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Background

Real-world MANETs have many users

However, most known results on their capacity/rate region (and
bounds therein) are for ≤ 3 users

Sometimes we are lucky and these results extend to more users:
◮ MAC
◮ Degraded BC
◮ MIMO BC
◮ Slepian–Wolf

In some cases naive extensions of ≤ 3 users results are suboptimal,
and better results can be obtained using new coding techniques

For example, naive extension of Han-Kobayashi inner bound to > 2
user-pair IC can be improved using interference alignment [1]

We present two other examples of such cases
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DM-BC with Degraded Message Sets

Consider a 2-receiver DM-BC (X , p(y1, y2|x),Y1 × Y2)

Sender X wishes to send:

common message M0 ∈ [1 : 2nR0 ] to both receivers, and

private message M1 ∈ [1 : 2nR1 ] to receiver Y1

(M0, M1)
Xn

p(y1, y2|x)

Y n

1

Y n

2

(M̂01, M̂1)

M̂02

Encoder

Decoder 1

Decoder 2

The capacity region is the closure of the set of achievable rate pairs
(R0, R1)
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Theorem (Körner–Marton [2])

The capacity region of the DM-BC with degraded message sets is the set

of rate pairs (R0, R1) such that

R0 ≤ I(U ;Y2),

R1 ≤ I(X;Y1|U),

R0 + R1 ≤ I(X;Y1)

for some p(u, x)

Achievability follows by superposition coding
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Outline of Achievability: Codebook Generation

Fix p(u, x). Generate 2nR0 i.i.d. sequences (cloud centers)
un ∼

∏n
i=1 p(ui)

un(1)

un(2)

un(2nR0 )

un(m0)
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Outline of Achievability: Codebook Generation

For each un(m0), generate 2nR1 conditionally i.i.d. sequences
(satellite codewords) xn ∼

∏n
i=1 p(xi|ui)

un(1)

un(2)

un(2nR0 )

un(m0)

xn(m0,1)

xn(m0,2)

xn(m0,2nR1 )

xn(m0,m1)
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Outline of Achievability: Encoding

To send message pair (m0,m1), transmit satellite codeword
xn(m0,m1)

un(1)

un(2)

un(2nR0 )

un(m0)

xn(m0,1)

xn(m0,2)

xn(m0,2nR1 )

xn(m0,m1)
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Outline of Achievability: Decoding

Y2 declares that a message m̂02 is sent if it is the unique message

such that (un(m̂02), y
n
2 ) ∈ T

(n)
ǫ

The probability of error → 0 as n → ∞ if

R0 < I(U ;Y2)

A. El Gamal (Stanford University) More Than 3 Users ITMANET 2009 6 / 28



Outline of Achievability: Decoding

Y2 declares that a message m̂02 is sent if it is the unique message

such that (un(m̂02), y
n
2 ) ∈ T

(n)
ǫ

The probability of error → 0 as n → ∞ if

R0 < I(U ;Y2)

Y1 declares that message pair (m̂01, m̂1) is sent if it is the unique

message pair such that (un(m̂01), x
n(m̂01, m̂1), y

n
1 ) ∈ T

(n)
ǫ

The probability of error → 0 as n → ∞ if

R1 < I(X;Y1|U),

R0 + R1 < I(X;Y1)

This completes the proof of achievability
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Alternative Characterization

We can prove the weak converse for the region consisting of rate pairs
(R0, R1) satisfying

R0 ≤ I(U ;Y2),

R0 + R1 ≤ I(U ;Y2) + I(X;Y1|U),

R0 + R1 ≤ I(X;Y1)

for some p(u, x)

Clearly this region includes the first characterization region
We can also show that they have the same boundary points
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Alternative Characterization

We can prove the weak converse for the region consisting of rate pairs
(R0, R1) satisfying

R0 ≤ I(U ;Y2),

R0 + R1 ≤ I(U ;Y2) + I(X;Y1|U),

R0 + R1 ≤ I(X;Y1)

for some p(u, x)

Clearly this region includes the first characterization region
We can also show that they have the same boundary points

Can we show that the above region is achievable directly?

