region (and bounds therein) are for \leq 3 users
- Sometimes we are lucky and these results extend to more users:
 - MAC
 - Degraded BC
 - MIMO BC
 - Slepian–Wolf

- Real-world MANETs have many users
- However, most known results on their capacity/rate region (and bounds therein) are for \leq 3 users
- Sometimes we are lucky and these results extend to more users:
 - MAC
 - Degraded BC
 - MIMO BC
 - Slepian–Wolf
- In some cases naive extensions of ≤ 3 users results are suboptimal, and better results can be obtained using new coding techniques

- Real-world MANETs have many users
- However, most known results on their capacity/rate region (and bounds therein) are for \leq 3 users
- Sometimes we are lucky and these results extend to more users:
 - MAC
 - Degraded BC
 - MIMO BC
 - Slepian–Wolf
- In some cases naive extensions of ≤ 3 users results are suboptimal, and better results can be obtained using new coding techniques
- For example, naive extension of Han-Kobayashi inner bound to > 2 user-pair IC can be improved using interference alignment [1]

- Real-world MANETs have many users
- However, most known results on their capacity/rate region (and bounds therein) are for \leq 3 users
- Sometimes we are lucky and these results extend to more users:
 - MAC
 - Degraded BC
 - MIMO BC
 - Slepian–Wolf
- In some cases naive extensions of ≤ 3 users results are suboptimal, and better results can be obtained using new coding techniques
- For example, naive extension of Han-Kobayashi inner bound to > 2 user-pair IC can be improved using interference alignment [1]
- We present two other examples of such cases

DM-BC with Degraded Message Sets

- Consider a 2-receiver DM-BC $(\mathcal{X}, p(y_1, y_2|x), \mathcal{Y}_1 \times \mathcal{Y}_2)$
- Sender X wishes to send: common message $M_0 \in [1:2^{nR_0}]$ to both receivers, and private message $M_1 \in [1:2^{nR_1}]$ to receiver Y_1

• The capacity region is the closure of the set of achievable rate pairs $\left(R_0,R_1\right)$

Theorem (Körner–Marton [2])

The capacity region of the DM-BC with degraded message sets is the set of rate pairs (R_0, R_1) such that

 $R_0 \le I(U; Y_2),$ $R_1 \le I(X; Y_1|U),$ $R_0 + R_1 \le I(X; Y_1)$

for some p(u, x)

Achievability follows by superposition coding

同下 (三下 (三)

• Fix p(u, x). Generate 2^{nR_0} i.i.d. sequences (cloud centers) $u^n \sim \prod_{i=1}^n p(u_i)$

• For each $u^n(m_0)$, generate 2^{nR_1} conditionally i.i.d. sequences (satellite codewords) $x^n \sim \prod_{i=1}^n p(x_i|u_i)$

• To send message pair (m_0, m_1) , transmit satellite codeword $x^n(m_0, m_1)$

• Y_2 declares that a message \hat{m}_{02} is sent if it is the unique message such that $(u^n(\hat{m}_{02}), y_2^n) \in \mathcal{T}_{\epsilon}^{(n)}$

The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $R_0 < I(U; Y_2)$

• Y_2 declares that a message \hat{m}_{02} is sent if it is the unique message such that $(u^n(\hat{m}_{02}), y_2^n) \in \mathcal{T}_{\epsilon}^{(n)}$

The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $R_0 < I(U; Y_2)$

• Y_1 declares that message pair $(\hat{m}_{01}, \hat{m}_1)$ is sent if it is the unique message pair such that $(u^n(\hat{m}_{01}), x^n(\hat{m}_{01}, \hat{m}_1), y_1^n) \in \mathcal{T}_{\epsilon}^{(n)}$

The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $R_1 < I(X; Y_1|U),$ $R_0 + R_1 < I(X; Y_1)$

• This completes the proof of achievability

- 4 間 医 4 国 医 4 国 5

Alternative Characterization

• We can prove the weak converse for the region consisting of rate pairs $({\cal R}_0,{\cal R}_1)$ satisfying

$$R_0 \le I(U; Y_2),$$

$$R_0 + R_1 \le I(U; Y_2) + I(X; Y_1 | U),$$

$$R_0 + R_1 \le I(X; Y_1)$$

for some p(u, x)

• Clearly this region includes the first characterization region We can also show that they have the same boundary points

Alternative Characterization

• We can prove the weak converse for the region consisting of rate pairs (R_0,R_1) satisfying

$$R_0 \le I(U; Y_2),$$

$$R_0 + R_1 \le I(U; Y_2) + I(X; Y_1 | U),$$

$$R_0 + R_1 \le I(X; Y_1)$$

for some p(u, x)

- Clearly this region includes the first characterization region
 We can also show that they have the same boundary points
- Can we show that the above region is achievable directly?

