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Abstract— We consider a multiple-input, multiple-output
(MIMO) wideband Rayleigh block fading channel where the
channel state is unknown to both the transmitter and the
receiver and there is only an average power constraint on
the input. We compute the error probability and study its
dependence on receive signal-to-noise ratio (SNR), number of
transmit and receive antennas and coherence length. We show
that error probability decays inversely with coherence length
and exponentially with the product of the number of transmit
and receive antennas. Moreover, channel outage dominates error
probability in the wideband regime. We also show that the critical
as well as cut-off rates are much smaller than channel capacity
in this regime.

I. INTRODUCTION

Multiple-input, multiple-output (MIMO) systems have been
known to improve considerably performance of wireless sys-
tems in terms of reliability as well as throughput, without
requiring additional resources such as bandwidth and power.
Motivated by the ever increasing demand for higher wideband
wireless data rates, we consider multiple antenna communica-
tion over a wideband wireless channel. While communicating
over a wideband channel, the available power is spread over a
large number of degrees of freedom and, the received signal-
to-noise ratio (SNR) per degree of freedom is low. Hence,
while studying these channels, we need to focus on the low
SNR regime. We will therefore use the terms “wideband” and
“low SNR” interchangeably, with the understanding that the
latter refers to the SNR per degree of freedom.
MIMO channels with perfect channel state information (CSI)
at the receiver (coherent channel) but no CSI at the transmitter
were first studied from a capacity point of view in [2], [5].
When CSI is unavailable at the receiver also (non-coherent
channel), the structure of the optimal input matrix is obtained
in [4]. The coherent and non-coherent capacities are computed
in [2] and [8], respectively, when the received SNR is high.
For the Rayleigh block fading non-coherent MIMO channel,
[8] shows that:

lim
SNR→0

C(SNR)

SNR
= r,

where, r is the number of receive antennas, SNR is the average
signal-to-noise ratio per degree of freedom at each receive
antenna and C(SNR) is the non-coherent capacity per degree

of freedom. The capacity can thus be expressed as:

C(SNR) = rSNR + o(SNR) nats/channel use

and is thus a linear function only in the limit of low SNR.
As SNR increases from 0, capacity increases in a sublinear
fashion, showing that low SNR communication is power
efficient. We use the MIMO sublinear capacity term definition
introduced in [14]:

∆(t,r)(SNR) , rSNR − C(SNR) nats/channel use,

where, t and r are the number of transmit and receive antennas,
respectively. This term is computed in [14] as

∆(t,r)(SNR) =
r(r + t)

2t
SNR

1+α + o(SNR
1+α),

where, α ∈ (0, 1] is related to the coherence length, SNR and
antennas as l ∼ t2

(r+t)2 SNR
−2α.

In this paper, we analyze the error probability for the non-
coherent wideband (low SNR) MIMO channel. The behavior
of error probability for the coherent [3], [11] as well as non-
coherent [6], [9] MIMO channels has been well studied in
the high SNR regime. For the coherent MIMO channel with
coherence length 1 symbol, the error exponent is computed by
Telatar [5] for any SNR. The behavior of the error exponent for
the non-coherent MIMO channel in the low SNR regime has
recently been considered by Wu and Srikant in [12]. Their
analysis considers the linear capacity term, rSNR, and the
error exponent is computed by fixing the coherence length
and letting SNR tend to 0.
Our consideration of the effect of the interaction among SNR,
number of transmit and receive antennas and coherence length,
on the error probability, yields a more detailed characterization
of the error probability behavior than described in [12]. Our
analysis shows that in the low SNR regime, the critical rate
as well as the cut-off rate are much smaller than the channel
capacity. Moreover, the error probability decays inversely with
coherence length. We introduce the notion of “diversity” in
the low SNR regime and use it to show that error probability
decays exponentially with the product of the number of
transmit and receive antennas. Hence, in terms of reliability
in the wideband regime, transmit antennas have the same
importance as receive antennas. In the high SNR regime, it is
well known that outage dominates the error probability. Our