The answer is yes, and the proof involves (unnecessary) rate splitting:

Divide M1 into two independent messages; M10 at rate R10 and M11

at rate R11. Represent (M0,M10) by U and (M0,M10,M11) by X
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We can show that (R0, R10, R11) is achievable if

R0 + R10 < I(U ;Y2),

R11 < I(X;Y1|U),

R0 + R1 < I(X;Y1)

for some p(u, x)

Substituting R1 = R10 + R11 and performing Fourier–Motzkin (F–M)
elimination establishes the achievability of the region
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We can show that (R0, R10, R11) is achievable if

R0 + R10 < I(U ;Y2),

R11 < I(X;Y1|U),

R0 + R1 < I(X;Y1)

for some p(u, x)

Substituting R1 = R10 + R11 and performing Fourier–Motzkin (F–M)
elimination establishes the achievability of the region

The above rate splitting idea turns out to be crucial for 3-receiver
DM-BC
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Multi-level DM-BC with Degraded Message Sets

A multilevel DM-BC [3] (X , p(y1, y3|x)p(y2|y1),Y1,Y2,Y3) is a
3-receiver DM-BC where Y2 is a degraded version of Y1

Sender X wishes to send

common message M0 ∈ [1 : 2nR0 ] to all receivers

private message M1 ∈ [1 : 2nR1 ] only to receiver Y1

X p(y1, y3|x)

Y1

Y3

p(y2|y1) Y2

What is the capacity region?
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A straightforward extension of Körner–Marton capacity region for 2
receivers gives the inner bound consisting of (R0, R1) such that

R0 < min{I(U ;Y2), I(U ;Y3)},

R1 < I(X;Y1|U)

for some p(u, x)
Note the bound R0 + R1 < I(X;Y1) drops out since X → Y1 → Y2
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A straightforward extension of Körner–Marton capacity region for 2
receivers gives the inner bound consisting of (R0, R1) such that

R0 < min{I(U ;Y2), I(U ;Y3)},

R1 < I(X;Y1|U)

for some p(u, x)
Note the bound R0 + R1 < I(X;Y1) drops out since X → Y1 → Y2

This region turned out not to be optimal in general

Theorem (Nair–El Gamal [4])

The capacity region of the 3-receiver multi-level DM-BC is the set of rate

pairs (R0, R1) such that

R0 ≤ min{I(U ;Y2), I(V ;Y3)},

R1 ≤ I(X;Y1|U),

R0 + R1 ≤ I(V ;Y3) + I(X;Y1|V )

for some p(u, v)p(x|v)
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Reversely Degraded BEC Example [4]

1/2

1/2

1/3

1/3

1/2

1/2

2/3

2/3

1/2

1/2

1/2

1/2
0

0

0

0

1

1

1

1

E

E

Y21 Y11

Y12 Y32

Y31X1

X2

Y1Y2
Y3

Fix R0 = 1/2:
◮ With Körner-Marton extension: R1 = 5/12
◮ Capacity region: R1 = 1/2
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Outline of Achievability: Codebook Generation

Split R1 into R10 and R11; R1 = R10 + R11
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Outline of Achievability: Codebook Generation

Fix p(u, v)p(x|v). Generate 2nR0 i.i.d. un ∼
∏n

i=1 p(ui)

un(1)

un(2)

un(2nR0 )

un(m0)
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Outline of Achievability: Codebook Generation

For each un, generate 2nR10 conditionally i.i.d. vn ∼
∏n

i=1 p(vi|ui)

un(1)

un(2)

un(2nR0 )

un(m0)

vn(m0,1)

vn(m0,2)

vn(m0,2nR10 )

vn(m0,m10)
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Outline of Achievability: Codebook Generation

