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Abstract—We consider the broadcast relay channel (BRC),
where a single source transmits to multiple destinations with
the help of a relay, in the limit of a large bandwidth. We address
the problem of optimal relay positioning and power allocations
at source and relay, to maximize the multicast rate from source
to all destinations. To solve such a network planning problem,
we develop a three-faceted approach based on an underlying
information theoretic model, computational geometric aspects,
and network optimization tools. Firstly, assuming superposition
coding and frequency division between the source and the
relay, the information theoretic framework yields a hypergraph
model of the wideband BRC, which captures the dependency
of achievable rate-tuples on the network topology. As the relay
position varies, so does the set of hyperarcs constituting the
hypergraph, rendering the combinatorial nature of optimization
problem. We show that the convex hull C of all nodes in the
2-D plane can be divided into disjoint regions corresponding
to distinct hyperarcs sets. These sets are obtained by superim-
posing all k-th order Voronoi tessellation of C. We propose an
easy and efficient algorithm to compute all hyperarc sets, and
prove they are polynomially bounded. Then, we circumvent the
combinatorial nature of the problem by introducing continuous
switch functions, that allows adapting the network hypergraph
in a continuous manner. Using this switched hypergraph ap-
proach, we model the original problem as a continuous yet non-
convex network optimization program. Ultimately, availing on
the techniques of geometric programming andp-norm surrogate
approximation, we derive a good convex approximation. We
provide a detailed characterization of the problem for collinearly
located destinations, and then give a generalization for arbitrarily
located destinations. Finally, we show strong gains for theoptimal
relay positioning compared to seemingly interesting positions.

Index Terms—Low SNR, computational geometry, network
optimization.

I. INTRODUCTION
Next-generation wireless standards, such as 3GPP Long

Term Evolution-Advanced (LTE-A) standard [1], propose re-
lays as a mean to extend cellular coverage or to increase data
rates. More specifically, LTE-A defines relays of Type I as
coverage-extension relays which allow a base station (BTS)
to reach uncovered users in a cell, and relays of Type II as
relays which allow to increase the communication rate of a
user already covered through a direct link to the BTS [1],
[2]. In terms of cellular deployment, a natural and practical
question arises as to where the relay node should be deployed.

ITMANET - 6915101: This material is based upon work under subcontract:
18870740-37362-C, issued by Stanford University and supported by the
Defense Advanced Research Projects Agency (DARPA).

In this paper, with the downlink of a cellular system with
relays in mind, we address the aforementioned question for
the broadcast relay channel (BRC), which consists of a single
source broadcasting to multiple destinations with the help
of a relay. In this paper, we focus on the wideband regime
of wireless relay networks, also denominated low signal-to-
noise ratio (SNR) regime because power is shared among a
large number of degrees of freedom, making the average SNR
per degree of freedom low. We would like to point out that
addressing the low-SNR regime is relevant in next generation
cellular systems. Indeed, considering LTE, large bandwidths—
up to 20 MHz— can be supported by all terminals ( [3]). Due
to power constraints in the low SNR regime, relays appear as
a meaningful and natural way to increase rate and reliability.

Previous results on wireless systems in the low-SNR regime
include the capacity of point-to-point additive white Gaussian
noise (AWGN) channel [4], and multipath fading channel [5]–
[11], both equal to the received SNR:CFading = CAWGN =

P
N0

= lim
W→∞

W log
(

1 +
P

WN0

)

; the capacity of the mul-

tiple input multiple output (MIMO) channel [12], [13]; the
capacity region of the AWGN broadcast channel (BC) [14]–
[16], and AWGN multiple access channel (MAC) [17]; and
bounds on the capacity of the non-coherent multipath fading
relay channel [18]. From these works, a conclusion can be
drawn on wireless systems in the low-SNR regime; the major
impairment in the low-SNR regime is neither multipath fading
nor interference, but noise, which is in contrast with the high-
SNR regime. Formulating the argument more concretely, in
the presence of multipath fading in the low-SNR, the same
rates as the AWGN system with the same received SNR can
be achieved using non-coherent peaky signals whereas spread-
spectrum signals perform poorly. Moreover, the low-SNR
regime is not interference-limited: in particular, all sources in
the low-SNR MAC can achieve their interference-free point-
to-point capacity to the destination. Based on this observation,
the authors proposed in a recent work [19] an equivalent
hypergraph model for the low-SNR AWGN MAC and BC.
Then they used these models to build an achievable hyper-
graph model for a more complex wireless network with fixed
sources, relays, and destinations, and showed that optimizing
power for maximizing multiple session rates boils down to a
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straightforward linear program.
In this paper, we take a step forward by simultaneously

optimizing the relay location and the power allocation, to
maximize the multicast rate from a sources to a set of
destinationsT . Using concepts from information theory, com-
putational geometry and network optimization, we develop a
comprehensive and efficient way to solve this problem, which
can be broadly divided into three parts:

1) BRC hypergraph model: We propose a hypergraph
model for the low-SNR BRC, which depends on the
topology of the network, essentially the placement of
nodes on a2-D plane. Given the source and destina-
tions positions, computing the hyperarcs in the BRC
hypergraph model requires to get the ordering of nodes
in increasing distances from the source and relay, for
all relay positions (as the relay is not initially given).
This problem can be modeled as anordered k-nearest
neighbor problem, for which we propose a solution based
on superimposing the Voronoi tessellations of allk − 1
orders, wherek spans the destination set.