analysis shows that this is true even at low SNR, i.e., channel
outage dominates the error probability at low SNR.
Let us establish notation that will be used in the rest of the
paper. The bold type will be used to denote random quantities
whereas normal type will be used to denote deterministic
ones. Matrices will be denoted by capital letters and the
scalar or vector components of matrices will be denoted using
appropriate subscripts. Vectors will be represented by small
letters with an arrow over them. All vectors are column vectors
unless they have a T superscript. Scalars will be represented
by small letters only. The superscript † will be used to denote
the complex conjugate transpose.
The rest of the paper is organized as follows: We describe the
channel model in section II and present the error probability
results in section III. We conclude in section IV.

II. MODEL

We model the wideband channel as a set of N parallel
narrowband channels. In general, the narrowband channels
will be correlated. We restrict our analysis in this paper
to channels having independent and identical statistics. We
also assume that the coherence bandwidth is much larger
than the bandwidth of the narrowband channel. Hence, each
narrowband channel is modeled as being flat faded. From
[13], we see that low SNR channels are robust to reasonable
modeling assumptions. Hence, the results for a more precise
MIMO channel model will not differ significantly from that
of the simple model we consider in this paper.
Using the sampling theorem, the mth narrowband channel at
symbol time k can be represented as:

~y[k, m] = H[k, m]~x[k, m] + ~w[k, m],

where H[k, m], ~x[k, m], ~w[k, m] and ~y[k, m] are the channel
matrix, input vector, noise vector and output vector, respec-
tively, for the mth narrowband channel at symbol time k.
The pair (k, m) may be considered as an index for the time-
frequency slot, or degree of freedom, to communicate. We
denote the number of transmit and receive antennas by t and r,
respectively. Hence, ~x[k, m] ∈ Ct and ~y[k, m], ~w[k, m] ∈ Cr.
The channel matrix H[k, m] is a r × t complex matrix. The
entries of the channel matrix are i.i.d zero-mean complex
Gaussian, with independent real and imaginary components.
Equivalently, each entry of H[k, m] has uniformly distributed
phase and Rayleigh distributed magnitude. We thus model a
Rayleigh fading channel with enough separation within the
transmitting and receiving antennas to achieve independence
in the entries of H[k, m]. The channel matrix is unknown
at the transmitter and the receiver. However, its statistics are
known to both. The noise vector ~w[k, m] is a zero-mean
Gaussian vector with the identity as its covariance matrix.
Thus, ~w[k, m] v CN (~0, Ir). Since the narrowband channels
are assumed to be independent, we will omit the narrowband
channel index, m, to simplify notation. The capacity of the
wideband channel with power constraint P is thus N times
the capacity of each narrowband channel with power constraint
P/N . Hence, we can focus on the narrowband channel alone.

We further assume a block fading channel model, i.e., the
channel matrix is random but fixed for the duration of the
coherence time of the channel, and is i.i.d across blocks.
Hence, we may omit the time index, k, and express the
narrowband channel within a coherence block of length l
symbols as:

Y = HX + W,

where, X ∈ Ct×l has entries xij , i = 1, ..., t, j = 1, ..., l,
being the signals transmitted from the transmit antenna i at
time j; Y ∈ Cr×l has entries yij , i = 1, ..., r, j = 1, ..., l,
being the signals received at the receive antenna i at time j; the
additive noise W has i.i.d. entries wij , which are distributed as
CN (0, 1). The input X satisfies the average power constraint

1

l
E

[

trace

{

XX†

}]

= SNR.

As N tends to ∞, SNR tends to 0, and the narrowband channel
is in the low SNR regime.

III. ERROR PROBABILITY DERIVATION

From [14], we see that a non-coherent MIMO channel with
coherence length

t2

(r + t)2
SNR

−2ν < l ≤ t2

(r + t)2
SNR

−2(ν+ε),

where, ν > 0 and ε ∈ (0, min{1, ν}), has capacity

C(SNR) = rSNR − r(r + t)

2t
SNR

1+min{1,ν}

+O(SNR
1+min{1,ν}+ε).