Alternative Characterization

• We can prove the weak converse for the region consisting of rate pairs (R_0,R_1) satisfying

$$R_0 \le I(U; Y_2),$$

$$R_0 + R_1 \le I(U; Y_2) + I(X; Y_1 | U),$$

$$R_0 + R_1 \le I(X; Y_1)$$

for some p(u, x)

- Clearly this region includes the first characterization region We can also show that they have the same boundary points
- Can we show that the above region is achievable directly?
- The answer is yes, and the proof involves (unnecessary) rate splitting: Divide M_1 into two independent messages; M_{10} at rate R_{10} and M_{11} at rate R_{11} . Represent (M_0, M_{10}) by U and (M_0, M_{10}, M_{11}) by X

• We can show that (R_0, R_{10}, R_{11}) is achievable if

$$R_0 + R_{10} < I(U; Y_2),$$

$$R_{11} < I(X; Y_1|U),$$

$$R_0 + R_1 < I(X; Y_1)$$

for some p(u, x)

• Substituting $R_1 = R_{10} + R_{11}$ and performing Fourier–Motzkin (F–M) elimination establishes the achievability of the region

• We can show that (R_0, R_{10}, R_{11}) is achievable if

$$R_0 + R_{10} < I(U; Y_2),$$

$$R_{11} < I(X; Y_1|U),$$

$$R_0 + R_1 < I(X; Y_1)$$

for some p(u, x)

- Substituting $R_1 = R_{10} + R_{11}$ and performing Fourier–Motzkin (F–M) elimination establishes the achievability of the region
- The above rate splitting idea turns out to be crucial for 3-receiver DM-BC

Multi-level DM-BC with Degraded Message Sets

- A multilevel DM-BC [3] $(\mathcal{X}, p(y_1, y_3|x)p(y_2|y_1), \mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_3)$ is a 3-receiver DM-BC where Y_2 is a degraded version of Y_1
- Sender X wishes to send common message $M_0 \in [1:2^{nR_0}]$ to all receivers private message $M_1 \in [1:2^{nR_1}]$ only to receiver Y_1

• What is the capacity region?

• A straightforward extension of Körner–Marton capacity region for 2 receivers gives the inner bound consisting of (R_0, R_1) such that

$$R_0 < \min\{I(U; Y_2), I(U; Y_3)\},\$$

$$R_1 < I(X; Y_1|U)$$

for some p(u, x)Note the bound $R_0 + R_1 < I(X; Y_1)$ drops out since $X \to Y_1 \to Y_2$ • A straightforward extension of Körner–Marton capacity region for 2 receivers gives the inner bound consisting of (R_0, R_1) such that

$$R_0 < \min\{I(U; Y_2), I(U; Y_3)\},\$$

$$R_1 < I(X; Y_1|U)$$

for some p(u, x)

Note the bound $R_0 + R_1 < I(X;Y_1)$ drops out since $X \to Y_1 \to Y_2$

• This region turned out not to be optimal in general

Theorem (Nair–El Gamal [4])

The capacity region of the 3-receiver multi-level DM-BC is the set of rate pairs (R_0,R_1) such that

$$R_0 \le \min\{I(U; Y_2), I(V; Y_3)\},\$$

$$R_1 \le I(X; Y_1|U),\$$

$$R_0 + R_1 \le I(V; Y_3) + I(X; Y_1|V)$$

for some p(u, v)p(x|v)

Reversely Degraded BEC Example [4]

• Fix $R_0 = 1/2$:

- With Körner-Marton extension: $R_1 = 5/12$
- Capacity region: $R_1 = 1/2$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Split R_1 into R_{10} and R_{11} ; $R_1 = R_{10} + R_{11}$

