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Abstract—We consider the broadcast relay channel (BRC), In this paper, with the downlink of a cellular system with
where a single source transmits to multiple destinations wh relays in mind, we address the aforementioned question for
the help of a relay, in the limit of a large bandwidth. We address  {he broadcast relay channel (BRC), which consists of asingl

the problem of optimal relay positioning and power allocatons : - L .
at source and relay, to maximize the multicast rate from souce source broadcasting to multiple destinations with the help

to all destinations. To solve such a network planning problm, Of @ relay. In this paper, we focus on the wideband regime
we develop a three-faceted approach based on an underlying of wireless relay networks, also denominated low signal-to
information theoretic model, computational geometric asgcts, noise ratio (SNR) regime because power is shared among a
and network optimization tools. Firstly, assuming superpaition large number of degrees of freedom, making the average SNR

coding and frequency division between the source and the . .
relay, the information theoretic framework yields a hypergraph per degree of freedom low. We would like to point out that

model of the wideband BRC, which captures the dependency addressing the low-SNR regime is relevant in next generatio
of achievable rate-tuples on the network topology. As the lay cellular systems. Indeed, considering LTE, large bandvsigt
position varies, so does the set of _hyperarcs cons_titl_Jtinghe up to 20 MHz— can be supported by all terminal§]( [3]). Due
hypergraph, rendering the combinatorial nature of optimization to power constraints in the low SNR regime, relays appear as

problem. We show that the convex hull C of all nodes in the . . -
2-D plane can be divided into disjoint regions correspondig & meaningful and natural way to increase rate and religbilit

to distinct hyperarcs sets. These sets are obtained by super- Previous results on wireless systems in the low-SNR regime
posing all k-th order Voronoi tessellation of C. We propose & i,jude the capacity of point-to-point additive white Gsias

easy and efficient algorithm to compute all hyperarc sets, ah - . .
prove they are polynomially bounded. Then, we circumvent te  10iS€ (AWGN) channel[4], and multipath fading channél [5]-

combinatorial nature of the problem by introducing continuous [11], both equal to the reC(}ived SNRFading = Cawaen =
switch functions, that allows adapting the network hypergaph p ;. . : )
in a continuous manner. Using this switched hypergraph ap- No — m}lgloong (1 T W N, ) the capacity of the mul
proach, we model the original problem as a continuous yet non tiple input multiple output (I\XIMO) channel [12]13]; the

convex ngatwork optimizati_on program. Ultimately, availing on capacity region of the AWGN broadcast channel (BC) [14]-
the techniques of geometric programming andp-norm surrogate [16], and AWGN multiple access channel (MAG) [17]; and

approximation, we derive a good convex approximation. We . : .
provide a detailed characterization of the problem for colinearly bounds on the capacity of the non-coherent multipath fading

located destinations, and then give a generalization for ditrarily ~ relay channelE[IS]- From these works, a conqlusion can .be
located destinations. Finally, we show strong gains for theptimal drawn on wireless systems in the low-SNR regime; the major

relay positioning compared to seemingly interesting posions.  jmpairment in the low-SNR regime is neither multipath faglin
o {m%ti'(r;rms—mw SNR, computational geometry, network o interference, but noise, which is in contrast with thghhi
P ' . INTRODUCTION SNR regime. Formulating the argument more concretely, in

Next-generation wireless standards, such as 3GPP Lahg presence of multipath fading in the low-SNR, the same
Term Evolution-Advanced (LTE-A) standard [1], propose rerates as the AWGN system with the same received SNR can
lays as a mean to extend cellular coverage or to increase dadaachieved using non-coherent peaky signals whereasisprea
rates. More specifically, LTE-A defines relays of Type | aspectrum signals perform poorly. Moreover, the low-SNR
coverage-extension relays which allow a base station (BT&)ime is not interference-limited: in particular, all soes in
to reach uncovered users in a cell, and relays of Type Il &g low-SNR MAC can achieve their interference-free point-
relays which allow to increase the communication rate ofta-point capacity to the destination. Based on this obsemwa
user already covered through a direct link to the BTS [ljhe authors proposed in a recent wofk][19] an equivalent
[2]. In terms of cellular deployment, a natural and pradtichypergraph model for the low-SNR AWGN MAC and BC.
question arises as to where the relay node should be deployken they used these models to build an achievable hyper-

. - graph model for a more complex wireless network with fixed

ITMANET - 6915101: This material is based upon work undercgurtract:

