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ABSTRACT. We examine the issue of separation and code design for network
data transmission environments. We demonstrate that source-channel separa-
tion holds for several canonical network channel models when the whole net-
work operates over a common finite field. Our approach uses linear codes. Our
simple, unifying framework for these codes not only allows us to re-establish
with economy the optimality of linear codes for single transmitter channels and
for Slepian-Wolf source coding. It also enables us to establish the optimality
of linear codes for multiple access and for erasure broadcast channels. More-
over, we show that source-channel separation holds for these networks. The
linearity of source, channel, and network coding thus blurs the delineation
between these codes. This robustness of separation we show to be strongly
predicated on the fact that noise and inputs are independent. Finally, we il-
lustrate the fact that design for individual network modules may yield poor
results when such modules are concatenated, demonstrating that end-to-end
coding is necessary. Thus, we argue, it is the lack of decomposability into
canonical network modules, rather than the lack of separation between source
and channel coding, that presents major challenges for network coding.

1. Introduction

The failure of source-channel separation in networks is often considered to be an
impediment in applying information theoretic tools in network settings. A simple
multiple access channel from [CT91] shows how separation can fail. The channel
contains m > 2 transmitters and a single receiver. The receiver’s channel output
is the integer sum of the transmitters’ binary channel inputs. Since independent,
uniformly distributed input signals fail to achieve the maximum mutual information
between the transmitted and received signals, direct transmission of dependent
source bits over the channel sometimes yields higher achievable transmission rates
than Slepian-Wolf source coding followed by multiple access channel coding.
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While this simple example may at first appear to irrefutably establish the failure
of source-channel separation in networks, its simplicity is misleading. In particular,
note that the alphabet size of the output is dependent on the number of transmit-
ters. Thus, the network lacks a consistent digital framework. Replacing integer
addition with binary addition to give a channel with input and output alphabets
of the same cardinality yields a communication system for which separation holds.

In this paper, we argue that source-channel separation is more robust than
counterexamples may suggest. We assert, however, that separate source and chan-
nel code design does not necessarily simplify the design of communication systems
for digital networks. The operations of compression and channel coding are con-
ceptual tools rather than necessary components. While modularity, such as that
afforded by the separation theorem, is desirable in the design of components, the
decomposition of a problem into modular tasks may increase complexity when the
decomposition imposes unnecessary constraints.

In addition to examining traditional questions of source-channel separation,
we also investigate a variety of other separation assumptions implicit in common
network design techniques. By assuming independent data bits and lossless links,
the network coding literature and other layered approaches to network design en-
dorse a philosophy where source and channel coding are separated from network
coding or routing. Through examples, we demonstrate the fragility of this assumed
separation. Even in simple digital networks, neither separate source-network cod-
ing strategies nor separate channel-network coding techniques guarantee optimal
communication performance.

Our network model requires the same finite alphabet at all nodes and addi-
tionally allows noise in the form of erasures.! Erasures are assumed to be channel-
imposed, irreversible, and independent of the channel input so that the erasure
symbol cannot be used as an additional symbol for coding.

While our examples suggest the robustness of source-channel separation and
fragility of source-network and channel-network separation in the resulting systems,
we advocate an entirely unified approach, investigating independent, random, linear
code design at all nodes of the network. For the examples given, it is not clear,
even after the design is completed, what the appropriate decomposition of tasks
should be.

We treat two important types of networks in detail: multiple access networks
and degraded broadcast networks. For the networks we consider, optimal code con-
struction is particularly simple. We show that random linear codes are sufficient
and asymptotically optimal for a wide array of problems. Our approach may be
viewed, in the simplest way, as a generalization of information theoretic results
known for single-receiver source codes and for single-transmitter, single-receiver
channel codes. From the networking perspective, our results bear a different inter-
pretation - compression, channel coding, and routing are not separable functions.

Finally, while the multiple access and broadcast networks considered here are
important in their own right, we show that we cannot concatenate them arbitrarily
and maintain end-to-end functionality. In effect, there is no separation of large
networks into canonical elements. We argue that this lack of separation, rather
than the oft-presumed lack of source-channel separation in networks, poses the real
challenge in communication system design.

LWhile we focus primarily on erasure channels, we also consider additive noise channels.
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2. Background

The use of random linear transformations in coding receives considerable atten-
tion in the literature. For channel coding, Elias [Eli56] shows that random linear
parity check codes, formed by Bernoulli(1/2) choices for the parity check entries in
a systematic code’s generator matrix, achieve capacity for the binary erasure chan-
nel and the binary symmetric channel. MacKay [Mac99] proves that two families
of error-correcting codes based on very sparse random parity check matrices — Gal-
lager codes and MacKay-Neal codes (a special case of the former) — when optimally
decoded, achieve information rates up to the Shannon limit for channels with sym-
metric stationery ergodic noise. MacKay also demonstrates empirically, for binary
symmetric channels and Gaussian channels, that good decoding performance for
these codes can be achieved with a practical sum-product decoding algorithm.

Linear channel coding for network systems has received far less attention. In
this work, we consider both multiple access and degraded broadcast channels. In
multiple access coding, the model of interest comprises a collection of transmitters
sending information to a single receiver. The received signal is the sum of the trans-
mitted signals with the possible inclusion of either erasures or additive noise. While
this type of additive interference channel has received considerable attention in the
literature (see, for example, [Ahl71, Lia72, CEJW79]) the majority of the work
to date considers only the case where the incoming data streams interfere additively
in the real field; one notable exception is the work of Poltyrev and Snyder [PS95],
which treats a modulo-2 multiple access channel without noise in the case where
a proper subset of the transmitters sends to the decoder at any given instant. We
are unaware of prior work on linear coding for multiple access channels.

In broadcast networks, we consider physically and stochastically degraded chan-
nels with both additive noise and erasures. While the degraded broadcast channel
is well understood, [Gal74, Ber73], we are likewise unaware of any prior work on
linear broadcast channel codes.

On the source coding side, Ancheta [TA77] presents universally optimal linear
codes for lossless coding of binary sources; he also shows that the rate distortion
function of a binary, stationary, memoryless source cannot be achieved by any linear
transformation over a binary field into a sequence with rate lower than the entropy
of the source. The syndrome-source-coding scheme described by Ancheta uses a
linear error correcting code for data compression, treating the source sequence as
an error pattern whose syndrome forms the compressed data.

In [Csi82], Csiszar generalizes linear source coding techniques to allow lin-
ear multiple access source codes that achieve the optimal performance derived by
Slepian and Wolf [SW73]. Csiszar demonstrates the universality of his proposed
linear codes? and bounds the corresponding error exponents. These results are
generalizable to single or multiple Markov sources.

Addressing the problem of practical encoding and decoding for multiple access
source codes, [PR99, PR00a, PR00b, PR03, RPKO00] introduce the Distributed
Source Coding Using Syndromes (DISCUS) framework. Schonberg et al. [SPRO02]
note that Csiszar’s proof can be used to show that application of LDPC codes in the
DISCUS framework approaches the Slepian-Wolf bound for general binary sources;

2In the given fixed-rate coding regime, a universal code is any code that achieves asymptot-
ically negligible error probability on all sources for which the code’s rate falls within the source’s
achievable rate region.
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they then demonstrate through simulation that belief propagation decoding works
well in practice. Uyematsu proposes a deterministic construction for linear multiple
access source codes in [Uye01].

Zhao and Effros introduce broadcast system source codes in [ZE99, ZE00],
presenting design algorithms and performance bounds. We know of no prior work
on linear broadcast system source codes.

Network coding is a generalization of routing for transmitting independent
bits through lossless networks [ACLY00]. Koetter and Médard give an algebraic
framework in [KMO02]. Reference [HKM™"03] considers a randomized approach
for independent or linearly correlated sources, while [JCJ03] and [SETO03] give
polynomial-time deterministic and randomized network code constructions for in-
dependent sources.

3. Preliminaries and Generalizations

Since the focus of our paper is on the relationships between system components
and concepts, we give all results in their simplest forms. In particular, we state our
results and their corresponding derivations for independent, identically distributed
(iild) random processes and focus primarily on binary source and channel alpha-
bets, modified only for the inclusion of the erasure noise model. For simplicity, all
code constructions combine random linear encoding with typical set decoding. The
definition of the typical set Ag”) for a single random sequence Uy, Us, ... drawn iid
according to distribution p is

1
Al = {u" eU™: —ﬁlogp(u”) < H(U) +6} .

Given source alphabet U, H(U) = — }_ o, p(u) log p(u) is the entropy of iid random
process Uy, