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Abstract— We consider the problem of jamming in non-
coherent wideband fading channels. While the problem is well
understood for coherent channels, the results for the coherent
case do not generalize in the non-coherent regime. We show that
energy-limited jammers do not affect capacity in the wideband
regime. We also propose a training based transmission scheme
that is able to achieve the wideband limit in the presence of a
jammer.

I. INTRODUCTION

Traditional game-theoretic approaches for coherent additive
white Gaussian noise (AWGN) channels with an additive per
codeword energy-limited jammer show that a saddle point is
reached with a WGN input signal distributions are optimal,
while the jammer itself uses additive AWGN to jam the
channel. Such approaches readily reveal, in the wideband limit,
the fact that an additive jammer with limited per codeword
energy cannot affect capacity, since the jammer’s contribution
to the noise vanishes - the energy per Hz of the additive noise
goes to 0, while that of the channel’s AWGN remains fixed.
However, for non-coherent wideband fading channels, WGN
distributions for inputs not only fail to achieve capacity, but,
in the limit of infinite bandwidth, provide a null rate [1], [2].
Instead, the optimum input distributions are peaky - using low
duty cycle, high power symbols [3], [4], [5].
Questions that naturally arise from the above remarks are the
following: in the wideband limit, what effect does a jammer
have on capacity? Should a jammer still seek to mimic AWGN,
as in the coherent case? If not, what strategy should the
transmitter adopt to counter the jammer?
We use recent results on capacity-achieving schemes in [7],
[8] for low signal-to-noise (SNR) fading channels, which we
overview in section III, to show in section IV that a jammer
with no information regarding the transmission scheme has
a vanishing effect on capacity in the wideband limit. The
channel model we use is described in section II.
Reference [9] shows that if the transmitter uses an impulsive
training-based transmission scheme, as is often done in prac-
tice, the jammer may affect capacity appreciably if it is able
to jam the training symbols. In section V of this paper, we
propose a training based transmission scheme that is able to
achieve the wideband limit even in the presence of a jammer.
We present our conclusions in section VI.

II. MODEL

We model the wideband channel as a set of N parallel
narrowband channels. In general, the narrowband channels

will be correlated. We restrict our analysis in this paper
to channels having independent and identical statistics. We
also assume that the coherence bandwidth is much larger
than the bandwidth of the narrowband channel. Hence, each
narrowband channel is modeled as being flat faded. This model
is the same as the one used in [7]. Reference [7] shows that low
SNR channels are robust to reasonable modeling assumptions.
Hence, the results for a more precise channel model may
well not differ significantly from that of the simple model
we consider in this paper.
Using the sampling theorem, the mth narrowband channel at
symbol time k can be represented as:

y[k, m] = h[k, m] · x[k, m] + w[k, m] + z[k, m],

where h[k, m], x[k, m], w[k, m], y[k, m] and z[k, m] ∈ C
are the channel gain (state), input, noise, output and jammer
signals, respectively, for the mth narrowband channel at sym-
bol time k. These variables take values in the complex plane.
The pair (k, m) may be considered as an index for the time-
frequency slot, or degree of freedom, to communicate. The
fading is Rayleigh, i.e., the channel gain, h[k, m], is a zero-
mean complex Gaussian random variable with independent
real and imaginary components. We set the variance of the
channel gain to 1, i.e., h[k, m] v CN (0, 1). The channel
gain is unknown at the transmitter and the receiver. However,
its statistics are known to both. Hence, we consider a non-
coherent channel. The noise signal, w[k, m], is a zero-mean
complex Gaussian random variable with variance 1, w[k, m] v

CN (0, 1). Since the narrowband channels are assumed to be
independent, we will omit the narrowband channel index, m,
to simplify notation. The capacity of the wideband channel
with average input power constraint, P , is thus N times the
capacity of each narrowband channel with power constraint
P/N . We focus on the narrowband channel alone.
We further assume a block fading channel model, i.e., the
channel gain is random but fixed for the duration of the
coherence time of the channel, and is i.i.d across blocks.
Hence, we may omit the time index, k, and express the
narrowband channel within a coherence block of length l
symbols as:

~y = h~x + ~w + ~z.

The input, ~x, satisfies the average power constraint:
1

l
E
[
‖~x‖2

]
= SNR.



The jammer also has an average power constraint and spreads
its power uniformly across the N narrowband channels. The
jammer’s signal is independent across blocks. Hence, the
average power constraint on the jammer for each narrowband
channel is

1

l
E
[
‖~z‖2

]
= JSNR.

where, J is a real and positive constant. As N tends to ∞,
SNR tends to 0, and the narrowband channel is in the low
SNR regime.

III. CAPACITY IN THE ABSENCE OF A JAMMER

In the absence of a jammer, [7], [8] show that a non-coherent
channel with coherence length

1

4
SNR

−2ν < l ≤ 1

4
SNR

−2(ν+ε),

where, ν > 0 and ε ∈ (0, min{1, ν}), has capacity

C(SNR) = SNR − SNR
1+min{1,ν} + O(SNR

1+min{1,ν}+ε).

The channel capacity and coherence length are related through
ν. The expression, min{1, ν}, is the coherence level and is an
indicator of the amount of coherence in the channel. A detailed
treatment of coherence level can be found in [7].

A. Signaling scheme

References [7], [8] introduce a near-capacity achieving input
signaling scheme - the Peaky Gaussian signaling scheme. We
present this scheme here for completeness. For a channel with
coherence length

l =
1

4
SNR

−2ν , ν > 0,

transmit in only δ(SNR) = SNR
1−min{1,ν} fraction of the

blocks. The receiver has perfect knowledge of the blocks used
for transmission. Since the power is concentrated in only a
fraction of the blocks, the signal to noise ratio for the blocks
used for transmission increases to SNRb, where

SNRb ,
SNR

δ(SNR)
= SNR

min{1,ν}.

In the blocks chosen for transmission, let ~x ∼ CN (0, SNRbIl).
Note that as the coherence length increases, the fraction of
blocks used for transmission increases from SNR to 1, i.e.,
the signaling changes from a peaky to a continuous one.
In this paper, we restrict our attention to the Peaky Gaussian
signaling scheme since it achieves the linear as well as the
sublinear capacity term, SNR

1+min{1,ν}.

IV. CAPACITY IN THE PRESENCE OF A JAMMER

In this section, we examine the effect of a jammer on
capacity. For a coherence block, let

~s = ~w + ~z,

denote the sum of the background noise and jammer’s signal.
This sum signal is independent across blocks. Capacity is then
achieved by an optimal input distribution Q over complex

vectors ~x. The pdf of ~s is denoted by V and is the convolution
of the Gaussian pdf for the background noise and the jammer’s
pdf. (This defines a feasible set V(J) for the pdf V.) Capacity
is given as the solution to the mutual-information game

C(SNR, J) = max
Q

min
V

I(Q,V),

where I(Q,V) denotes the mutual information between chan-
nel input ~x and output ~y when distributions Q and V are in
effect. The minimization and maximization are over convex
sets. We establish the following theorem (proof is omitted for
brevity):

Theorem 1: For any J < ∞ and ν > 0, the linear term in
the asymptotic expansion of C(SNR, J) is identical to that of
C(SNR) and, the order of the sublinear term in the asymptotic
expansion of C(SNR, J) is identical to that of C(SNR). 2

The theorem shows that the jammer has at best an
O(SNR

1+min{1,ν}) effect on capacity, in the asymptotic ex-
pansion of C(SNR, J). The intuitive explanation is that since
the jammer’s power in the narrowband channel is dominated
by that of the background noise ~w, it cannot have a significant
effect on capacity.

V. TRAINING BASED SCHEME

Zheng et al. [7] show that in the absence of a jammer,
the linear capacity term, SNR, is achievable when training
is performed in the blocks chosen for transmission. In this
training scheme, the location of the training symbol in the
block is fixed and is the same for all blocks. This makes it easy
for a jammer to detect the position of the training symbol and
significantly hamper channel state estimation at the receiver by
injecting all its energy in a block interval (Ejammer = l JSNRb)
into the training symbol position [9].
We now consider the effect of a jammer when the transmitter
does not fix the position of the training symbol but picks it
uniformly and independently every block from {1, . . . , l}. We
assume that the location is perfectly known at the receiver.
Since the training symbol is designed to have much higher
power than the data symbols (shown later), the location of the
training symbol can be easily detected by the receiver.
The jammer is assumed to know which blocks are used for
transmission and spreads its energy equally over them. In order
to significantly affect receiver channel state estimation, the
jammer has to detect the training symbol in every block and
put all its energy in that position. However, in our model,
the transmitter and jammer have the same bandwidth and
thus operate at the same symbol rate. Hence, the jammer has
to incur a minimum delay of 1 symbol and cannot jam the
training symbol. Therefore, since detecting the training symbol
position is not useful, it distributes its power uniformly and
independently over the block.
We describe the training scheme now. In a coherence block
used for transmission, the channel model is

~y = h~x + ~w + ~z,



where,

E[~z] = ~0,

E[~z~z†] = JSNRb Il.