For each vn, generate 2nR11 conditionally i.i.d. xn ∼
∏n

i=1 p(xi|vi)

un(1)

un(2)

un(2nR0 )

un(m0)

vn(m0,1)

vn(m0,2)

vn(m0,2nR10 )

vn(m0,m10)

xn(m0,m10,1)

xn(m0,m10,2)

xn(m0,m10,2nR11 )

xn(m0,m10,m11)
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Outline of Achievability: Encoding

To send (m0,m1), transmit xn(m0,m10,m11)

un(1)

un(2)

un(2nR0 )

un(m0)

vn(m0,1)

vn(m0,2)

vn(m0,2nR10 )

vn(m0,m10)

xn(m0,m10,1)

xn(m0,m10,2)

xn(m0,m10,2nR11 )

xn(m0,m10,m11)
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Outline of Achievability: Decoding

Y2 declares that m̂02 ∈ [1 : 2nR0 ] is sent if it is the unique message

such that (un(m̂02), y
n
2 ) ∈ T

(n)
ǫ

The probability of error → 0 as n → ∞ if

R0 < I(U ;Y2)
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Outline of Achievability: Decoding

Y2 declares that m̂02 ∈ [1 : 2nR0 ] is sent if it is the unique message

such that (un(m̂02), y
n
2 ) ∈ T

(n)
ǫ

The probability of error → 0 as n → ∞ if

R0 < I(U ;Y2)

Y1 declares that (m̂01, m̂10, m̂11) is sent if it is the unique triple such

that (un(m̂01), v
n(m̂01, m̂10), x

n(m̂01, m̂10, m̂11), y
n
1 ) ∈ T

(n)
ǫ

The probability of error → 0 as n → ∞ if

R11 < I(X;Y1|V ),

R10 + R11 < I(X;Y1|U),

R0 + R10 + R11 < I(X;Y1)
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Outline of Achievability: Decoding

If receiver Y3 decodes m0 directly by finding the unique m̂03 such

that (un(m̂03), y
n
3 ) ∈ T

(n)
ǫ , we have R0 < I(U ;Y3), which together

with previous conditions gives the extended Körner–Marton region
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that (un(m̂03), y
n
3 ) ∈ T

(n)
ǫ , we have R0 < I(U ;Y3), which together

with previous conditions gives the extended Körner–Marton region

To achieve the larger region, receiver Y3 decodes m0 indirectly:

It declares that m̂03 is sent if it is the unique index such that

(vn(m̂03,m10), y
n
3 ) ∈ T

(n)
ǫ for some m10 ∈ [1 : 2nR10 ]

The probability of error → 0 as n → ∞ if

R0 + R10 < I(V ;Y3)
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Outline of Achievability: Decoding

If receiver Y3 decodes m0 directly by finding the unique m̂03 such

that (un(m̂03), y
n
3 ) ∈ T

(n)
ǫ , we have R0 < I(U ;Y3), which together

with previous conditions gives the extended Körner–Marton region

To achieve the larger region, receiver Y3 decodes m0 indirectly:

It declares that m̂03 is sent if it is the unique index such that

(vn(m̂03,m10), y
n
3 ) ∈ T

(n)
ǫ for some m10 ∈ [1 : 2nR10 ]

The probability of error → 0 as n → ∞ if

R0 + R10 < I(V ;Y3)

Combining the bounds, substituting R10 + R11 = R1, and performing
F–M to eliminate R10 and R11 completes the proof of achievability
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Extensions

A new inner bound for general 3-receiver BC with degraded message
sets can be obtained by combining Marton coding with rate splitting,
indirect decoding, and superposition coding
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Extensions

A new inner bound for general 3-receiver BC with degraded message
sets can be obtained by combining Marton coding with rate splitting,
indirect decoding, and superposition coding

This leads to a general method for constructing inner bounds for
general k-receiver BCs with arbitrary messaging requirements, which
is at least as large as existing inner bounds

Optimality of these general results are not known
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Wiretap channel

Consider a 2-receiver DM-BC

Sender X wishes to send a message M ∈ [1 : 2nR] to Y , while
keeping it secret from Z

