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ACHIEVEMENT DESCRIPTION 

MAIN RESULT:
Flow allocation to optimally trade off average 
smoothed flow utility and power.

Prevailing wireless network
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HOW IT WORKS:
Optimal flow policy is a complicated function of 

smoothed flow and channel gain

Prevailing wireless network 
utility maximization and 
resource allocation methods 
focus on  per period 
optimization 
These methods ignore the 
heterogeneous time scales
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Control Theory

Network Utility 
Maximization

ASSUMPTIONS AND LIMITATIONS:
• Utilities are strictly concave, power is strictly 

convex; linear dynamics represent time averaging
• At each time period assumes the transmitter E
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• Derive network utility from 
smoothed flows

•Smoothing allows us to 
model the demands of an 
application that can tolerate

Dynamic 
Optimization

Approximate dynamic 
programming (ADP) for 
MANETs

Optimally trade off average utility and power using smoothed flow utilities 

At each time period, assumes the transmitter 
learns  random channel state through feedback N

EN
E application that can tolerate 

variations in flow it receives 
over a time interval

• computationally tractable
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The problem

• choose transmit power(s) and flow rate(s) to optimally trade off average
utility and power

• utilities are functions of smoothed flow rates

• with each flow we associate a

– smoothing time scale
– concave increasing utility function

• our model:

– channel gains are random
– no interference
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Smoothed flow utility

• wireless link supports n flows in period t

• ft ∈ Rn is flow rate vector

• st ∈ Rn is smoothed flow rate vector: st+1 = Θst + (I − Θ)ft

– Θ = diag(θ), θi ∈ [0, 1)
– τi = 1/ log(1/θi) is smoothing time for flow i

• U : Rn → R: separable concave utility function

• average smoothed utility is

Ū = lim
T→∞

E
1

T

T−1
∑

τ=0

U(sτ)
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Channel model and average power

• capacity in period t is (up to a constant) log(1 + gtpt)

– pt ≥ 0 is transmit power
– gt is channel gain (up to constant)

• power required to support flow ft: pt = φ(1Tft, gt) = (e1T ft − 1)/gt

• average power is P̄ = lim
T→∞

E
1

T

T−1
∑

τ=0

pτ

• gt IID exponential (for example)

• ft (and therefore pt) can depend on gt, but not gt+1, gt+2, . . .
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Optimal policy

• (state feedback) policy: ft = ϕ(st, gt)

• goal: choose policy ϕ to maximize Ū − λP̄

• λ > 0 is used to trade off average utility and power

• a convex stochastic control problem

• optimal value is J⋆
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‘Solution’ via dynamic programming

• optimal policy is

ϕ⋆(z, g) = argmax
w≥0

{V ⋆(Θz + (I − Θ)w) − λφ(1Tw, g)}

• V ⋆ is value function, (any) solution of Bellman equation

J⋆ + V ⋆(z) = E

{

U(z) + max
w≥0

{

V (Θz + (I − Θ)w) − λφ(1Tw, g)

}

}

• can numerically compute V (and ϕ⋆) for n very small (say, 1 or 2)

ITMANET PI meeting 09/14–15/09 5



No trasmit region

• V ⋆ is concave, increasing

• from convex analysis, φ⋆(z, g) = 0 if and only if

g∇V ⋆(Θz) ≤

(

λ

1 − θ1

, . . . ,
λ

1 − θn

)

(assuming here V ⋆ is differentiable)

• interpretation: don’t transmit if

– channel is bad (g small)
– or, smoothed flows are large (z large ⇒ ∇V ⋆(Θz) small)
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Suboptimal policies

• greedy policy:

ϕgreedy(z, g) = argmax
w≥0

{U(Θz + (I − Θ)w) − λφ(1Tw, g)}

• approximate dynamic programming (ADP) policy:

ϕadp(z, g) = argmax
w≥0

{V̂ (Θz + (I − Θ)w) − λφ(1Tw, g)}

where V̂ is an approximate or surrogate value function, e.g.,

V̂ (z) = V ⋆
1 (z1) + · · · + V ⋆

n (zn)

where V ⋆
i is optimal for associated single flow problem
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Single-flow examples

• compare two examples with

– light smoothing (τ = 1; θ = 0.37)
– heavy smoothing (τ = 20; θ = 0.95)

• log utility function U(s) = log s; gt exponential with E gt = 1

• λs chosen to yield Ū = −1.8

– λ = 2.3 for light smoothing
– λ = 10 for heavy smoothing

• (optimal) average power is

– P̄ = 0.1845 for light smoothing
– P̄ = 0.0049 for heavy smoothing
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Optimal policies
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Power trajectories
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Observations

• smoothing has great affect on

– optimal policy
– average power needed

• rough interpretation of optimal policy:

– with smoothing, wait for good channel, unless desperate
– with more smoothing, can afford to wait longer
– and so, save power
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