< □ > < □

• Fix p(u,v)p(x|v). Generate 2^{nR_0} i.i.d. $u^n \sim \prod_{i=1}^n p(u_i)$

• For each u^n , generate $2^{nR_{10}}$ conditionally i.i.d. $v^n \sim \prod_{i=1}^n p(v_i|u_i)$

• For each v^n , generate $2^{nR_{11}}$ conditionally i.i.d. $x^n \sim \prod_{i=1}^n p(x_i|v_i)$

• To send (m_0, m_1) , transmit $x^n(m_0, m_{10}, m_{11})$

E 6 4 E 6

• Y_2 declares that $\hat{m}_{02} \in [1:2^{nR_0}]$ is sent if it is the unique message such that $(u^n(\hat{m}_{02}), y_2^n) \in \mathcal{T}_{\epsilon}^{(n)}$

The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $R_0 < I(U; Y_2)$

A (10) A (10)

• Y_2 declares that $\hat{m}_{02} \in [1:2^{nR_0}]$ is sent if it is the unique message such that $(u^n(\hat{m}_{02}), y_2^n) \in \mathcal{T}_{\epsilon}^{(n)}$

The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $R_0 < I(U; Y_2)$

• Y_1 declares that $(\hat{m}_{01}, \hat{m}_{10}, \hat{m}_{11})$ is sent if it is the unique triple such that $(u^n(\hat{m}_{01}), v^n(\hat{m}_{01}, \hat{m}_{10}), x^n(\hat{m}_{01}, \hat{m}_{10}, \hat{m}_{11}), y_1^n) \in \mathcal{T}_{\epsilon}^{(n)}$ The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

> $R_{11} < I(X; Y_1|V),$ $R_{10} + R_{11} < I(X; Y_1|U),$ $R_0 + R_{10} + R_{11} < I(X; Y_1)$

< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > > < 二 > > < 二 > > > < 二 > > < 二 > > < □ > > < □ > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• If receiver Y_3 decodes m_0 directly by finding the unique \hat{m}_{03} such that $(u^n(\hat{m}_{03}), y_3^n) \in \mathcal{T}_{\epsilon}^{(n)}$, we have $R_0 < I(U; Y_3)$, which together with previous conditions gives the extended Körner–Marton region

- If receiver Y_3 decodes m_0 directly by finding the unique \hat{m}_{03} such that $(u^n(\hat{m}_{03}), y_3^n) \in \mathcal{T}_{\epsilon}^{(n)}$, we have $R_0 < I(U; Y_3)$, which together with previous conditions gives the extended Körner–Marton region
- To achieve the larger region, receiver Y_3 decodes m_0 indirectly: It declares that \hat{m}_{03} is sent if it is the unique index such that

 $(v^n(\hat{m}_{03}, m_{10}), y_3^n) \in \mathcal{T}_{\epsilon}^{(n)}$ for some $m_{10} \in [1:2^{nR_{10}}]$ The probability of error $\to 0$ as $n \to \infty$ if

 $R_0 + R_{10} < I(V; Y_3)$

- If receiver Y_3 decodes m_0 directly by finding the unique \hat{m}_{03} such that $(u^n(\hat{m}_{03}), y_3^n) \in \mathcal{T}_{\epsilon}^{(n)}$, we have $R_0 < I(U; Y_3)$, which together with previous conditions gives the extended Körner–Marton region
- To achieve the larger region, receiver Y₃ decodes m₀ indirectly: It declares that m̂₀₃ is sent if it is the unique index such that (vⁿ(m̂₀₃, m₁₀), y₂ⁿ) ∈ T_ε⁽ⁿ⁾ for some m₁₀ ∈ [1 : 2^{nR₁₀}]

The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $R_0 + R_{10} < I(V; Y_3)$

• Combining the bounds, substituting $R_{10} + R_{11} = R_1$, and performing F-M to eliminate R_{10} and R_{11} completes the proof of achievability

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extensions

• A new inner bound for general 3-receiver BC with degraded message sets can be obtained by combining Marton coding with rate splitting, indirect decoding, and superposition coding

Extensions

- A new inner bound for general 3-receiver BC with degraded message sets can be obtained by combining Marton coding with rate splitting, indirect decoding, and superposition coding
- This leads to a general method for constructing inner bounds for general *k*-receiver BCs with arbitrary messaging requirements, which is at least as large as existing inner bounds

Extensions

- A new inner bound for general 3-receiver BC with degraded message sets can be obtained by combining Marton coding with rate splitting, indirect decoding, and superposition coding
- This leads to a general method for constructing inner bounds for general *k*-receiver BCs with arbitrary messaging requirements, which is at least as large as existing inner bounds
- Optimality of these general results are not known
Wiretap channel

- Consider a 2-receiver DM-BC
- Sender X wishes to send a message $M \in [1:2^{nR}]$ to Y, while keeping it secret from Z

- Rate R is achievable if: Probability of error: $P_e^{(n)} = \mathsf{P}\{\hat{M} \neq M\} \to 0 \text{ as } n \to \infty$ Secrecy constraint: $I(M; Z^n)/n \to 0 \text{ as } n \to \infty$
- The secrecy capacity $C_{\rm S}$ is the supremum of all achievable rates

Wiretap channel

- Consider a 2-receiver DM-BC
- Sender X wishes to send a message $M \in [1:2^{nR}]$ to Y, while keeping it secret from Z

Theorem (Wyner [5], Csiszár–Körner [6]) $C_{\rm S} = \max_{p(u,x)} (I(U;Y) - I(U;Z))$

▲ □ ► < □ ►</p>

• Generate
$$2^{n\hat{R}}$$
 i.i.d. $u^n \sim \prod_{i=1}^n p(u_i)$.

A. El Gamal (Stanford University)

ITMANET 2009 17 / 28

• Generate $2^{n\tilde{R}}$ i.i.d. $u^n \sim \prod_{i=1}^n p(u_i)$. Partition into 2^{nR} subcodes

Outline of Achievability: Encoding

• To send m, choose random $u^n(L) \in \mathcal{C}(m)$.

Outline of Achievability: Encoding

• To send m, choose random $u^n(L)\in \mathcal{C}(m).$ Transmit $X^n\sim \prod_{i=1}^n p(x_i|u_i)$

• Decoding: Y declares that \hat{l} is sent if it is the unique index such that $(u^n(\hat{l}), y^n) \in \mathcal{T}_{\epsilon}^{(n)}$; declares message sent to be subcode index \hat{m} of $u^n(\hat{l})$

The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if $\tilde{R} < I(U;Y)$

• Decoding: Y declares that \hat{l} is sent if it is the unique index such that $(u^n(\hat{l}), y^n) \in \mathcal{T}_{\epsilon}^{(n)}$; declares message sent to be subcode index \hat{m} of $u^n(\hat{l})$

The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if $\tilde{R} < I(U;Y)$

• Secrecy constraint: For each subcode C(m), Z has $\doteq 2^{n(\tilde{R}-R-I(U;Z))}$ jointly typical $u^n(l)$ sequences with z^n

1

• Decoding: Y declares that \hat{l} is sent if it is the unique index such that $(u^n(\hat{l}), y^n) \in \mathcal{T}_{\epsilon}^{(n)}$; declares message sent to be subcode index \hat{m} of $u^n(\hat{l})$

The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if $\tilde{R} < I(U;Y)$

• Secrecy constraint: For each subcode C(m), Z has $\doteq 2^{n(\tilde{R}-R-I(U;Z))}$ jointly typical $u^n(l)$ sequences with z^n

Thus if R - R > I(U; Z), Z has roughly equal number of indices in each subcode, providing it with no information about the message

1

Observation

• Instead of choosing X^n at random, can generate for each u^n a subcode consisting of 2^{nS} conditionally i.i.d. codewords $x^n \sim \prod_{i=1}^n p(x_i|u_i)$; choose one at random for transmission

Observation

• Z cannot decode U indirectly through X if $S + \tilde{R} - R \ge I(X;Z)$, or equivalently if $S \ge I(X;Z) - I(U;Z)$

12 N A 12 N

A 🖓

Observation

• Z cannot decode U indirectly through X if $S + \tilde{R} - R \ge I(X;Z)$, or equivalently if $S \ge I(X;Z) - I(U;Z)$

 $\bullet\,$ This observation turned out to be crucial for ≥ 3 receivers

2 Receivers, 1 Eavesdropper Wiretap Channel

- Consider a 3-receiver DM-BC
- Sender X wishes to send a message $M \in [1:2^{nR}]$ to Y_1 and Y_2 , while keeping it secret from eavesdropper Z

2 Receivers, 1 Eavesdropper Wiretap Channel

- Consider a 3-receiver DM-BC
- Sender X wishes to send a message $M \in [1:2^{nR}]$ to Y_1 and Y_2 , while keeping it secret from eavesdropper Z

• Rate R is achievable if: Probability of error: $P_e^{(n)} = \mathsf{P}\{\hat{M_1} \neq M \text{ or } \hat{M_2} \neq M\} \to 0 \text{ as } n \to \infty$ Secrecy constraint: $I(M; Z^n)/n \to 0 \text{ as } n \to \infty$

 $\bullet~$ Secrecy capacity C_{S} is the supremum of achievable rates

$$C_{\rm S} \ge \max_{p(u,x)} \min\{I(U;Y_1) - I(U;Z), I(U;Y_2) - I(U;Z)\}$$

э

< ロ > < 同 > < 回 > < 回 > < 回

$$C_{\rm S} \ge \max_{p(u,x)} \min\{I(U;Y_1) - I(U;Z), I(U;Y_2) - I(U;Z)\}$$

• Consider multilevel-BC case:

$$C_{\rm S} \ge \max_{p(u,x)} \min\{I(U;Y_1) - I(U;Z), I(U;Y_2) - I(U;Z)\}$$

• Consider multilevel-BC case:

• $I(X;Y_1) - I(X;Z) \ge I(U;Y_1) - I(U;Z)$; not true in general for Y_2

$$C_{\rm S} \ge \max_{p(u,x)} \min\{I(U;Y_1) - I(U;Z), I(U;Y_2) - I(U;Z)\}$$

• Consider multilevel-BC case:

• $I(X;Y_1) - I(X;Z) \ge I(U;Y_1) - I(U;Z)$; not true in general for Y_2

New lower bound (Chia–El Gamal [7])

$$C_{\rm S} \ge \max_{p(u,x)} \min\{I(X;Y_1) - I(X;Z), I(U;Y_2) - I(U;Z)\}$$

Reversely Degraded BEC Example [4]

- With Csiszár–Körner extension: Optimal secrecy rate R < 5/6
- With new scheme, set $U = X_1$; X_1 and X_2 independent $Bern(1/2) \Rightarrow C_S = 5/6$ [8]

▲ 同 ▶ → 三 ▶

• Generate 2^{nS_0} i.i.d. $u^n \sim \prod_{i=1}^n p_U(u_i)$.

• Generate 2^{nS_0} i.i.d. $u^n \sim \prod_{i=1}^n p_U(u_i)$. Partition into 2^{nR} subcodes

• For each $u^n,$ generate subcode of 2^{nS_1} conditionally i.i.d. sequences $x^n \sim \prod_{i=1}^n p(x_i|u_i)$

Outline of Achievability: Encoding

• To send m, choose random $u^n(L_0) \in \mathcal{C}(m)$.

Outline of Achievability: Encoding

• To send m, choose random $u^n(L_0) \in \mathcal{C}(m)$. Choose random L_1 and transmit $x^n(L_0, L_1)$

• Decoding: Y_2 finds L_0 (hence m) by decoding U directly

3

▲ □ ► < □ ►</p>

• Decoding: Y_2 finds L_0 (hence m) by decoding U directly The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $S_0 < I(U; Y_2)$

< A > < 3

• Decoding: Y_2 finds L_0 (hence m) by decoding U directly The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $S_0 < I(U; Y_2)$

• Y_1 finds L_0 indirectly through XThe probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $S_0 + S_1 < I(X; Y_1)$

• Decoding: Y_2 finds L_0 (hence m) by decoding U directly The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $S_0 < I(U; Y_2)$

• Y_1 finds L_0 indirectly through XThe probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $S_0 + S_1 < I(X; Y_1)$

• Secrecy constraint: Z cannot decode L_0 directly through U if

 $S_0 - R \ge I(U;Z)$

Z cannot decode L_0 indirectly through X if

 $S_0 + S_1 - R \ge I(X;Z)$

(日) (周) (日) (日)

• Decoding: Y_2 finds L_0 (hence m) by decoding U directly The probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $S_0 < I(U; Y_2)$

• Y_1 finds L_0 indirectly through XThe probability of error $\rightarrow 0$ as $n \rightarrow \infty$ if

 $S_0 + S_1 < I(X; Y_1)$

• Secrecy constraint: Z cannot decode L_0 directly through U if

 $S_0 - R \ge I(U;Z)$

Z cannot decode L_0 indirectly through X if

 $S_0 + S_1 - R \ge I(X;Z)$

• Combining bounds and performing Fourier-Motzkin elimination completes the proof

• By using Marton coding in addition, we obtain the following:

Generalized Lower Bound (Chia–El Gamal [7])

A rate R is achievable for sending a confidential message to receivers Y_1 and Y_2 , while keeping it secret from eavesdropper Z if

$$\begin{split} R &< \min\{I(U_1;Y_1|Q) - I(U_1;Z|Q), \ I(U_2;Y_2|Q) - I(U_2;Z|Q)\},\\ 2R &< I(U_1;Y_1|Q) + I(U_2;Y_2|Q) - 2I(U_0;Z|Q) - I(U_1;U_2|U_0) \end{split}$$

for some $p(q,u_0,u_1,u_2,x)=p(q)p(u_0|q)p(u_1|u_0)p(x,u_2|u_0,u_1)=p(q)p(u_0|q)p(u_2|u_0)p(x,u_1|u_0,u_2)$ such that

 $I(U_1, U_2; Z|U_0) \le I(U_1; Z|U_0) + I(U_2; Z|U_0) - I(U_1; U_2|U_0)$

• Optimal for:

- Both Y_1 and Y_2 are less noisy than Z
- Reversely degraded product channels [8]
- MIMO?

イロト 不得下 イヨト イヨト 二日

• More results in poster

3

э.

イロト イヨト イヨト イ

- More results in poster
- Also, see poster on > 2-user pair cyclically symmetric interference channel

- More results in poster
- Also, see poster on > 2-user pair cyclically symmetric interference channel
- Current work:
 - Completing work on general inner bound for DM-BC with ≥ 3 receivers
 - Completing work on wiretap channel with ≥ 3 receivers
 - Achievability scheme for 3 user-pair El Gamal–Costa deterministic interference channel
 - Compress–forward for networks

- More results in poster
- Also, see poster on > 2-user pair cyclically symmetric interference channel
- Current work:
 - Completing work on general inner bound for DM-BC with ≥ 3 receivers
 - Completing work on wiretap channel with ≥ 3 receivers
 - Achievability scheme for 3 user-pair El Gamal–Costa deterministic interference channel
 - Compress—forward for networks
- Important research direction because it leads to new coding techniques for networks

Acknowledgments

- The talk is based on joint work with Chandra Nair and Yeow-Khiang Chia
- Work partially supported under DARPA ITMANT

References

- Viveck Cadambe and Syed Ali Jafar. Interference alignment and degrees of freedom of the k-user interference channel. *IEEE Trans. Inf. Theory*, 54(8):3425–3441, 2008.
- [2] János Körner and Katalin Marton. General broadcast channels with degraded message sets. IEEE Trans. Inf. Theory, 23(1):60–64, 1977.
- [3] Shashi Borade, Lizhong Zheng, and Mitchell Trott. Multilevel broadcast networks. In Proc. IEEE International Symposium on Information Theory, pages 1151–1155, Nice, France, June 2007.
- [4] Chandra Nair and Abbas El Gamal. The capacity region of a class of 3-receiver broadcast channels with degraded message sets. 2008.
- [5] A. D. Wyner. The wire-tap channel. Bell System Tech. J., 54(8):1355–1387, 1975.
- [6] Imre Csiszár and János Körner. Broadcast channels with confidential messages. IEEE Trans. Inf. Theory, 24(3):339–348, 1978.
- [7] Yeow-Khiang Chia and Abbas El Gamal. 3-receiver broadcast channels with common and confidential messages. In Proc. IEEE International Symposium on Information Theory, Seoul, Korea, June/July 2009.
- [8] Ashish Khisti, Aslan Tchamkerten, and Gregory W. Wornell. Secure broadcasting over fading channels. IEEE Trans. Inf. Theory, 54(6):2453–2469, 2008.

< ロ > < 同 > < 回 > < 回 > < 回