18870740-37362-C, issued by Stanford University and sapgoby the SOUICES, relaysl’ and des“natlons' énd showed _that optgniz
Defense Advanced Research Projects Agency (DARPA). power for maximizing multiple session rates boils down to a
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straightforward linear program. we formulate the optimization problem. In hypergraph medel
In this paper, we take a step forward by simultaneousdy hyperarqu,vivs ... vy ) of sizek connects a transmitter
optimizing the relay location and the power allocation, tto an ordered (increasing order of distance from transmitte
maximize the multicast rate from a soureeto a set of wu) set ofk receivers{v,,vs,..., v}, all of which can decode
destinationsl". Using concepts from information theory, coma message sent over the hyperarc equally reliably. Heke,
putational geometry and network optimization, we develop{as, v, ..., v }. Two hyperarcs are disjoint if either they have
comprehensive and efficient way to solve this problem, whictifferent sources, or different ordered receiver sets ¢ eg.
can be broadly divided into three parts: (u, v1v2) is disjoint from (u, vav1) and (u’, viv2). Messages
1) BRC hypergraph model: We propose a hypergraphSent over any pair of disjoint hyperarcs are independent. A
model for the low-SNR BRC, which depends on th8Yperarc is said to bactivatedif its capacity is non-zero.
topology of the network,. essentially the placemenlt 9&_ Wideband BC and MAC model
nodes on a2-D plane. Given the source and destina-
tions positions, computing the hyperarcs in the BRC Earlier results on multiple user channels show that BC and
hypergraph model requires to get the ordering of nod®AC are not impaired by interference in the low SNR regime.
in increasing distances from the source and relay, forl) Equivalent hypergraph of the wideband AWGN BC,
all relay positions (as the relay is not initially given)[14]-{L6], [21]: Superposition coding is known to achieve
This problem can be modeled as ardered k-nearest the capacity region of the AWGN BC. In the wideband limit,
neighbor problemfor which we propose a solution basedhe rates achieved by superposition coding boils down to the
on superimposing the Voronoi tessellations of fal- 1 time-sharing rates, rendering time-sharing as optimal.
orders, wherg: spans the destination set. Consider the BC channel with souree two destinations
2) Continuous hypergraph variations: For fixed source T = {d1,d2} in Figure[1(d),D.., > 0 is the distance of node
and destination positions, when the relay position varies,from u, and leta € [0,1] be the power-sharing factor at
the the network hypergraph changes accordingly refource. Then both destinations can receive the common rate
dering the problem combinatorial. Consequently, tradixmin{/3,h3}+-, and the most reliable destination can also
tional network optimization techniques cannot be appligéceive a bonus private rafé — o) max{hi, h%}N%, whereh
directly, as they assume a fixed given hypergraph. T®the path loss factory, the channel noise an# is the total
circumvent this hard combinatorial nature, we introducgource power. This motivates the equivalent hypergraphemod
continuous switch functions which allow to change thef the wideband AWGN BC in Figurg 1I{b). The wideband
network hypergraph in a continuous manner as the rel¢ hypergraph model contains three hyperarcs: the common
position changes. Ultimately, this allows us to cast theyperarc from thes to d; andd, with capacity equal to the
problem as a continuous optimization problem. common rateR,, a private edge frony to d; with capacity
3) Convex approximation: The resulting continuous net-equal to the private rat&; (if d; is more reliable thani,,
work optimization problem is non-convex. Howeveri.e. h? > h3, and to0 otherwise), and finally a private edge
using geometric programming (GP) apehorm approx- s to do with a capacity equal to the bonus ral& if dy is
imation techniques, we provide a good convex approxirore reliable thand,. Note that the two private hyperarcs
mation of the original problem to which standard convetassociated with rateB; and Ry) cannot exist simultaneously
optimization techniques can be applied]|[20]. It should b@s eitherD;; < Dy, or D,y < Dy,): thanks to the indicator
noted that the problem is NP-Hard in its original fornfunctions in the capacity expressions, only one of the pgiva
mainly due to combinatorial nature and continuous nofwperarcs can be activated for a given topology. In the gégner
convex constraints. case of a wideband AWGN BC with destinations:

Hereafter, the paper is as follows. In Sectidnk 1l and e« For an arbitrary unknown topology, the full hypergraph
[, we build the system model and formulate the general model containg”—1 hyperarcs, from the source to every
problem, respectively. In SectignllV, we solve the problem f possible subset of destinations.
collinearly located destination nodes, and introduceritigms « For a given known topology, only a subset of these
to compute distinct hypergraphs for various relay posgion hyperarcs are activated simultaneously. Indeed, a given
Sectior[ Y extends to the general problem case for an apitrar ~ topology yields a given ordering of the destination set in

topology, finally leading to the conclusion in Sectfon VI. increasing order of reliability. Consequently, ontyhy-
peracs are simultaneously activated for a given topology:
Il. Low SNRSYSTEM MODEL one private arc of sizé to the most reliable destination
Notations:N andR denote the sets of non-negative integers, i-€. (s,d1), and one common hyperarc of sizeto the
and real numbers, respective|y_ Let ¢ IN and N,, S k most reliable destinations for alf ¢ {2,,71} i.e.
{1,...,m} and LetS be a set, the indicator function o (5, d1..dg).
is defined bylg(z) =1if z € S, 1g(z) =01if = ¢ S. 2) Equivalent hypergraph of the wideband AWGN MAC

In this section, we first recall the equivalent hypergrapli7]: Consider two sources ands, and a single destination
models of the wideband BC and MAC, then we use them tbin Figure[I(c). In the wideband regime, the large number
build an achievable hypergraph model of the BRC, and finalbf degrees of freedom renders negligible interference, and
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Fig. 1. Wideband Multiple User Channels. The BC rates/are= (1 - a)h%Nioﬂ],§’+w[(h%), Ro=(1— a)Nigﬂ[O,h%[(h%)’ Rc = amin{h?, h%}NLO.
_ «agPs . _ a1 Ps .. _ oagPs B P P,
The BRC rates areg = Dg‘JTNO, ry = D§1 a2 = D§2N0’ 3 = Dél N ,.m = D$22No

allows all sources to achieve their point-to-point capatit be optimal for their respective wideband BC-components:
the destination, as with frequency division multiple asces transmits using superposition coding in the source band
(FDMA). Thus, the respective capacities of and so are W;; r decodes the messages it received fremand then
Ci = h%% andC, = h%%. As shown in Figurg¢ I(¢l), the retransmits using superposition coding in the relay bEnd
equivalent hypergraph model contains only two edges, omach destinationi; decodes by using the interference-free
from s; to d with capacity(C; and one fromss; to d with signals it received frons andr.
capacityCs. In the general wideband MAC with sources, Under these constraints on the communication scheme,
the hypergraph model consists ofhyperarcs of sizd with the resulting hypergraph model of the BRC[19] is simply
non-zero capacity, from each source to the destination.  the concatenation of the equivalent hypergraphs of the BC-
components and the MAC components. We will denote this
B. Wideband BRC model hypergraph ag (N, #H), where N O T = {dy, ..,d,,} andH
Consider the broadcast relay channel in Figuie), where is the set of hyperarcs. The shtcan be partitioned into two
a source s transmits to a set ofdestinationsl’ = {d; }icw disjoint sets: one ig{, of source hyperarcs emanating from
with the help of a relayr. We assume that all nodes ares, and the set, of relay hyperarcs emanating from the
equipped with a single antenna. The source and the relaeres U H, = H. Figure[I(f) illustrates the hypergraph
have given respective average power constraifitaind P,, in the case of a given topology with two destinations. In this
and they transmit in two different frequency bandl, and figure, we assume thatis the closest node te, followed by
W, respectively, so as to respect the half-duplex constraints?: and thend,, and we show only the activated hyperarcs.
the relay. During each time slot, transmits a new codeword It should be pointed out that this BRC hypergraph model
which is received by the relayrelay andl (all destinations); is only an achievable model, and not an equivalent model.
r processes the signal received frammin the previous time Indeed, in the case of a single destination, the BRC boilsrddow
slot and retransmits it td"; the destinations use the signalgo the relay channel, and it was shown in[[18] that with a
they received directly frons and through- to decode a new different coding scheme, it is possible to achieve a highte r
codeword. in the wideband relay channel than any rate obtained by the
The wireless link between two nodesc {s,r} andv € scheme in[[19]. Thus the BRC hypergraph model proposed in
{r,dy,...,d,} is modeled by an AWGN channel. In otherthis paper provides only an achievable rate region, buthet t
words, when node transmits a Signaj;u(t), nodew receives full rate region of the BRC. However the relaying scheme in
a signaly,,(t) = houzy(t) + 2,(t) where hy,, = ;/2 is [19], and the associated hypergraph model, have the benefit t
2 easily extend to large complex network.

an attenuation coefficient modeling pathloss, ané) is a
white Gaussian noise process with power spectral dengjty
Note that although we consider AWGN channels, the low-

SNR analysis could be extended to multipath fading channelsGiven a topology of the set of node&'\r, and the
indeed, it was shown i [18] that in the wideband multipatBforementioned achievable hypergraph model of the widgban
fading relay channel, the same rates can be achieved aBRC, we recall the following questioiWhat is the optimal
the wideband AWGN relay channel with the same averagglay position and power allocations atandr, that maximize

Ill. GENERAL PROBLEM STRUCTURE

received SNR on each link. the multicast rateR,,, from s to the destination sef'? Here,
The AWGN BRC consists of two BC components in seriele multicast rate is the rate experienced by the leastbielia

for s and r, the BC froms to {r,d,...,d,} in red in destination in the sef’, and is given by its min-cut. To

Figure[I(€), and the BC from to {di,...,d,} in blue— solve the problem in full generality, we propose a two-stage

and ofn parallel MAC components, such as the MAC fronfpproach, as follows:

{s,r} to dy represented by the sum of the red and blue linese Pre-processingThe pre-processing stage computes all

resulting into a green line. distinct’H, and .., respectively, for all positions of the
As in [19], we make the assumption that the souread the relay inside the region being considered on2H2 plane,

relayr are constrained to transmit using the scheme that would given by hyperarc set${, and #,., respectively. Since,



only a subset of these hyperarcs are active when the
relay is in a certain region, we associate each hyperarc
(u,V) € H, along with a continuous switch function
fuv. The switch functionf,, activates the hyperarc
(u,V) by taking the valuel when it should exist and
deactivates the hyperarc by taking valueshen it should

not exist. In this section and section IV, we devise
efficient algorithms to compute all the distinct hyperarcs.
Once the hyperarc sek is constructed, we can then
compute all the possible paths from the source to each
destination. The total number of paths fromto a

destinationd; € T will be denotedK;, and the rates
; ; d; d; Fig. 2. Three line line segments joining, di,d2) form the convex hull
on t_he_se F)aths will be ertteﬁrl B TKi}' ] C (blue region). The hyperargs, r), (r,d1) and (r,d1dz2) are shown with
« Optimization The second stage involves solving a nefdashed arrows.
work flow optimization problem. After obtaining(, the ¢ g  is placed outsid€. The hyperarc sets for this position
multicast rate maximization problem fG(\, ) canbe of - are given byH, = {(s,r), (s,r,d1), (s,r,d1,d2)} and

formulated as: H, = {(r,dy),(r,di,d2)}, where H, assuming that the

Program (A):  maximize(R;,) ordered sets of nodes in increasing distances feoand r

subjectto: R, <7, Vi c N, (1) are given by(s,r,dy,dz) and(r,dy,ds), respectively.
K; Consider the rates on the pafts, ), (r,d1)} from s to d;,
ri <> i, Vi€ Ny, (2) which are given by:
k=1 Psr Prl
d; . < 5T __r
(G ey, e S v 1€ Mo ¥, V) €H (3) fr = Dg.No’ firy = Dy No’ &
ki €1, K]) where, P, and P, are source and relay powers. It is clear

Yuv < cuv fuv, V(u, V) € H, (4)  that by movingr towards the boundary @, i.e. line segment

where, c,v € Cuy,V(u, V) € H. (5) joining s andd, total rate on this pathfin(Rs,, R,1)) could

L . . be increased. The triangle’s inequality corroborates figs,
Here [1) impliesR,, is the minimum among the total g d y

rates experienced at all destinations, (2) says that tiee rat

. . . ' Dsr Dr 1 Z Ds ’ 7
for destinationd; is the sum of rates on all the paths from + P d (7)
s to d;. @) captures the network coding constraint, and (Rsr + Re1)l(D.y+Dyay >Dus, } ®)

the switch functionf,y in (4)) activates and deactivates
hyperarc(u, V') as the optimization algorithm goes from _ ] ) ] ) )
one relay position to the other to maximize,.. (5) (IZI) is the trlangles inequality for the trianglg,,, and this
implies that the capacity of hyperara, V) € X is implies [8), which states that the rate f_ramo dy _on_the path
determined by implicit constraints of power and distancé(s; 7), (7, d1)} could be increased by simply bringing theo
Note that, it is because of continuous switch functions et towards the line segment joiningandd, . Itis straightforward

have a continuous optimization problem, else we would ne&% see that this also increases the rate for all other receive

combinatorial constraints to capture the right hyperahz t n sy_stem (con_5|der mangl.es‘”di)' . .
need to be activated for each relay position. This reasoning can easily be generalized to any arbitrary

In the sequel of this section, we describe the two stagesﬂfés't'on of ttt]e rilgy (i-uts;Qe g\e anfll_flx hdlland tolagy tekl:-t
detail. At first, we show that the optimal relay position lias itrary number of destinatior|§’| > 2. Thus, we conclude tha

< (RST‘ + RT1)|{DST+D7‘d1:DSd1}'

the convex hullC of nodes\\r = {s, T'}. for any given mstar!ce qf BRC, the relay location maximizing
the multicast rate lies inside or on the border of the convex
A. Convex hull lemma hull of {s 4+ T’} nodes, but never outside. Hence, provem.

We prove hereunder an intuitive I_emma which helps in Lemmall implies that we only need to consider relay
formulating the problem in a geometric sense. . locations in the convex hull of nodes\'\r, to maximize the

_Lemtnt;la 1:(;’,{'.V6ntg(jt\é’ Hf)’ thetre;a\?( Iopat!gn tthhat MaXl- multicast rate. There are efficient algorithms for congtngc
mizes the multicast rata,,, from s 1o £-lies INSide the CONVeX 5 ¢onyvex hull ofn + 1 points, c.f. [22] and references within.

hull of the nodes\V'\r.
Proof: We prove this lemma by building an intuitiveB. Pre-processing algorithms

argument. To start with, consider the four node system of The pre-processing stage consists of three sub-stages. For

{s,r,d1,d2} in Figure[2. The only node that is allowed to takell relay positions irC, the first sub-stage computes the source

its desired location is the relay The convex hulC of the node hyperarc setH,, the second sub-stage computes the relay

setN'\r = {s,d;,d>} is shown as the shaded area in Fidure hyperarc setH,, and the last sub-stage computes all the

Consider the arbitrary position outsidein the above scene source-destination patig; € 7. Now, we develop algorithms
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Fig. 3. (a):T = {d1,d2,ds} ordered sefl" with three concentric circles
c1 for each destination. (b): Shows the ordered set of nodet w.for the
disc and two rings. Starting from the disc, th& is computed and then for
each ring the two new hyperarcs are added.

(4312)

to computeH; andH,. and give upper-bounds on the number

of distinct hyperarcs ¥ andH’f' Fig. 4. The 4 destinations are shown with the cells showintgi@d pairs (in
1) Source hyperarcs{,): We first prove a lemma of#;|. increasing distance) in the plane after superimpodisig2nd and3rd order
Lemma 2: The number of distinct source hyperarcs insideoronoi diagrams. The dashed polygon forths

the convex hullC is upper bounded byn — 1, wheren = |T|.