2) Continuous hypergraph variations: For fixed source
and destination positions, when the relay position varies,
the the network hypergraph changes accordingly ren-
dering the problem combinatorial. Consequently, tradi-
tional network optimization techniques cannot be applied
directly, as they assume a fixed given hypergraph. To
circumvent this hard combinatorial nature, we introduce
continuous switch functions which allow to change the
network hypergraph in a continuous manner as the relay
position changes. Ultimately, this allows us to cast the
problem as a continuous optimization problem.

3) Convex approximation: The resulting continuous net-
work optimization problem is non-convex. However,
using geometric programming (GP) andp-norm approx-
imation techniques, we provide a good convex approxi-
mation of the original problem to which standard convex
optimization techniques can be applied [20]. It should be
noted that the problem is NP-Hard in its original form
mainly due to combinatorial nature and continuous non-
convex constraints.

Hereafter, the paper is as follows. In Sections II and
III, we build the system model and formulate the general
problem, respectively. In Section IV, we solve the problem for
collinearly located destination nodes, and introduce algorithms
to compute distinct hypergraphs for various relay positions.
Section V extends to the general problem case for an arbitrary
topology, finally leading to the conclusion in Section VI.

II. L OW SNR SYSTEM MODEL

Notations:N andR denote the sets of non-negative integers,
and real numbers, respectively. Letm ∈ N and Nm ,

{1, . . . ,m} and LetS be a set, the indicator function ofS
is defined by1S(x) = 1 if x ∈ S, 1S(x) = 0 if x /∈ S.

In this section, we first recall the equivalent hypergraph
models of the wideband BC and MAC, then we use them to
build an achievable hypergraph model of the BRC, and finally

we formulate the optimization problem. In hypergraph models,
a hyperarc(u, v1v2 . . . vk) of sizek connects a transmitteru
to an ordered (increasing order of distance from transmitter
u) set ofk receivers{v1, v2, . . . , vk}, all of which can decode
a message sent over the hyperarc equally reliably. Here,u /∈
{v1, v2, . . . , vk}. Two hyperarcs are disjoint if either they have
different sources, or different ordered receiver sets or both, e.g.
(u, v1v2) is disjoint from (u, v2v1) and (u′, v1v2). Messages
sent over any pair of disjoint hyperarcs are independent. A
hyperarc is said to beactivatedif its capacity is non-zero.

A. Wideband BC and MAC model

Earlier results on multiple user channels show that BC and
MAC are not impaired by interference in the low SNR regime.

1) Equivalent hypergraph of the wideband AWGN BC,
[14]–[16], [21]: Superposition coding is known to achieve
the capacity region of the AWGN BC. In the wideband limit,
the rates achieved by superposition coding boils down to the
time-sharing rates, rendering time-sharing as optimal.

Consider the BC channel with sources, two destinations
T = {d1, d2} in Figure 1(a),Duv > 0 is the distance of node
v from u, and letα ∈ [0, 1] be the power-sharing factor at
source. Then both destinations can receive the common rate
αmin{h2

1, h
2
2}

P
N0

, and the most reliable destination can also
receive a bonus private rate(1−α)max{h2

1, h
2
2}

P
N0

, whereh
is the path loss factor,N0 the channel noise andP is the total
source power. This motivates the equivalent hypergraph model
of the wideband AWGN BC in Figure 1(b). The wideband
BC hypergraph model contains three hyperarcs: the common
hyperarc from thes to d1 andd2 with capacity equal to the
common rateRc, a private edge froms to d1 with capacity
equal to the private rateR1 (if d1 is more reliable thand2,
i.e. h2

1 > h2
2, and to0 otherwise), and finally a private edge

s to d2 with a capacity equal to the bonus rateR2 if d2 is
more reliable thand1. Note that the two private hyperarcs
(associated with ratesR1 andR2) cannot exist simultaneously
(as eitherDs1 < Ds2 or Ds2 < Ds1): thanks to the indicator
functions in the capacity expressions, only one of the private
hyperarcs can be activated for a given topology. In the general
case of a wideband AWGN BC withn destinations:

• For an arbitrary unknown topology, the full hypergraph
model contains2n−1 hyperarcs, from the source to every
possible subset of destinations.

• For a given known topology, only a subset of these
hyperarcs are activated simultaneously. Indeed, a given
topology yields a given ordering of the destination set in
increasing order of reliability. Consequently, onlyn hy-
peracs are simultaneously activated for a given topology:
one private arc of size1 to the most reliable destination
i.e. (s, d1), and one common hyperarc of sizek to the
k most reliable destinations for allk ∈ {2, ..., n} i.e.
(s, d1..dk).

2) Equivalent hypergraph of the wideband AWGN MAC
[17]: Consider two sourcess1 ands2 and a single destination
d in Figure 1(c). In the wideband regime, the large number
of degrees of freedom renders negligible interference, and
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Fig. 1. Wideband Multiple User Channels. The BC rates areR1 = (1−α)h2
1

P
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1]h2
2,+∞[(h

2
1), R2 = (1−α) P

N0
1[0,h2

2[
(h2

1), Rc = αmin{h2
1, h

2
2}

P
N0

.