EncoderM

M̂Decoder

Eavesdropper

Y n

Zn

p(y, z|x)Xn

Alice

Bob

Eve

Rate R is achievable if:

Probability of error: P
(n)
e = P{M̂ 6= M} → 0 as n → ∞

Secrecy constraint: I(M ;Zn)/n → 0 as n → ∞

The secrecy capacity CS is the supremum of all achievable rates
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Wiretap channel

Consider a 2-receiver DM-BC

Sender X wishes to send a message M ∈ [1 : 2nR] to Y , while
keeping it secret from Z

EncoderM

M̂Decoder

Eavesdropper

Y n

Zn

p(y, z|x)Xn

Alice

Bob

Eve

Theorem (Wyner [5], Csiszár–Körner [6])

CS = maxp(u,x) (I(U ;Y ) − I(U ;Z))
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Outline of Achievability: Codebook Generation

Generate 2nR̃ i.i.d. un ∼
∏n

i=1 p(ui).

un(1)

un(2)

un(2nR̃)

un(l)
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Outline of Achievability: Codebook Generation

Generate 2nR̃ i.i.d. un ∼
∏n

i=1 p(ui). Partition into 2nR subcodes

un(1)

un(2)

un(2nR̃)

un(l)

C(1)

C(m)

C(2nR)
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Outline of Achievability: Encoding

To send m, choose random un(L) ∈ C(m).

un(1)

un(2)

un(2nR̃)

un(L)

C(1)

C(m)

C(2nR)
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Outline of Achievability: Encoding

To send m, choose random un(L) ∈ C(m). Transmit
Xn ∼

∏n
i=1 p(xi|ui)

un(1)

un(2)

un(2nR̃)

un(L)

C(1)

C(m)

C(2nR)

Xn
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Decoding and Analysis of Secrecy Constraint

Decoding: Y declares that l̂ is sent if it is the unique index such that

(un(l̂), yn) ∈ T
(n)

ǫ ; declares message sent to be subcode index m̂ of
un(l̂)

The probability of error → 0 as n → ∞ if R̃ < I(U ;Y )
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Decoding and Analysis of Secrecy Constraint

Decoding: Y declares that l̂ is sent if it is the unique index such that

(un(l̂), yn) ∈ T
(n)

ǫ ; declares message sent to be subcode index m̂ of
un(l̂)

The probability of error → 0 as n → ∞ if R̃ < I(U ;Y )

Secrecy constraint: For each subcode C(m), Z has
.
= 2n(R̃−R−I(U ;Z))

jointly typical un(l) sequences with zn

C(1) C(m) C(2nR)

l : 1 2n(R̃−R) 2nR̃

(un(l), yn) ∈ T
(n)

ǫ (un(l), zn) ∈ T
(n)

ǫ
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Decoding and Analysis of Secrecy Constraint

Decoding: Y declares that l̂ is sent if it is the unique index such that

(un(l̂), yn) ∈ T
(n)

ǫ ; declares message sent to be subcode index m̂ of
un(l̂)

The probability of error → 0 as n → ∞ if R̃ < I(U ;Y )

Secrecy constraint: For each subcode C(m), Z has
.
= 2n(R̃−R−I(U ;Z))

jointly typical un(l) sequences with zn

C(1) C(m) C(2nR)

l : 1 2n(R̃−R) 2nR̃

(un(l), yn) ∈ T
(n)

ǫ (un(l), zn) ∈ T
(n)

ǫ

Thus if R̃ − R > I(U ;Z), Z has roughly equal number of indices in
each subcode, providing it with no information about the message
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Observation
Instead of choosing Xn at random, can generate for each un a
subcode consisting of 2nS conditionally i.i.d. codewords
xn ∼

∏n
i=1 p(xi|ui); choose one at random for transmission

un(1)

un(2)

un(2nR̃)

un(l0)

C(1)

C(m)

C(2nR)

xn(l0,1)

xn(l0,2)

xn(l0,2nS)

xn(l0,l1)
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Observation

Z cannot decode U indirectly through X if S + R̃ − R ≥ I(X;Z), or
equivalently if S ≥ I(X;Z) − I(U ;Z)

un(1)

un(2)

un(2nR̃)

un(l0)

C(1)

C(m)

C(2nR)

xn(l0,1)

xn(l0,2)

xn(l0,2nS)

xn(l0,l1)
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Observation

Z cannot decode U indirectly through X if S + R̃ − R ≥ I(X;Z), or
equivalently if S ≥ I(X;Z) − I(U ;Z)

un(1)

un(2)

un(2nR̃)

un(l0)

C(1)

C(m)

C(2nR)

xn(l0,1)

xn(l0,2)

xn(l0,2nS)

xn(l0,l1)

This observation turned out to be crucial for ≥ 3 receivers
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2 Receivers, 1 Eavesdropper Wiretap Channel

Consider a 3-receiver DM-BC

Sender X wishes to send a message M ∈ [1 : 2nR] to Y1 and Y2,
while keeping it secret from eavesdropper Z

EncoderM p(y1, y2, z|x)
Xn

M̂1

M̂2

Y n

1

Y n

2

Zn
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2 Receivers, 1 Eavesdropper Wiretap Channel

Consider a 3-receiver DM-BC

Sender X wishes to send a message M ∈ [1 : 2nR] to Y1 and Y2,
while keeping it secret from eavesdropper Z

EncoderM p(y1, y2, z|x)
Xn

M̂1

M̂2

Y n

1

Y n

2

Zn

Rate R is achievable if:

Probability of error: P
(n)
e = P{M̂1 6= M or M̂2 6= M} → 0 as n → ∞

Secrecy constraint: I(M ;Zn)/n → 0 as n → ∞

Secrecy capacity CS is the supremum of achievable rates
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Straightforward extension of Csiszár–Körner achievability scheme:

CS ≥ max
p(u,x)

min{I(U ;Y1) − I(U ;Z), I(U ;Y2) − I(U ;Z)}
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Straightforward extension of Csiszár–Körner achievability scheme:

CS ≥ max
p(u,x)

min{I(U ;Y1) − I(U ;Z), I(U ;Y2) − I(U ;Z)}

Consider multilevel-BC case:

X p(y1, y2|x)

Y1

Y2

p(z|y1) Z

I(X;Y1) − I(X;Z) ≥ I(U ;Y1) − I(U ;Z); not true in general for Y2

New lower bound (Chia–El Gamal [7])

CS ≥ max
p(u,x)

min{I(X;Y1) − I(X;Z), I(U ;Y2) − I(U ;Z)}
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Reversely Degraded BEC Example [4]
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With Csiszár–Körner extension: Optimal secrecy rate R < 5/6

With new scheme, set U = X1; X1 and X2 independent Bern(1/2)
⇒ CS = 5/6 [8]
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Outline of Achievability: Codebook Generation

Generate 2nS0 i.i.d. un ∼
∏n

i=1 pU(ui).

un(1)

un(2)

un(2nS0 )

un(l0)
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Outline of Achievability: Codebook Generation

Generate 2nS0 i.i.d. un ∼
∏n

i=1 pU(ui). Partition into 2nR subcodes

un(1)

un(2)

un(2nS0 )

un(l0)

C(1)

C(m)

C(2nR)
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Outline of Achievability: Codebook Generation

For each un, generate subcode of 2nS1 conditionally i.i.d. sequences
xn ∼

∏n
i=1 p(xi|ui)

un(1)

un(2)

un(2nS0 )

un(l0)

C(1)

C(m)

C(2nR)

xn(l0,1)

xn(l0,2)

xn(l0,2nS1 )

xn(l0,l1)
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Outline of Achievability: Encoding

To send m, choose random un(L0) ∈ C(m).

un(1)

un(2)

un(2nS0 )

un(L0)

C(1)

C(m)