The channel capacity and coherence length are related through
ν. The expression, min{1, ν}, is the coherence level and is an
indicator of the amount of coherence in the channel. A detailed
treatment of coherence level can be found in [13], [14].
Reference [14] introduces a near-capacity achieving signaling
scheme - the Peaky Gaussian signaling scheme. We present
this scheme here for completeness.
For a channel with coherence length

l =
t2

(r + t)2
SNR

−2ν , ν > 0,

transmit in only δ(SNR) = SNR
1−min{1,ν} fraction of the

blocks. Since the power is concentrated in only over a fraction
of the blocks, the signal to noise ratio for the blocks used for
transmission increases to SNRb, where

SNRb ,
SNR

δ(SNR)
= SNR

min{1,ν}.

In the blocks chosen for transmission, let the entries of the
input matrix X be i.i.d CN (0, SNRb

t
). Note that, as we increase

the coherence length, the fraction of blocks that we transmit
increases from SNR to 1. Therefore, the signaling changes
from a peaky to a continuous one.
In this paper, we compute the average block error probability



for the non-coherent MIMO channel, P block
error , when maximum-

likelihood decoding is used at the receiver with Peaky Gaus-
sian input signaling. This error probability can be expressed
as

P block
error = Pr(error|B) Pr(B) + Pr(error|B) Pr(B),

where, B is the event that the coherence block is used for
transmission. Since we use Peaky Gaussian signaling and the
receiver is assumed to have perfect knowledge of the blocks
that are being used for transmission, we have

Pr(B) = δ(SNR),

Pr(error|B) = 0.

Hence,

P block
error = δ(SNR) · Pr(error|B).

If we consider the input matrix transmitted in a block, X, as a
super symbol of dimension t × l, the channel is memoryless,
since, for each use of the channel an independent realization
of H is drawn. Hence, using the results in [1], the error
probability can be bounded as

Pr(error|B) ≤ exp[−Er(R)],

where, Er(R) is the random coding error exponent for the
super symbol channel:

Er(R) = max
ρ∈[0,1]

{

E0(ρ) − ρR

}

,

where,

E0(ρ) = − log

∫
[
∫

q(X)p(Y |X)
1

1+ρ dX

]1+ρ

dY,

q(X) is the distribution of X, R is the transmission rate in
nats per block used for transmission and Y is the channel’s
output matrix.
Since the signaling is Gaussian in the block used for trans-
mission,

q(X) =
1

πlt
exp

[

− trace(X†X)

]

.

The range of R for which Er(R) is positive is:

0 ≤ R ≤ l

δ(SNR)
· C(SNR) , Cblock(SNR), (1)

where, Cblock(SNR) is the non-coherent capacity per block:

Cblock(SNR)

=
t2

(r + t)2
SNR

−2ν

·
[

rSNR
min{1,ν} − r(r + t)

2t
SNR

2 min{1,ν}

]

+o(SNR
−2[ν−min{1,ν}]).

The main result of this paper is summarized in the following
theorem. The proof, which we omit here for brevity, is in
section 4.2 of [15].

Theorem 1: The average block error probability for a non-
coherent Rayleigh block fading MIMO channel, P block

error , when
maximum-likelihood decoding is used at the receiver can be
upper bounded as:

P block
error ≤ [SNR

1−min{1,ν}] · exp[−Er(R)],

where,

Er(R) = rt log

(

1 +
tSNR

−[2ν−min{1,ν}]

2(t + r)2

)

− R − o(1)

R ∈ [0, Rcritical],

= rt log

(

1 +
ρ∗tSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ∗)

)

− ρ∗R − o(1)

R ∈ [Rcritical, C
block
T,lb (SNR)],

= o(1) R ∈ [Cblock
T,lb (SNR), Cblock(SNR)],

= 0 R ∈ [Cblock(SNR),∞),

and

ρ∗ =
1

2





√

√

√

√1 + 4

(

rt

R
− (t + r)2SNR

2ν−min{1,ν}

t

)

− 1



 ,

Rcritical = rt/2 + o(1),

Cblock
T,lb (SNR)

=
t2

(r + t)2
SNR

−2ν

[

rSNR
min{1,ν}

−2
r(r + t)√

t
SNR

ν+
min{1,ν}

2 − r(r + t)

2t
SNR

2min{1,ν}

+o

(

SNR
min{ν+min{1,ν}

2
,2 min{1,ν}}

)]

.
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A. Discussion of Theorem 1
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Fig. 1. Random coding error exponent for the non-coherent MIMO
channel at low SNR.