The BRC rates arer0 = α0Ps

D2
srN0

, r1 = α1Ps

D2
s1N0

, r2 = α2Ps

D2
s2N0

,r3 = β1Pr

D2
r1N0

,r4 = β2Pr

D2
r2N0.

allows all sources to achieve their point-to-point capacity to
the destination, as with frequency division multiple access
(FDMA). Thus, the respective capacities ofs1 and s2 are
C1 = h2

1
P1

N0
andC2 = h2

2
P2

N0
. As shown in Figure 1(d), the

equivalent hypergraph model contains only two edges, one
from s1 to d with capacityC1 and one froms2 to d with
capacityC2. In the general wideband MAC withn sources,
the hypergraph model consists ofn hyperarcs of size1 with
non-zero capacity, from each source to the destination.

B. Wideband BRC model

Consider the broadcast relay channel in Figure1 (e), where
a source s transmits to a set ofn destinationsT = {di}i∈N

with the help of a relayr. We assume that all nodes are
equipped with a single antenna. The source and the relay
have given respective average power constraintsPs andPr,
and they transmit in two different frequency bands,Ws and
Wr respectively, so as to respect the half-duplex constraintsat
the relay. During each time slot,s transmits a new codeword
which is received by the relayr relay andT (all destinations);
r processes the signal received froms in the previous time
slot and retransmits it toT ; the destinations use the signals
they received directly froms and throughr to decode a new
codeword.

The wireless link between two nodesu ∈ {s, r} and v ∈
{r, d1, . . . , dn} is modeled by an AWGN channel. In other
words, when nodeu transmits a signalxu(t), nodev receives
a signalyvu(t) = hvuxu(t) + zv(t) wherehvu = 1

D
α/2
vu

is

an attenuation coefficient modeling pathloss, andzv(t) is a
white Gaussian noise process with power spectral densityN0.
Note that although we consider AWGN channels, the low-
SNR analysis could be extended to multipath fading channels:
indeed, it was shown in [18] that in the wideband multipath
fading relay channel, the same rates can be achieved as in
the wideband AWGN relay channel with the same average
received SNR on each link.

The AWGN BRC consists of two BC components in series
for s and r, the BC from s to {r, d1, . . . , dn} in red in
Figure 1(e), and the BC fromr to {d1, . . . , dn} in blue—
and ofn parallel MAC components, such as the MAC from
{s, r} to d1 represented by the sum of the red and blue lines
resulting into a green line.

As in [19], we make the assumption that the sources and the
relayr are constrained to transmit using the scheme that would

be optimal for their respective wideband BC-components:
s transmits using superposition coding in the source band
Ws; r decodes the messages it received froms, and then
retransmits using superposition coding in the relay bandWr;
each destinationdi decodes by using the interference-free
signals it received froms andr.

Under these constraints on the communication scheme,
the resulting hypergraph model of the BRC [19] is simply
the concatenation of the equivalent hypergraphs of the BC-
components and the MAC components. We will denote this
hypergraph asG(N ,H), where,N ⊃ T = {d1, .., dn} andH
is the set of hyperarcs. The setH can be partitioned into two
disjoint sets: one isHs of source hyperarcs emanating from
s, and the setHr of relay hyperarcs emanating from ther,
whereHs ∪ Hr = H. Figure 1(f) illustrates the hypergraph
in the case of a given topology with two destinations. In this
figure, we assume thatr is the closest node tos, followed by
d1 and thend2, and we show only the activated hyperarcs.

It should be pointed out that this BRC hypergraph model
is only an achievable model, and not an equivalent model.
Indeed, in the case of a single destination, the BRC boils down
to the relay channel, and it was shown in [18] that with a
different coding scheme, it is possible to achieve a higher rate
in the wideband relay channel than any rate obtained by the
scheme in [19]. Thus the BRC hypergraph model proposed in
this paper provides only an achievable rate region, but not the
full rate region of the BRC. However the relaying scheme in
[19], and the associated hypergraph model, have the benefit to
easily extend to large complex network.

III. G ENERAL PROBLEM STRUCTURE

Given a topology of the set of nodesN\r, and the
aforementioned achievable hypergraph model of the wideband
BRC, we recall the following question:What is the optimal
relay position and power allocations ats andr, that maximize
the multicast rateRm from s to the destination setT? Here,
the multicast rate is the rate experienced by the least reliable
destination in the setT , and is given by its min-cut. To
solve the problem in full generality, we propose a two-stage
approach, as follows:

• Pre-processing: The pre-processing stage computes all
distinctHs andHr, respectively, for all positions of the
relay inside the region being considered on the2-D plane,
given by hyperarc setsHs andHr, respectively. Since,
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only a subset of these hyperarcs are active when the
relay is in a certain region, we associate each hyperarc
(u, V ) ∈ H, along with a continuous switch function
fuV . The switch functionfuV activates the hyperarc
(u, V ) by taking the value1 when it should exist and
deactivates the hyperarc by taking value0 when it should
not exist. In this section and section IV, we devise
efficient algorithms to compute all the distinct hyperarcs.
Once the hyperarc setH is constructed, we can then
compute all the possible paths from the source to each
destination. The total number of paths froms to a
destinationdi ∈ T will be denotedKi, and the rates
on these paths will be written{rdi

1 , ..., rdi

Ki
}.

• Optimization: The second stage involves solving a net-
work flow optimization problem. After obtainingH, the
multicast rate maximization problem forG(N ,H) can be
formulated as:

Program (A): maximize(Rm)

subject to: Rm ≤ ri, ∀i ∈ Nn, (1)

ri ≤
Ki
∑

k=1

rdi

k , ∀i ∈ Nn, (2)

max
((i,ki)|ki∈(u,V ),

ki∈[1,Ki])

rdi

ki
≤ yuV , i ∈ Nn, ∀(u, V ) ∈ H, (3)

yuV ≤ cuV fuV , ∀(u, V ) ∈ H, (4)

where, cuV ∈ CuV , ∀(u, V ) ∈ H. (5)

Here (1) impliesRm is the minimum among the total
rates experienced at all destinations, (2) says that the rate
for destinationdi is the sum of rates on all the paths from
s to di. (3) captures the network coding constraint, and
the switch functionfuV in (4) activates and deactivates
hyperarc(u, V ) as the optimization algorithm goes from
one relay position to the other to maximizeRm. (5)
implies that the capacity of hyperarc(u, V ) ∈ H is
determined by implicit constraints of power and distance.

Note that, it is because of continuous switch functions thatwe
have a continuous optimization problem, else we would need
combinatorial constraints to capture the right hyperarcs that
need to be activated for each relay position.

In the sequel of this section, we describe the two stages in
detail. At first, we show that the optimal relay position liesin
the convex hullC of nodesN\r = {s, T }.

A. Convex hull lemma
We prove hereunder an intuitive lemma which helps in

formulating the problem in a geometric sense.
Lemma 1:Given G(N ,H), the relay location that maxi-

mizes the multicast rateRm from s to T lies inside the convex
hull of the nodesN\r.

Proof: We prove this lemma by building an intuitive
argument. To start with, consider the four node system of
{s, r, d1, d2} in Figure 2. The only node that is allowed to take
its desired location is the relayr. The convex hullC of the node
setN\r = {s, d1, d2} is shown as the shaded area in Figure 2.
Consider the arbitrary position outsideC in the above scene

s

r

d1

d2

Fig. 2. Three line line segments joining(s, d1, d2) form the convex hull
C (blue region). The hyperarcs(s, r), (r, d1) and (r, d1d2) are shown with
dashed arrows.

e.g.r is placed outsideC. The hyperarc sets for this position
of r are given byHs = {(s, r), (s, r, d1), (s, r, d1, d2)} and
Hr = {(r, d1), (r, d1, d2)}, where H, assuming that the
ordered sets of nodes in increasing distances froms and r
are given by(s, r, d1, d2) and (r, d1, d2), respectively.

Consider the rates on the path{(s, r), (r, d1)} from s to d1,
which are given by:

Rsr ≤
Psr

Dα
srN0

, Rr1 ≤
Pr1

Dα
r1N0

, (6)

where,Ps and Pr are source and relay powers. It is clear
that by movingr towards the boundary ofC, i.e. line segment
joining s andd1, total rate on this path (min(Rsr, Rr1)) could
be increased. The triangle’s inequality corroborates thisfact,

Dsr +Drd1 ≥ Dsd1 , (7)

(Rsr +Rr1)|{Dsr+Drd1
>Dsd1

}

< (Rsr +Rr1)|{Dsr+Drd1
=Dsd1

}.
(8)

(7) is the triangles inequality for the triangle△srd1 and this
implies (8), which states that the rate froms to d1 on the path
{(s, r), (r, d1)} could be increased by simply bringing ther to
towards the line segment joinings andd1. It is straightforward
to see that this also increases the rate for all other receivers
in system (consider triangles△srdi).

This reasoning can easily be generalized to any arbitrary
position of the relay outside the convex hullC, and to any ar-
bitrary number of destinations|T | > 2. Thus, we conclude that
for any given instance of BRC, the relay location maximizing
the multicast rate lies inside or on the border of the convex
hull of {s+ T } nodes, but never outside. Hence, proved.

Lemma 1 implies that we only need to consider relay
locations in the convex hullC of nodesN\r, to maximize the
multicast rate. There are efficient algorithms for constructing
a convex hull ofn+1 points, c.f. [22] and references within.

B. Pre-processing algorithms
The pre-processing stage consists of three sub-stages. For

all relay positions inC, the first sub-stage computes the source
hyperarc setHs, the second sub-stage computes the relay
hyperarc setHr, and the last sub-stage computes all the
source-destination paths∀di ∈ T . Now, we develop algorithms



5

s

d1

d2

d3
(a) (b)

sr123

s1r23

s12r3
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Fig. 3. (a):T = {d1, d2, d3} ordered setT with three concentric circles
c1 for each destination. (b): Shows the ordered set of nodes w.r.t. r for the
disc and two rings. Starting from the disc, theHs is computed and then for
each ring the two new hyperarcs are added.

to computeHs andHr and give upper-bounds on the number
of distinct hyperarcs inHs andHr.

1) Source hyperarcs (Hs): We first prove a lemma on|Hs|.
Lemma 2:The number of distinct source hyperarcs inside

the convex hullC is upper bounded by3n−1, wheren = |T |.
Proof: Consider a BRC withs and an ordered set of

three destinationsT = {d1, d2, d3} (|T | = n = 3). Let ci
be the circle centered ats passing thoughdi. An example is
illustrated in Figure 3(a), the three circles partition the2-D
plane into rings and discs that are given by discC1 and two
concentric ringsR21 andR32.

For the positions ofr inside these areas there are dis-
tinct sets of source hyperarcs. Computing the source hy-
perarcs whenr is inside these regions and starting with
the disc c1, we simply get a set of4 hyperarcsHs =
{(s, r), (s, rd1), (s, rd1d2), (s, rd1d2d3)}. Each timer crosses
the border of circleci and enters the ringRii−1, there
are two hyperarcs that change and hence the new hyper-
arcs must be added, i.e.{(s, d1), (s, d1r)} for R21 and
{(s, d1d2), (s, d1d2r)} for R32, (refer Figure 3(b)). This is
due to the fact that, whenr enters a new region, the ordered
set of nodes in increasing distances froms of the new region
is different from the previous region in only two places, e.g.
for the discC1 and ringR21 the ordered sets are given by
(s, r, d1, d2, d3) and (s, d1, r, d2, d3), respectively.