Il is the l× l identity matrix. The total energy available in the
block to the transmitter is

Etotal = l SNRb.

Let the transmitter pick the kth symbol to be used as the
training symbol. Training is done using γ ∈ (0, 1) fraction
of the total block energy. The remaining fraction is used for
communicating data. The energy used for training is γEtotal =
γlSNRb and the training symbol is xk =

√
γEtotal. The

receiver computes the minimum mean-squares error (MMSE)
estimate of h from yk. Using ĥ and h̃ to denote the estimate
and estimation error of h, respectively, we have:

h = ĥ + h̃,

ĥ ∼ CN
(

0,

γEtotal

1+JSNRb

1 + γEtotal

1+JSNRb

)

,

h̃ ∼ CN
(

0,
1

1 + γEtotal

1+JSNRb

)

.

Since h is Gaussian, ĥ and h̃ are also independent Gaussian.
The channel state estimate ĥ is used to decode the data
transmitted in the remaining l−1 symbols. For these symbols,
(1 − γ)Etotal = (1 − γ)lSNRb energy is used to send data
using an i.i.d Gaussian code. The channel in this phase can
be represented as

yi = ĥxi + h̃xi + wi + zi
︸ ︷︷ ︸

vi

,

for i = 1, . . . , k − 1, k + 1, . . . , l. The channel inputs xi are
i.i.d complex Gaussian random variables, xi ∼ CN (0, σ2

x),
where

σ2
x =

(1 − γ)lSNRb

(l − 1)
.

h̃xi is the noise due to the estimation error from the training
phase coupled with the input signal. Combining the additive
white noise and jammer’s signal with the noise due to estima-
tion error, we have

vi , h̃xi + wi + zi.

Note that vi is uncorrelated, but not independent of ĥxi. It is
zero-mean and has a variance of

E[|vi|2] = E[|h̃|2]E[|xi|2] + E[|wi|2] + E[|zi|2] , σ2
v .

Let us define f∗(SNR) as

f∗(SNR) , max
γ∈(0,1)

[

E[|ĥ|2]σ2
x

σ2
v

]

.

If we assume vi to be Gaussian and independent of the input
signal, we can lower bound the capacity of the training based
scheme, CT (SNR), using [6],

CT (SNR)

≥ δ(SNR) · l − 1

l
· max

γ∈(0,1)
E

ĥ

[

log

(

1 +
|ĥ|2σ2

x

σ2
v

)]

= δ(SNR) ·
[

f∗(SNR) + o(f∗(SNR))

]

. (1)

The following lemma is the computation of f ∗(SNR). The
proof is omitted from this paper for brevity.

Lemma 1:

f∗(SNR) = SNR
min{1,ν} + o(SNR

min{1,ν}),

arg max
γ∈(0,1)

E
ĥ

[

log

(

1 +
|ĥ|2σ2

x

σ2
v

)]

= SNR
(γ−min{1,γ}

2
) + o(SNR

(γ−min{1,γ}
2

)).2

Combining this lemma with (1), we obtain the following lower
bound to the capacity using the training based scheme:

CT (SNR) ≥ SNR + o(SNR). (2)

A. Discussion

We see from (2) that this training scheme achieves the linear
capacity term, SNR. Hence, this scheme achieves the wideband
capacity limit even in the presence of a jammer and is therefore
preferable over the scheme in [9], which doesn’t.
By randomly choosing the location of the training symbol,
the transmitter forces the jammer to spread its energy over the
entire block. This results in white noise dominating the signal
of the energy limited jammer. Hence, the wideband capacity
limit is unaffected. Note that the fraction of energy required
for training goes to 0 as SNR tends to 0, like in the case when
the jammer is absent [7].

VI. CONCLUSIONS

We have shown that a jammer does not, in principle, have
the ability to reduce capacity for non-coherent fading channels
in the wideband regime. This result is in effect similar to
that known for coherent results, but its derivation is altogether
different. The type of signalling used by the transmitter is, as
for a wideband channel in the absence of a jammer, impulsive.
The presence of fading does affect, to some extent, the ability
of the transmitter to counter the jammer in the wideband limit.
An attractive means of approaching the wideband capacity,
impulsive training schemes, is affected by jamming if the
location of the training signals is known by the jammer. A
training scheme that randomly changes the position of the
training symbol achieves the wideband capacity limit.
Our results have considered that the jammer remains indepen-
dent of the transmitted signal. It is possible that a correlated
jammer, even using such a simple scheme as repeat-back
jamming, may have a more marked effect on capacity. While
channel fading may preclude coherent cancelling of part of



the input signal, a correlated jammer may be able to change,
in effect, the coherence of the channel.
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