Theorem 1 divides the range of rates for which Er(R) is
positive into three regions - A, B and C, which is illustrated



in Figure 1. Let us consider region A: R ∈ [0, Rcritical]. Since,
Rcritical = O(1) and Cblock(SNR) = O(SNR

−[2ν−min{1,ν}]),
the critical rate is much smaller than the channel capacity:

Rcritical � Cblock(SNR).

Region A is an O(SNR
[2ν−min{1,ν}]) fraction of the capacity

and is very small in the wideband regime. The cut-off rate,
Rcut−off , is given by1

Rcut−off = Er(0)
.
= rt · [2ν − min{1, ν}] · log

(

1

SNR

)

.

Since the cut-off rate is an O

(

SNR
[2ν−min{1,ν}] · log( 1

SNR
)

)

fraction of the capacity, it is much smaller than the capacity
in the wideband regime:

Rcut−off � Cblock(SNR).

Hence, the critical and cut-off rates are much smaller than the
capacity in the low SNR regime.
Let us consider the third region over which Er(R) is positive,
region C: R ∈ [Cblock

T,lb (SNR), Cblock(SNR)]. This interval is
a [Cblock(SNR) − Cblock

T,lb (SNR)]/Cblock(SNR) fraction of the
capacity where,

Cblock(SNR) − Cblock
T,lb (SNR)

Cblock(SNR)
=

{

O(SNR
ν−min{1,ν}

2 ) ν ≤ 3
2

o(SNR) ν > 3
2

.

Hence, region C is also a very small fraction of the capacity
in the wideband regime. Therefore, we can conclude that it
is region B: R ∈ [Rcritical, C

block
T,lb (SNR)], that dominates the

range of rates in the wideband regime.
From Theorem 1, the error probability in Region B can be
expressed as:

P block
error ∼ SNR

1−min{1,ν} ·
[

R

l · SNR
min{1,ν}

]rt

. (2)

To observe this, let us consider the error exponent for

R = l · rSNR
κ, min{1, ν} < κ < 2ν. (3)

This rate lies in Region B and the optimum ρ is

ρ∗ = O

(

1

R

)

.

Substituting in Theorem 1, we observe

Er(R)
.
= rt log

[

l · SNR
min{1,ν}

R

]

.

1Definition of (
.
=): Let f(SNR) and g(SNR) be functions of SNR. We

denote f(SNR)
.
= g(SNR) if

lim
SNR→0

log f(SNR)

log g(SNR)
= 1.

For ν ≤ 1, SNR
min{1,ν} ∝ 1/

√
l. Hence, for a fixed rate

R, the error probability decays inversely with the coherence
length in the following way:

P block
error ∝



















(

1
l

)

rt−1

2

l ≤ SNR
−2

(

1
l

)rt

l > SNR
−2

.

Let us now examine the effect of antennas on the error prob-
ability. To analyze this, we propose a definition of “diversity”
in the low SNR / wideband regime.
Let P and W be the total received power and system band-
width, respectively. High SNR diversity, dH(W ), is commonly
defined as:

dH(W ) , − lim
P→∞

log(P block
error (P , W ))

log(P)
.

This definition describes the asymptotic behavior of error
probability with received power, for fixed bandwidth.
In the low SNR/wideband regime, we define diversity, dL(P),
as:

dL(P) , − lim
W→∞

log(P block
error (P , W ))

log(W )
.