C(2nR)

xn(l0,1)

xn(l0,2)

xn(l0,2nS1 )

xn(l0,l1)
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Outline of Achievability: Encoding

To send m, choose random un(L0) ∈ C(m). Choose random L1 and
transmit xn(L0, L1)

un(1)

un(2)

un(2nS0 )

un(L0)

C(1)

C(m)

C(2nR)

xn(l0,1)

xn(l0,2)

xn(l0,2nS1 )

xn(L0,L1)
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Decoding and Analysis of Secrecy Constraint

Decoding: Y2 finds L0 (hence m) by decoding U directly
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The probability of error → 0 as n → ∞ if

S0 < I(U ;Y2)
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Decoding and Analysis of Secrecy Constraint

Decoding: Y2 finds L0 (hence m) by decoding U directly

The probability of error → 0 as n → ∞ if

S0 < I(U ;Y2)

Y1 finds L0 indirectly through X

The probability of error → 0 as n → ∞ if

S0 + S1 < I(X;Y1)
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Decoding and Analysis of Secrecy Constraint

Decoding: Y2 finds L0 (hence m) by decoding U directly

The probability of error → 0 as n → ∞ if

S0 < I(U ;Y2)

Y1 finds L0 indirectly through X

The probability of error → 0 as n → ∞ if

S0 + S1 < I(X;Y1)

Secrecy constraint: Z cannot decode L0 directly through U if

S0 − R ≥ I(U ;Z)

Z cannot decode L0 indirectly through X if

S0 + S1 − R ≥ I(X;Z)
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Decoding and Analysis of Secrecy Constraint

Decoding: Y2 finds L0 (hence m) by decoding U directly

The probability of error → 0 as n → ∞ if

S0 < I(U ;Y2)

Y1 finds L0 indirectly through X

The probability of error → 0 as n → ∞ if

S0 + S1 < I(X;Y1)

Secrecy constraint: Z cannot decode L0 directly through U if

S0 − R ≥ I(U ;Z)

Z cannot decode L0 indirectly through X if

S0 + S1 − R ≥ I(X;Z)

Combining bounds and performing Fourier–Motzkin elimination
completes the proof
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By using Marton coding in addition, we obtain the following:

Generalized Lower Bound (Chia–El Gamal [7])

A rate R is achievable for sending a confidential message to receivers Y1

and Y2, while keeping it secret from eavesdropper Z if

R < min{I(U1;Y1|Q) − I(U1;Z|Q), I(U2;Y2|Q) − I(U2;Z|Q)},

2R < I(U1;Y1|Q) + I(U2;Y2|Q) − 2I(U0;Z|Q) − I(U1;U2|U0)

for some p(q, u0, u1, u2, x) = p(q)p(u0|q)p(u1|u0)p(x, u2|u0, u1) =
p(q)p(u0|q)p(u2|u0)p(x, u1|u0, u2) such that

I(U1, U2;Z|U0) ≤ I(U1;Z|U0) + I(U2;Z|U0) − I(U1;U2|U0)

Optimal for:
◮ Both Y1 and Y2 are less noisy than Z
◮ Reversely degraded product channels [8]
◮ MIMO?
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Final Remarks

More results in poster
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More results in poster

Also, see poster on > 2-user pair cyclically symmetric interference
channel

Current work:
◮ Completing work on general inner bound for DM-BC with ≥ 3 receivers
◮ Completing work on wiretap channel with ≥ 3 receivers
◮ Achievability scheme for 3 user-pair El Gamal–Costa deterministic

interference channel
◮ Compress–forward for networks
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Final Remarks

More results in poster

Also, see poster on > 2-user pair cyclically symmetric interference
channel

Current work:
◮ Completing work on general inner bound for DM-BC with ≥ 3 receivers
◮ Completing work on wiretap channel with ≥ 3 receivers
◮ Achievability scheme for 3 user-pair El Gamal–Costa deterministic

interference channel
◮ Compress–forward for networks

Important research direction because it leads to new coding
techniques for networks
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