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ONE OF THE least understood classes of operations problems is that

concerned with the design, loading, and, especially, the scheduling
of discrete, statistically varying flows through complex networks. The
present paper abstracts what is perhaps the simplest theoretical question
related to this class of problems, and derives expressions for certain steady-
state parameters. To put this theoretical question in context, let us give
it a hypothetical referent.

‘A machine shop’ has several departments each containing a fixed num.
ber of identical machines. Each department is a multiserver system of the
usual type (the waiting jobs are pooled in a single line, a given job is defi-
nitely assigned to a fixed machine when its turn comes up, and serviee
times are exponentially distributed). However, arrivals at a given de-
partment come both from other departments in the shop and from outside
the shop. Those coming to any department from outside arrive in a
Poisson-type time series. The flow pattern of jobs inside the shop is most
easily described by saying that when a given department finishes a job,
that job either goes to some specified department or out of the system,
its particular course being governed by a fixed probability distribution
associated with the particular department that it is leaving.

If mean arrival rates at the various departments are properly defined,
then the result is a steady-state distribution in which the waiting-line
lengths of the departments are independent, and are exactly like those of
the ‘ordinary’ multiserver systems that they resemble.

This paper is a part of an extended study of problems arising in ma-
chine-shop operations, carried on under a contract with the Office of Naval
Research. Further details and related problems are treated in references
2,4, 5, and 6.

Theoretical background

ErranG and others have treated the following elementary steady-state
problem in waiting-line theory."™ ¥ Customers arrive in a Poisson-type
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time series at mean rate . They are handled on a first-come, first-serve
pasis by a system of n identical servers, the servicing times being exponen-
tially distributed with mean 1/u. If k denotes the number of customers
waiting and in service; it is shown that if A <un, then a steady-state dis-
tribution of k is given by

Pﬂ(k/”}i/ﬂla (k=03 1! "':ﬂ'}
Pi=
Py (M) /nt n* 7, (k=n, n4+1, ---)

The number Py can of course be determined from the equation ) P,=1.

Results

The present paper deals with the situation in which there are M ‘de-
partments,” each being a system like that described above, and with num-
ber of servers, mean arrival rate, and mean holding time varying from
department to department. Specifically, let there be Departments 1, 2,
o, M. Form=1,2,---, M:

1. Department m contains n,, servers.

2. Customers from outside the system arrive in Department m in a Poisson-
type time series at mean rate A, (customers will also arrive at this department
from other departments).

3. Customers arriving in Department m (from inside or outside the system)
are served in turn. The serving time is exponentially distributed with mean
1/im, & given customer being assigned once and for all to a fixed server when his

turn comes up.

4. Once served in Department m, a customer goes (instantaneously) to De-
partment k (k=1, 2, ---, M) with probability 6,; his total service is completed
with probability 1— D 4 fim.

Assumption (4) is the basis for calling this system a ‘network’ of waiting
lines.

Form=1, 2, ---, M, let T',, be the average arrival rate of customers at
Department m from any source, inside or outside the system. It is easily
scen that in a steady state, we must have

Tr=Xm+D & Ome T

The I, of the present problem plays the same role as the X of the elementary
problem described previously.

Now let &, denote the number of customers waiting and in service at
Department m (m=1, 2, ---, M); and define the ‘state of the system’
(actually a function of time) as the vector (ki, ks, ---, ky). Then the
following theorem is true:
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TrEOREM. Define Pi™ (m=1,2, ---, M, k=0, 1,2, - - -) by the follow.
ing equations (where the Py"™ are determined by conditions ) i P,™= 1):

Py" (Pm/,PM)k/k!; (k=0, 1) TRy nm)
Pkm=
Pﬂm (I‘m/FM)k/nm! (nm)k_“m- (k:ﬂ,m, Mom41, - )

A steady-state distribution of the state of the above-described system is
grven by the products

P(kll k% Ty kﬂ)zPh! Pk22 A Pkuu,
provided Tp<pim Nom for m=1,2, ---, M.

This theorem says, in essence, that at least so far as steady states are
concerned, the system with which we are concerned behaves as if its de-
partments were such independent elementary systems as are discussed
above. This conclusion is far from surprising in view of recent papers by
E. J. Burge” and E. Reicu.™

Proor. The last condition of the theorem guarantees that Y . P.™ will
converge, and is evidently a necessary condition for the existence of 3
steady state. To establish that the given distribution then defines a steady
state, we follow the general approach used by FeELLER. Let Py, ... . )
be the probability of state (ki, ks, -- -, ky) at time &. From a straight-
forward consideration of the ways in which the system can reach state
(ky, ks, « -+, k), it turns out that

Py, oo aEHR) = {1— (22 M) h—[2 au(ks) p] b} Pi...., 10 (2)
2 aillit1) ws 0% h Piy oo, kg1, oo, ke (0)
£ DTN B b P, v bt i w0
F2220 aikiA1) 55 0:5 b Payoe, i1, oo, it -oes b (§)F0(R);

where 85=1—2 4 O,
ai(k)=min{k, n},
5.-=min{fc,v, 1 } .

Following the usual process of transferring the Piiy kg - o5 5y () from
right to left, dividing by h, and taking the limit as k approaches zero,
one obtains a set of differential equations (which will not be written out
here). To prove that the given distribution is a steady-state solution of
these equations, it is enough to show that the derivatives in these equa-
tions are all made zero by setting Py, «,, = - -, 1 () equal to P(ky, - - -, ka);
that is, to show that:
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[ At T ahs) wi] Pl -+, ko) =27 ai(kit-1) e 07
P(kl, T k[+11 R k}f)—'—z Aid; P(kls =Ty ki“l! = Sl k-"!‘)
+3° 3 ailhi+1) u; 0 Plley, - -, kj+1, <<, bi—1, - -+, ka).

Now the following relations are easily seen from the equations defining
the P(ky, - - -, k) and the Pi"™:

Pk -, kit - oo, ka) _ T
Py, -, ke, -, ka)  mias(kit1)’

P(kly s ':kE_I; gl ku) b a{(ki)
Py, - kiy » 5 on) T

P(kl)"')kj_l-]-)“')ki_l;"'skM):_ I‘j#iﬂ’é(ki)
P(k}l,“',k_{,"‘,k{,"',kM) .uj(!j(kj"‘l) 111'.

Dividing the equation to be established by P(ky, - - -, ka), substituting
from these formulas, and noting that 8; ai(k:) = a:(ks), it remains to show
that:

3Nt ek wi= 2, 0Tk N po (k) /T
+>° 2 [wiau(k)/T] 045 T
But 302 Te=2 " (1= 2 ) Te=2_ s,
from the defining equation of the I'.. Also from the same equation,
SO i ailks) /T4 05T 5= 30 [wi eri(ki) /T 2.i 0T

=2 [ ok /T4] (Ti—Na),

=3 we aiki) = 20 Ni i (ki) /T
Substituting accordingly, the necessary equality is established.
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