Proof: Consider a BRC withs and an ordered set ofthus hyperards,rd;) is active. Similarly, when- is outside
three destination§” = {d;,dz,ds} (|T| = n = 3). Let¢; C1, 251 IS negative, andfs,1 ~ 0, thus hyperargs, rd;) is
be the circle centered atpassing thougll;. An example is deactivated. Notice, that for the hyperarcs inside a ring. (e
illustrated in Figurd 13(a), the three circles partition th® Rii—1), the switch function will be a product of two functions,
plane into rings and discs that are given by digcand two €ach for the regions of concentric circles that make thig.rin

concentric ringsko; andRs. 2) Relay hyperarcs,): The relay hyperarcs are deter-
For the positions ofr inside these areas there are dismined by the ordering of node s&twith increasing distance
tinct sets of source hyperarcs. Computing the source Hyom r. Thus, we need to partition the 2-D plane into disjoint
perarcs whenr is inside these regions and starting withegions where the ordering & with respect tor stays the
the discci, we simply get a set oft hyperarcsH; = same. This is equivalent to computing the oréevoronoi
{(s,7), (s,rdy), (s,rd1dz), (s, rd1d2ds)}. Each timer crosses  tessellations of’ for all & € IN,,_;, and then superimposing
the border of circlec; and enters the ringR;;—1, there them to get the ordered sétof nearest neighbors iéi, [23].
are two hyperarcs that change and hence the new hypelis known that the superimposition of Voronoi tessellatio
arcs must be added, i.€((s,d1),(s,dir)} for Ra1 and results in convex disjoint areas (polygons in our case).eOnc
{(s,d1dz), (s,drdar)} for Rsz, (refer Figure[B(b)). This is the ordered seT for each disjoint region is computed, the
due to the fact that, when enters a new region, the orderedctivated relay hyperarcs for each region are obtainectime s
set of nodes in increasing distances frerof the new region way as in Sectiof II=A for the case of a BC with a given known
is different from the previous region in only two places,.e.gopology. Thus, the algorithm outlined in Lemma 1 could be
for the discCy and ringR2; the ordered sets are given byysed to generatd(,. Figure[3, illustrates the superimposed
(s,7,d1,da,d3) and (s, dy, 7, da, d3), respectively. disjoint regions of ordered destinations with respect: tior
Thus, the maximum number of distinct source hyperargs — 4. The simplest way to compute these regions (ref.
that can exist for all relay positions fis given by(n+1)+  [24]) is to draw the perpendicular bisector of every destima
2(n —1) = 3n — 1. Hence, proved. B pair (d;,d;) in T%. This method has the complexity of order
At this point we would like to highlight a couple subtletiesO(n(n—k)), wherek € IN,,_;. Hence, we obtain the partitions

(a) If somed; € T are equidistant froms, then their respective Of C for distinct ordering of the sef’ with respect tor from
circles coincide, hence reducing the number of disjoithich we can generatg,.
rings, and the number of distinct hyperarcs becomes lessThe pre-processing in almost all network planning problems
than3n — 1. Thus, Lemm&12 is an upper bound. is computationally heavy as there is plenty of time up-front
(b) The simple algorithm outlined ihemma Pbuilds all the compared to real-time applications. In our case it fits betse
possible hyperarcs efficiently in the sense that only distinall the computations are of polynomial order.

hyperarcs are added & along with their respective |n the next sections, we formulate the problem of optimal
switch functions, thus avoiding any redundancy. relay positioning as a non-convex network flow optimization
Switch Function:The activation/deactivation of a hyperargroblem and provide a good convex approximation. For sim-
can be performed by the switch function. For instance, tipdicity and clarity in understanding, we divide the problem
switch function associated with hyperafe, rd;) (Figure[3) into two cases. The first case is for collinearly located des-
is fsr1 = (1+ ye(*vzsn))*l, wherez,.1 = Ds1 — Dg,. and tination nodes and the second case is for arbitrarily latate
~ >> 1. Whenr is in Cy, z41 is positive, andf,.; ~ 1, destinations.



IV. COLLINEAR CASE —

In this section we develop the method to solve the sim- T .
pler version of the problem where the destination nodes are P h O
collinearly located. It helps understanding the main cptxe e
and underlying algorithms, and ultimately leads to the totu
for the arbitrary case.

A. Pre-processing

1) Convex hullC: For the collinearly located destination
setT, the setT' could be ordered in the increasing order of
abscissa, for instance with the left most node being at the
origin. Hereafter, we assume that the left-most (respelgtiv
rightmost) noded; € T (d, € T) is situated at the origin
(respectively right most at horizontal axis), and the réshe
destination nodes are on the positiveaxis, and finally that (a) Source hypergraph.
the source is in the positive quadrant. Note tatould be |
the leftmost node compared to any € T, in this cases d23 ds
could be assumed to be on the positive vertical axis and the daidy dy _d
setT would accordingly be placed on positive horizontal axis 3 |
with d; not being at origin. Since all; € T are collinearly (do, dy, d3
located, the convex hull will always be the triandlg, 4. (ref.

Figure5(d)). Thus is always given by only three inequalities )
in this case. ‘

2) Source hyperarcsAs explained in Sectiof 1II-B1, the
source hyperarcs are functions of the source-destinai®n d do 3

tances. Consequently, the algorithm outlined in Lenitha 2 ‘ .
could be used to comput,. | !
3) Relay hyperarcsAlso, as shown in Sectidn 1I-B2, we !
compute the perpendicular bisectors of every destinatan p (b) Relay hyperarcs.
(di,d;) € T?, to compute the superimposed convex disjoint .. _
regions of ordered destination sets w.r.t(ref. Figure[5(H)). e
For the collinearly located nodes, the computation of the se e RN
‘H, is greatly simplified due to parallelism of all bisectors. R A el N N Ruso
The following Lemma is just an easy and straightforward // o Ry
formalization. ‘ ’ )
Lemma 3:For |T| = n collinear destinations, the total ;
number of distinct relay hyperarcs this upper bounded by !
rbLQ = n+2(8 — 1), where g = (3) + 1 is the number of (C1,E7"2)'
isected regions. v A
Proof: Given a setT of n colinear destinations, the (Cr.r)
maximum number of bisectors are given I@) Then the :

'
K '
f 1
' 1
1
1

(Ch,7s)
(G

:
(Ra1,74)

total number of bisected regions is given py= (}) + 1, (Ratsri), Rz, 74)

as shown in Figurg 5(p). Since, crossing each bisector only = ’

changes two nodes in the ordered destination set, using the X

algorithm outlined in.emmdAref. Figure 8), we can compute JES

all distinct relay hyperarcs t@, |H,| = n +2(8 — 1) = n?. (Rai, 729

Hence, proved. ] ' (Roi,73)
With only little more formalization of Lemma&l3, we can () Source-destination paths.

device easy algorithms for computing the $ét. Note, that
the switch function for each relay hyperarc can be computE@- 5. Pre-processing. The triangleq,q, showsC, with circles and

. .. erpendicular bisectors dividing is closed and disjoint sets. (a): Shows
in a similar manner as for the source hyperarcs. At the Sa@} ered4-tuple set for each region carved by the circtesco and c3 as

time, a particular switch function could constitute two subc;, Ro;, R32 and Ruco, respectively. (b): Shows the order&etuple sets

switch functions each for two perpendicular bisectors. of destination nodes with respect to (c): Shows the previoug figures
superimposed showing the disjoint convex regions with théer@d sets

4) Source-destination pathsfter successfully computing of closest nodes with respect toand r, respectively. The 2-tupléC,r)
all distinct source #.,) and relay ) hyperarcs for a given represents the ordered sets for each region, respectivelg,r1, r2, 73 and
r4 represents the four regions in (b).
system, we now need to compute all the paths froto all



destinationsi; € T', in order to successfully cast our problem 2) Distance function constraints (Non-posynomialgri-
as a network optimization program. We prefer a path baselles D,,, in rate inequalities represents distance functions,
formulation as opposed to a more basic and standard linkdbaggven by e.g.,

formulation because the path based formulation is far well (xr —25)% + (yr — Ys)? = Dsr, (14)
suited for convex approximations of originally non-convex _ i
network optimization programs, in our framework. where, (z,,y,) are fixed coordinates of and (z,,y,) are

There are many efficient ways (polynomial time algorithmde variable coordinates of The negative coefficients in_(114)
to compute the paths from the sBt and H,.. For simplicity, prohibits the use of GP techniques. There are techmqueestt(_) g
we prefer here to take all combinations of the hyperarcs ffound this problem [25]][26], but the extra pre-procegsin
H, and H,.. Not all these paths will be active for a certairfOSt incurred is very high in addition to the introduction of
relay position, but the switch functions will take care offi@ny new variables and combinatorial constraints.
activating/deactivating the paths. In this way, we get apaup ~We prefer to handle the issue in a simpler manner by
bound (3n — 1)(n2) = |Hs| x |H,| on the paths froms to approximation. Let, the only variable transformed using GP
eachd; € T, out of which only a certain number of pathgn (14) beD,,. Then, we can rewrite
will have non-zero min-cut, i.e. activated hyperarcs. Wende 9 5 9D’

Q = [1,(3n — 1)(n?)] as the set of all paths fromto every s + Vs S €777 Tr = Ts S Usps Yr = Ys < Usr- (15)

d; € T. This makes the problem size bigger, but saves cagTe first inequality in[(T5) is non-convex. Using thenorm

of activated path computation. Note that the total number rrogate approximation ( [27]) foE(1L5), we get

paths are polynomially bounded in our model. ) 5 \p
B. Optimization. . , (L;v”) <1, (16)
In this section we formalize the problem of optimal relay e?Dr

location maximizing the multicast rate from to 7. The . .
herep € [1, +00). Over a compact set of variables and in the

optimization constraints can be grouped into two categori€. it of b | f |

the posynomial constraints that can be easily rewrittengusi |r]:n| 341? _>5°°’ @)t ecc:jmes con_vext._ n oliljrtcaiﬁ’ tor Ya;es

exponential transformation as convex constraints (Gexixmeq p =4 0ro, We get good approximation. INote, that only the

Programming); and the non-posynomial constraints that c F‘?‘F inequality in [15) needs to be approximated, and S|hget

only be approximated as convex constraints. Since, all t gr'ables(“”’”?“%’y?) dqnt undergo_GP transformation,
the rest of the inequalities if_(IL5) remain linear.

constraints are coupled through variables, almost all #re v e .
ables and hence constraints will go through the exponentiaro‘II other constraints in the program are posynomials, as we

transformation. Now, we classify and discuss the troublifffll Shortly see, so they can easily be transformed into eanv
constraints in our formulation constraints. It should be noted, that it is only because ef th

1) Hyperarc rate constraints (PosynomialsyVe show an US€ of switch functions that the program becomes continuous
example of hyperarc rate constraints. Consider the hyperdf addition, carefully designing the switch function resuh
(s, dyrds) in the scenario in Figufe 5{a), which is active wheROSynomial hyperarc rate constraints.

the relay is inside the rin.; . The non-convex rate inequality 3) Network Optimization problem formulatioince there
can be expressed as: are Q2 = (3n — 1)(n?) number of paths for each destination

f ©) d; € T only a subset of them will actually be active (i.e.
o e with min-cut> 0). r% as the rate on patito destination;,
-1 whereq € Q. Recal,’ X = H, U #H, and the total rate to a
— fl g2 1 (—72L1,0) eq 1 s r
where fsira = f51r2 s1r2: f151r2 < (1 + yel=7%s12 ) ' destinationd; be defined as; = qugz 7‘51 Also, letv,, € V
2, < (1 +7€(—vz§17_2)) , Dy, — Dy = 2!, and be the farthest node frormfor hyperarc(u,V) € H. Then,

22,5 = Ds — Dy,.. Notice, how f}, ., and 2, and their the optimization program is,

respectivez variables are different. Whentl,, ., and 2,

: i Program (B): maximizéR,,)
take the value ag, the hyperarc will have a non-zero min-

cut. Rewriting them together, subjectto: Ry, < ”’y € Ny, 17)
Rs1r2Dg5 No Rs1r2Dg No TS Z re's Vdi €T, (18)
——— <1, ——F— <1, (10) qeN

Pslr2fslr2 PslrQ s1r2J s1r2 ) P v
— Z] Z 7“
fhos (Tre ) <1, QD) 0% Ba S oo fuvs Y V) €3, (19)
72, (1 +7€<—7z§1,\2>) <1, (12) fuv < fov 2, Y(w,V)€EH, (20)
l —(vzL )y -1
Dsr - Dsl < Z;1r2? 231742 < D32 — Dsr- (13) uVl Silg e 'ZY) v )l , i 62 [1, 2]‘,/\7(1147;) S Ha(gi)

Note, that inequalitied (10)[ (L1, (12) arld](13) are posyno Fuv = b B y 62[ 2 (w, V) €3, (22)

mials, andD,; is a constant. Using GP transformation these uyy + vy < Dy, Y(u, V) €N, (23)

inequalities can be easily converted to convex constraiis- Z P,y < P, Z P,y <P., (24)

ilar argument goes for switch functions of all other hypesar (u,V)EHs) (w,V)eH,)



where, x, — z, < uyy, Y(u,V) € H, (25)
Yr — Yu S VuVy V(U, V) S Ha (26)
zr >0,y > 0,9, < A2y, yr + Ny <. (27)

T T
—+— Optimal relay position
—HB— Centroid relay position. | 7|
—p— Relative gain

8
8

In the above prograniz..,y,) are variable relay coordinates
and (27) captures constraints that makeProgram (B) is a
non-convex program expressed in posynomial and polynomial
inequalities. Applying GP transformation to the followingri-
ables {rgi,PuV,DuV,qu}, p-norm approximation to con-

+100

Relative gain in rate (%).

Maximum multicast rate (bits/sec).
° o
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straints [(2B) and leaving the rest of the variables unchdnge Area of source destinations triangle (meter-square)
we get the following convex approximation, Fig. 6. BRC withn = 2 destinations. Rates for located at the centroid of

N4, d,, at the optimal position, and relative gain.

/di

Program (C): maximizemin qu
d;eT

are optimized. The simulations are run for an increasing siz

qen of the area ofA\ ;4, 4, and a random network topology for each
_ NoeivteDi, ~Piv—fiv) < 1 area is chosen. _ _
subject to: -7 (28) Figure[6 shows the maximum multicast rate (blue and red)

Vg € (u,V),¥(u,V) € H,
e(f{bv*f;]v*fz?v) <1, Y(u

for optimal and centroid relay positions respectively. BNR
(29) N% is normalized to 1. Note that the actual values of the rates
are not as important because of the normalization, for highe
(30) : .
power values, the rate would certainly have higher values. F
(31) increasing area of trianglé\,4,4,, the maximum multicast
uly, + 02, \" <1 v 32 rate tends to drop, which is due to the constrained power and
( oDl > =4 Vi, (32) larger distances, but the relative gain goes up. This irapliat
Z ePiv < P, Z ePiv < P, (33) _for f_arther placed nodes the ;en_s_itivity of_the_relay |carati
is higher and can produce significant gains in rate for the
optimal relay location. Its clear from the results in Figlite
where, we have used the GP transformation- log(z) (z is that the centroid is not the optimal location. The rise in the
the original variable of program (B)) on certain variables. relative gain becomes very strong due to the fact that the low
Program (C) is a convex approximation of program (B) witlSNR regime is more sensitive to the location of nodes (hence,
no underlying combinatorial hard structure. The approximdistances) that determine the hyperarc rates in the limit of
tion is only coming from constraint typé (82) usingnorm disappearing SNR as opposed to e.g. in high SNR regime,
surrogation technique that gives a convex approximatighéo where a displacement afe for the location ofr would not
constraint[(ZB) in program (B). effect the rate significantly.
Note, that the objective function is modified in (C), instead V. ARBITRARY CASE
of having the sum of positive exponential terms, we have |, yhis section, we answer the same set of questions but

rep"".‘c‘?d it by a sum O.f linear functlons_, which is far easier for arbitrarily placed source and destination nodes. Alnadis
maximize. The maximizers of the functlm)z(mx(:zrl +x2) also concepts can be carried over to, straightforwardly.

maximizes the functiomax(e™ + e2), over a compact set  The steps of the pre-processing stage can be summarized as
X with certain particular characteristics. This is gengraltbt Input: {s, 7'} set of nodes with their cartesian coordinates.
true, but in our case due to network coding constraints withl) Compute convex hulf.

certain simple tricks it can be proven that it holds true. Due2) ComputeH,, switch functions (using Lemma 2).

to the lack of space we omit the detailed proof. 3) Compute the disjoint convex regions by superimposing
As we know, with the increasing value of the program all k-order Voronoi diagrams of.

approaches a complete convexity with zero duality gap, thug) Compute?,. (using relay hyperarc algorithm).
standard convex optimization algorithms could be used utput: 3 = H, U H,.

solve problem (C) with increasing accuracy. The optimal once we havé{, and?#,, we can comput€ = [1, |H,| x
values of program (B) could be easily constructed from they || Uitimately, the optimization program could be stated as,
optimal values of program (C). Program (D):  maximize(go(z))

(u.V) €U
e(f';lv) + e(f;lV*'VZLV) <1, 1e€[1,2],Y(u,V) € H,
Z%J + eDi” < Dy, V(u, V) eH

(u, V) €eH

((w,V)eHs) ((u,V)eH,)

C. Simulations subject to: g;(z) <1, i€[l,k] (34)

In this section, we present simulation results for the BRC .
with n = 2 destinations. We compare the multicast rate 9i(z) <1, jelk+1 K], (35)
obtained by optimizing the relay location and the source imhere, the constraints (34) are the posynomials constrtiat
addition to relay power allocations, with the case where tloan be transformed to convex convex constraints using GP
relay is located at a naive yet seemingly interesting pmsiti and constraintd (35) are the non-posynomial constrairas th

the centroid of trianglé\ ,4, 4, , and only the power allocationsare approximated using-norm approximation. The objective



function go(x) represents the multicast rate. In program (Dgeometric properties of the problem and ways to bring down

x is a vector of variables.

Program (D), is an abstract representation of the actual
program. Since, the program (D) is simply program (B) (buh]
for arbitrary placement of destination nodes), the stmgctu
of (D) is the same as (B). The main difference is the pre-
processing stage for the two cases, in this case which iagolv

. : : - [2]

computation ofk nearest neighbor nodes and superlmposmb
them to form disjoint regions irC for distinct n-nearest
neighbors. We would like to note, that this computation|3!
although polynomially bounded, can be heavy. There are many
polynomial time algorithms in the literature of computa@ [4]
geometry that solve this problem efficiently, [23]. 5]

VI. RESULTS AND CONCLUSION (6]

A comprehensive and efficient solution is developed tg
model and answer the problem of optimal relay positioning
so as to maximize the multicast rate from the sougct® 8]
the destination sef” in a low-SNR network. The proposed
solution is a non-convex network optimization problem m it
basic form that is difficult to solve. Using GP, switch fumets [
andp-norm surrogate approximation we transform the problepy
to a convex approximation that can be solved using standard
convex optimization algorithms. [11]

To abridge, the important contributions of this work could1
be summed up in the following words: we present a com-
prehensive approach to determine the optimal relay pusitiaz]
under the pretext of network optimization problem. Network
topologies consisting single source, multiple destimatiwith  [13]
the only intermediate node as relay are considered in cdample
generality on &-D plane. Using superposition coding and frep4
guency division we construct a wireline like hypergrapheTh
low-SNR hyperarc model using superposition coding pravid
an interference free network model that is easily scalable [i]
complex network topologies. Using the tools of computaion
geometry and network optimization, we presented a netw E‘?]
optimization framework based solution that is intuitivedan
easy to understand. Also, we show that positioning the rel&yl
optimally significantly affect the network performance.

In addition, the main causes for complexity in our approach
are the pre-processing stage and the non-convexity arislhg
from non-posynomial constraints upon GP transformatide T
former reason could be somewhat tolerated, as generally [z
solving network planning problems heavy pre-processing is
required. In contrast, in our case the pre-processing st
consists of polynomial time operations at the cost of oritydl
sub-optimality in approximation.

The questions our work answers are just a fraction of 1)
interesting questions that it opens up. An interestingativa [24]
would be to extend this model to general multicommodity flow
optimization problems involving more number of relay nade&™
On the other hand, from the computational point of view,
an interesting question is how we can efficiently build th&el
exact number of paths essentially bringing down the size of
the network optimization program. Finding other technigugz7)
to model this problem could be interesting, e.g. utilizing

[22]

the computational complexity.
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