This definition describes the asymptotic behavior of error
probability with bandwidth, for fixed received power. Since,
SNR ∝ 1/W , an equivalent definition of low SNR diversity
is 2:

dL , lim
SNR→0

log(P block
error (P , SNR))

log(SNR)
. (4)

From (2, 3), we have

dL = r · t ·
[

κ − min{1, ν}
]

+ 1 − min{1, ν}.

Hence, we conclude that the decay in error probability is
exponential with the product of the number of transmit and
receive antennas, r · t. Similar to the high SNR regime, the
product of the number of transmit and receive antennas comes
about as a diversity factor in the low SNR regime. Hence, we
conjecture that r · t is a diversity factor for a MIMO channel
at any SNR.
From the capacity results in [14], we have seen that receive
antennas have greater significance than transmit antennas
since, the former effects the linear as well as the sublinear
capacity term whereas, the latter effects only the sublinear
term. However, since the error probability decays exponen-
tially with r·t, the transmit antennas have the same importance
as receive antennas in terms of reliability. This emphasizes
the importance of multiple transmit antennas in the wideband
regime.
Let us now consider channel outage in the low SNR regime.
For a block fading channel, outage occurs in a coherence block
when the channel matrix is so ill-conditioned that the block
mutual information cannot support the target block data rate.

2We omit the argument of dL(.) for simplicity.



We denote the outage probability as Poutage and present a
heuristic computation to show that

P block
error ∼ SNR

1−min{1,ν} · Poutage.

Thus, we see that in the low SNR/wideband regime, for rates
away from capacity, the error probability is dominated by the
outage probability. Hence, like at high SNR, channel outage
is the major source for errors even at low SNR.
Heuristic Proof (full proof in [15]): The outage probability
can be upper bounded using a training based scheme (This
scheme is described in detail in [15]). We directly state the
channel model for data transmission (the first t symbols are
used for training):

~yi = H
′

~xi + ~v
′

i, i = t + 1, . . . , l,

where, H
′

has i.i.d CN(0, 1) entries and is perfectly known
at the receiver (this is the MMSE channel estimate) , ~v

′

i is a
zero-mean noise vector having the covariance matrix

E[~v
′

i~v
′

i
†] = Ir,

and, {~xi} are i.i.d complex Gaussian vectors:

~xi ∼ CN (0,
f∗(SNR)

t
· It),

where,

f∗(SNR) = SNR
min{1,ν} + o(SNR

min{1,ν}).

Now,

Poutage

= Pr
(

I(~xt+1, . . . , ~xl; ~yt+1, . . . , ~yl|H
′

) < R
)

≤ Pr

(

log det

(

It +
f∗(SNR)

t
H

′†H
′

)

<
R

l − t

)

(5)

≤ Pr

(

log

(

1 +
f∗(SNR)

t
trace(H

′†H
′

)

)

<
R

l − t

)

(6)

∼ Pr

(

χ2
rt <

R

lf∗(SNR)

)

. (7)

Equation (5) follows since the mutual information is mini-
mized if {~v′

i} are i.i.d complex Gaussian [7], [10]. In (6), we
use the inequality:

det

(

It +
f∗(SNR)

t
H

′ †H
′

)

≥ 1 +
f∗(SNR)

t
trace(H

′ †H
′

).

In (7), χ2
rt represents trace(H

′ †H
′

) and is a chi-squared
random variable with rt degrees of freedom. Hence, if we
choose the rate in Region B as in (3), we have for low SNR,

R

lf∗(SNR)
� 1.

Hence,

Poutage ∼
[

R

l · SNR
min{1,ν}

]rt

⇒ P block
error ∼ SNR

1−min{1,ν} · Poutage.

2

IV. CONCLUSIONS

In this paper, we have computed the error probability for the
non-coherent wideband MIMO channel. Our analysis is a more
detailed characterization than [12], of the effect on reliability
of coherence length, bandwidth and number of transmit and
receive antennas. We have shown that error probability decays
inversely with the coherence length and exponentially with
the product of the number of transmit and receive antennas.
This highlights the importance of multiple transmit antennas,
besides multiple receive antennas, in the low SNR regime.
An interesting observation has been that outage probability
dominates the error probability even at low SNR.
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