Thus, the maximum number of distinct source hyperarcs
that can exist for all relay positions inC is given by(n+1)+
2(n− 1) = 3n− 1. Hence, proved.

At this point we would like to highlight a couple subtleties:

(a) If somedi ∈ T are equidistant froms, then their respective
circles coincide, hence reducing the number of disjoint
rings, and the number of distinct hyperarcs becomes less
than3n− 1. Thus, Lemma 2 is an upper bound.

(b) The simple algorithm outlined inLemma 2builds all the
possible hyperarcs efficiently in the sense that only distinct
hyperarcs are added toHs along with their respective
switch functions, thus avoiding any redundancy.

Switch Function:The activation/deactivation of a hyperarc
can be performed by the switch function. For instance, the
switch function associated with hyperarc(s, rd1) (Figure 3)
is fsr1 = (1 + γe(−γzsr1))−1, wherezsr1 = Ds1 −Dsr and
γ >> 1. When r is in C1, zsr1 is positive, andfsr1 ≃ 1,

1
2

2 3

3

4

4131 4
2

s

d1

d2

d3

d4

(1423)

(1243)

(2143)

(2134) (2314)
(2341)

(3241)

(3421)

(4321)

(4312)
(4132)

(4123)

(4213)

(2413)

(2431)

(4231)

Fig. 4. The 4 destinations are shown with the cells showing ordered pairs (in
increasing distance) in the plane after superimposing1st, 2nd and3rd order
Voronoi diagrams. The dashed polygon formsC.

thus hyperarc(s, rd1) is active. Similarly, whenr is outside
C1, zsr1 is negative, andfsr1 ≃ 0, thus hyperarc(s, rd1) is
deactivated. Notice, that for the hyperarcs inside a ring (e.g.
Rii−1), the switch function will be a product of two functions,
each for the regions of concentric circles that make this ring.

2) Relay hyperarcs (Hr): The relay hyperarcs are deter-
mined by the ordering of node setT with increasing distance
from r. Thus, we need to partition the 2-D plane into disjoint
regions where the ordering ofT with respect tor stays the
same. This is equivalent to computing the order-k Voronoi
tessellations ofC for all k ∈ Nn−1, and then superimposing
them to get the ordered setT of nearest neighbors inC, [23].
It is known that the superimposition of Voronoi tessellations
results in convex disjoint areas (polygons in our case). Once
the ordered setT for each disjoint region is computed, then
activated relay hyperarcs for each region are obtained the same
way as in Section II-A for the case of a BC with a given known
topology. Thus, the algorithm outlined in Lemma 1 could be
used to generateHr. Figure 4, illustrates the superimposed
disjoint regions of ordered destinations with respect tor for
n = 4. The simplest way to compute these regions (ref.
[24]) is to draw the perpendicular bisector of every destination
pair (di, dj) in T 2. This method has the complexity of order
O(n(n−k)), wherek ∈ Nn−1. Hence, we obtain the partitions
of C for distinct ordering of the setT with respect tor from
which we can generateHr.

The pre-processing in almost all network planning problems
is computationally heavy as there is plenty of time up-front
compared to real-time applications. In our case it fits better as
all the computations are of polynomial order.

In the next sections, we formulate the problem of optimal
relay positioning as a non-convex network flow optimization
problem and provide a good convex approximation. For sim-
plicity and clarity in understanding, we divide the problem
into two cases. The first case is for collinearly located des-
tination nodes and the second case is for arbitrarily located
destinations.
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IV. COLLINEAR CASE

In this section we develop the method to solve the sim-
pler version of the problem where the destination nodes are
collinearly located. It helps understanding the main concepts
and underlying algorithms, and ultimately leads to the solution
for the arbitrary case.

A. Pre-processing

1) Convex hullC: For the collinearly located destination
setT , the setT could be ordered in the increasing order of
abscissa, for instance with the left most node being at the
origin. Hereafter, we assume that the left-most (respectively
rightmost) nodedl ∈ T (dr ∈ T ) is situated at the origin
(respectively right most at horizontal axis), and the rest of the
destination nodes are on the positivex-axis, and finally that
the source is in the positive quadrant. Note that,s could be
the leftmost node compared to anydi ∈ T , in this cases
could be assumed to be on the positive vertical axis and the
setT would accordingly be placed on positive horizontal axis
with dl not being at origin. Since alldi ∈ T are collinearly
located, the convex hull will always be the triangle△sdldr (ref.
Figure 5(a)). Thus,C is always given by only three inequalities
in this case.

2) Source hyperarcs:As explained in Section III-B1, the
source hyperarcs are functions of the source-destination dis-
tances. Consequently, the algorithm outlined in Lemma 2
could be used to computeHs.

3) Relay hyperarcs:Also, as shown in Section III-B2, we
compute the perpendicular bisectors of every destination pair
(di, dj) ∈ T 2, to compute the superimposed convex disjoint
regions of ordered destination sets w.r.t.r (ref. Figure 5(b)).
For the collinearly located nodes, the computation of the set
Hr is greatly simplified due to parallelism of all bisectors.
The following Lemma is just an easy and straightforward
formalization.

Lemma 3:For |T | = n collinear destinations, the total
number of distinct relay hyperarcs inC is upper bounded by
n2 = n + 2(β − 1), whereβ =

(

n
2

)

+ 1 is the number of
bisected regions.

Proof: Given a setT of n colinear destinations, the
maximum number of bisectors are given by

(

n
2

)

. Then the
total number of bisected regions is given byβ =

(

n
2

)

+ 1,
as shown in Figure 5(b). Since, crossing each bisector only
changes two nodes in the ordered destination set, using the
algorithm outlined inLemma 2(ref. Figure 3), we can compute
all distinct relay hyperarcs toT , |Hr| = n+ 2(β − 1) = n2.
Hence, proved.

With only little more formalization of Lemma 3, we can
device easy algorithms for computing the setHr. Note, that
the switch function for each relay hyperarc can be computed
in a similar manner as for the source hyperarcs. At the same
time, a particular switch function could constitute two sub-
switch functions each for two perpendicular bisectors.

4) Source-destination paths:After successfully computing
all distinct source (Hs) and relay (Hr) hyperarcs for a given
system, we now need to compute all the paths froms to all

s

d1d2
d3

C1

R21

R4∞
R32

(r, d1, d2, d3)

(d1, r, d2, d3)

(d1, d2, r, d3)

(a) Source hypergraph.

s
d1d1

d1

d2

d2

d2

d3

d3

d3

(d2, d1, d3)

(d1, d2, d3)

(d1, d3, d2)

(d3, d1, d2)

(b) Relay hyperarcs.

s
d1d1

d1

d2

d2

d2

d3

d3

d3

C1

R21

R4∞
R32

(C1, r2)

(C1, r1)

(R21, r1)

(R21, r2)
(R21, r3)

(R32, r4)
(R21, r4)

(C1, r4)
(C1, r3)

(c) Source-destination paths.

Fig. 5. Pre-processing. The triangle△sd2d3 showsC, with circles and
perpendicular bisectors dividingC is closed and disjoint sets. (a): Shows
ordered4-tuple set for each region carved by the circlesc1, c2 and c3 as
C1,R21,R32 andR4∞, respectively. (b): Shows the ordered3-tuple sets
of destination nodes with respect tor. (c): Shows the previous2 figures
superimposed showing the disjoint convex regions with the ordered sets
of closest nodes with respect tos and r, respectively. The 2-tuple(C, r)
represents the ordered sets for each region, respectively.Here,r1, r2, r3 and
r4 represents the four regions in (b).
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destinationsdi ∈ T , in order to successfully cast our problem
as a network optimization program. We prefer a path based
formulation as opposed to a more basic and standard link based
formulation because the path based formulation is far well
suited for convex approximations of originally non-convex
network optimization programs, in our framework.

There are many efficient ways (polynomial time algorithms)
to compute the paths from the setHs andHr. For simplicity,
we prefer here to take all combinations of the hyperarcs in
Hs andHr. Not all these paths will be active for a certain
relay position, but the switch functions will take care of
activating/deactivating the paths. In this way, we get an upper
bound (3n − 1)(n2) = |Hs| × |Hr| on the paths froms to
eachdi ∈ T , out of which only a certain number of paths
will have non-zero min-cut, i.e. activated hyperarcs. We define,
Ω = [1, (3n− 1)(n2)] as the set of all paths froms to every
di ∈ T . This makes the problem size bigger, but saves cost
of activated path computation. Note that the total number of
paths are polynomially bounded in our model.
B. Optimization.

In this section we formalize the problem of optimal relay
location maximizing the multicast rate froms to T . The
optimization constraints can be grouped into two categories:
the posynomial constraints that can be easily rewritten using
exponential transformation as convex constraints (Geometric
Programming); and the non-posynomial constraints that can
only be approximated as convex constraints. Since, all the
constraints are coupled through variables, almost all the vari-
ables and hence constraints will go through the exponential
transformation. Now, we classify and discuss the troubling
constraints in our formulation.

1) Hyperarc rate constraints (Posynomials):We show an
example of hyperarc rate constraints. Consider the hyperarc
(s, d1rd2) in the scenario in Figure 5(a), which is active when
the relay is inside the ringR21. The non-convex rate inequality
can be expressed as:

ys,1r2 ≤
Ps1r2

Dα
s2N0

fs1r2 (9)

where fs1r2 = f1
s1r2f

2
s1r2, f1

s1r2 ≤
(

1 + γe(−γz1
s1r2)

)−1

,

f2
s1r2 ≤

(

1 + γe(−γz2
s1r2)

)−1

, Dsr − Ds1 = z1s1r2 and

z2s1r2 = Ds2 − Dsr. Notice, howf1
s1r2 and f2

s1r2 and their
respectivez variables are different. When,f1

s1r2 and f2
s1r2

take the value as1, the hyperarc will have a non-zero min-
cut. Rewriting them together,

Rs1r2D
α
s2N0

Ps1r2fs1r2
≤ 1,

Rs1r2D
α
s2N0

Ps1r2f1
s1r2f

2
s1r2

≤ 1, (10)

f1
s1r2

(

1 + γe(−γz1
s1r2)

)

≤ 1, (11)

f2
s1r2

(

1 + γe(−γz2
s1r2)

)

≤ 1, (12)

Dsr −Ds1 ≤ z1s1r2, z2s1r2 ≤ Ds2 −Dsr. (13)

Note, that inequalities (10), (11), (12) and (13) are posyno-
mials, andDs1 is a constant. Using GP transformation these
inequalities can be easily converted to convex constraints. Sim-
ilar argument goes for switch functions of all other hyperarcs.

2) Distance function constraints (Non-posynomials):Vari-
ablesDuv in rate inequalities represents distance functions,
given by e.g.,

√

(xr − xs)2 + (yr − ys)2 = Dsr, (14)

where, (xs, ys) are fixed coordinates ofs and (xr, yr) are
the variable coordinates ofr. The negative coefficients in (14)
prohibits the use of GP techniques. There are techniques to get
around this problem [25], [26], but the extra pre-processing
cost incurred is very high in addition to the introduction of
many new variables and combinatorial constraints.

We prefer to handle the issue in a simpler manner by
approximation. Let, the only variable transformed using GP
in (14) beDsr. Then, we can rewrite

u2
sr + v2sr ≤ e2D

′

sr , xr − xs ≤ usr, yr − ys ≤ vsr. (15)

The first inequality in (15) is non-convex. Using thep-norm
surrogate approximation ( [27]) for (15), we get

(

u2
sr + v2sr
e2D

′

sr

)p

≤ 1, (16)

wherep ∈ [1,+∞). Over a compact set of variables and in the
limit of p → ∞, (16) becomes convex. In our case, for values
of p = 4 or 5, we get good approximation. Note, that only the
first inequality in (15) needs to be approximated, and since the
variables(usr, vsr, xr, yr) don’t undergo GP transformation,
the rest of the inequalities in (15) remain linear.

All other constraints in the program are posynomials, as we
will shortly see, so they can easily be transformed into convex
constraints. It should be noted, that it is only because of the
use of switch functions that the program becomes continuous.
In addition, carefully designing the switch function results in
posynomial hyperarc rate constraints.

3) Network Optimization problem formulation:Since there
areΩ = (3n − 1)(n2) number of paths for each destination
di ∈ T only a subset of them will actually be active (i.e.
with min-cut> 0). rdi

q as the rate on pathq to destinationdi,
whereq ∈ Ω. Recall,H = Hs ∪ Hr and the total rate to a
destinationdi be defined asri =

∑

q∈Ω rdi
q . Also, letvm ∈ V

be the farthest node fromi for hyperarc(u, V ) ∈ H. Then,
the optimization program is,

Program (B): maximize(Rm)

subject to: Rm ≤ ri, ∀i ∈ Nn, (17)

ri ≤
∑

q∈Ω

rdi
q , ∀di ∈ T, (18)

max
((i,q)|(u,V )∈q)

Ri
q ≤

PuV

Dα
uvm

N0
fuV , ∀(u, V ) ∈ H, (19)

fuV ≤ f1
uV f

2
uV , ∀(u, V ) ∈ H, (20)

f l
uV ≤ (1 + γe−(γzl

uV ))−1, l ∈ [1, 2], ∀(u, V ) ∈ H,(21)

zluV ≤ Duvl −Dur, l ∈ [1, 2], (u, V ) ∈ H, (22)

u2
uV + v2uV ≤ D2

ur, ∀(u, V ) ∈ H, (23)
∑

((u,V )∈Hs)

PuV ≤ Ps,
∑

((u,V )∈Hr)

PuV ≤ Pr, (24)
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where, xr − xu ≤ uuV , ∀(u, V ) ∈ H, (25)

yr − yu ≤ vuV , ∀(u, V ) ∈ H, (26)

xr ≥ 0, yr ≥ 0, yr ≤ λxr , yr + λ′xr ≤ η. (27)

In the above program(xr, yr) are variable relay coordinates
and (27) captures constraints that makeC. Program (B) is a
non-convex program expressed in posynomial and polynomial
inequalities. Applying GP transformation to the followingvari-
ables {rdi

p , PuV , DuV , fuV }, p-norm approximation to con-
straints (23) and leaving the rest of the variables unchanged,
we get the following convex approximation,

Program (C): maximizemin
di∈T





∑

q∈Ω

r′di
q





subject to:
N0e

(r′iuV +αD′

uvm
−P ′

uV −f ′

uV ) ≤ 1,

∀q ∈ (u, V ), ∀(u, V ) ∈ H,
(28)

e(f
′

uV −f ′1
uV −f ′2

uV ) ≤ 1, ∀(u, V ) ∈ H, (29)

e(f
′l
uV ) + e(f

′l
uV −γzl

uV ) ≤ 1, l ∈ [1, 2], ∀(u, V ) ∈ H, (30)

zliJ + eD
′

ur ≤ Duv, ∀(u, V ) ∈ H, (31)
(

u2
uV + v2uV
eD

′

ir

)p

≤ 1, ∀(u, V ) ∈ H, (32)
∑

((u,V )∈Hs)

eP
′

uV ≤ Ps,
∑

((u,V )∈Hs)

eP
′

uV ≤ Pr, (33)

where, we have used the GP transformationx′ = log(x) (x is
the original variable of program (B)) on certain variables.

Program (C) is a convex approximation of program (B) with
no underlying combinatorial hard structure. The approxima-
tion is only coming from constraint type (32) usingp-norm
surrogation technique that gives a convex approximation tothe
constraint (23) in program (B).

Note, that the objective function is modified in (C), instead
of having the sum of positive exponential terms, we have
replaced it by a sum of linear functions, which is far easier to
maximize. The maximizers of the functionmax

X
(x1+x2) also

maximizes the functionmax
X

(ex1 + ex2), over a compact set

X with certain particular characteristics. This is generally not
true, but in our case due to network coding constraints with
certain simple tricks it can be proven that it holds true. Due
to the lack of space we omit the detailed proof.

As we know, with the increasing value ofp, the program
approaches a complete convexity with zero duality gap, thus
standard convex optimization algorithms could be used to
solve problem (C) with increasing accuracy. The optimal
values of program (B) could be easily constructed from the
optimal values of program (C).

C. Simulations

In this section, we present simulation results for the BRC
with n = 2 destinations. We compare the multicast rate
obtained by optimizing the relay location and the source in
addition to relay power allocations, with the case where the
relay is located at a naive yet seemingly interesting position:
the centroid of triangle△sd1d2 , and only the power allocations
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Fig. 6. BRC withn = 2 destinations. Rates forr located at the centroid of
△sd1d2 , at the optimal position, and relative gain.

are optimized. The simulations are run for an increasing size
of the area of△sd1d2 and a random network topology for each
area is chosen.

Figure 6 shows the maximum multicast rate (blue and red)
for optimal and centroid relay positions respectively. TheSNR
P
N0

is normalized to 1. Note that the actual values of the rates
are not as important because of the normalization, for higher
power values, the rate would certainly have higher values. For
increasing area of triangle△sd1d2 , the maximum multicast
rate tends to drop, which is due to the constrained power and
larger distances, but the relative gain goes up. This implies that
for farther placed nodes the sensitivity of the relay location
is higher and can produce significant gains in rate for the
optimal relay location. Its clear from the results in Figure6
that the centroid is not the optimal location. The rise in the
relative gain becomes very strong due to the fact that the low-
SNR regime is more sensitive to the location of nodes (hence,
distances) that determine the hyperarc rates in the limit of
disappearing SNR as opposed to e.g. in high SNR regime,
where a displacement of±ǫ for the location ofr would not
effect the rate significantly.

V. ARBITRARY CASE
In this section, we answer the same set of questions but

for arbitrarily placed source and destination nodes. Almost all
concepts can be carried over to, straightforwardly.

The steps of the pre-processing stage can be summarized as
Input: {s, T } set of nodes with their cartesian coordinates.

1) Compute convex hullC.
2) ComputeHs, switch functions (using Lemma 2).
3) Compute the disjoint convex regions by superimposing

all k-order Voronoi diagrams ofC.
4) ComputeHr (using relay hyperarc algorithm).

Output:H = Hs ∪Hs.
Once we haveHs andHs, we can computeΩ = [1, |Hs|×

|Hr|]. Ultimately, the optimization program could be stated as,
Program (D): maximize(g0(x))

subject to: gi(x) ≤ 1, i ∈ [1, k], (34)

gj(x) ≤ 1, j ∈ [k + 1,K], (35)

where, the constraints (34) are the posynomials constraints that
can be transformed to convex convex constraints using GP
and constraints (35) are the non-posynomial constraints that
are approximated usingp-norm approximation. The objective
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function g0(x) represents the multicast rate. In program (D),
x is a vector of variables.

Program (D), is an abstract representation of the actual
program. Since, the program (D) is simply program (B) (but
for arbitrary placement of destination nodes), the structure
of (D) is the same as (B). The main difference is the pre-
processing stage for the two cases, in this case which involves
computation ofk nearest neighbor nodes and superimposing
them to form disjoint regions inC for distinct n-nearest
neighbors. We would like to note, that this computation,
although polynomially bounded, can be heavy. There are many
polynomial time algorithms in the literature of computational
geometry that solve this problem efficiently, [23].

VI. RESULTS AND CONCLUSION

A comprehensive and efficient solution is developed to
model and answer the problem of optimal relay positioning
so as to maximize the multicast rate from the sources to
the destination setT in a low-SNR network. The proposed
solution is a non-convex network optimization problem in its
basic form that is difficult to solve. Using GP, switch functions
andp-norm surrogate approximation we transform the problem
to a convex approximation that can be solved using standard
convex optimization algorithms.

To abridge, the important contributions of this work could
be summed up in the following words: we present a com-
prehensive approach to determine the optimal relay position
under the pretext of network optimization problem. Network
topologies consisting single source, multiple destinations with
the only intermediate node as relay are considered in complete
generality on a2-D plane. Using superposition coding and fre-
quency division we construct a wireline like hypergraph. The
low-SNR hyperarc model using superposition coding provides
an interference free network model that is easily scalable to
complex network topologies. Using the tools of computational
geometry and network optimization, we presented a network
optimization framework based solution that is intuitive and
easy to understand. Also, we show that positioning the relay
optimally significantly affect the network performance.

In addition, the main causes for complexity in our approach
are the pre-processing stage and the non-convexity arising
from non-posynomial constraints upon GP transformation. The
former reason could be somewhat tolerated, as generally for
solving network planning problems heavy pre-processing is
required. In contrast, in our case the pre-processing stage
consists of polynomial time operations at the cost of only slight
sub-optimality in approximation.

The questions our work answers are just a fraction of the
interesting questions that it opens up. An interesting direction
would be to extend this model to general multicommodity flow
optimization problems involving more number of relay nodes.
On the other hand, from the computational point of view,
an interesting question is how we can efficiently build the
exact number of paths essentially bringing down the size of
the network optimization program. Finding other techniques
to model this problem could be interesting, e.g. utilizing

geometric properties of the problem and ways to bring down
the computational complexity.
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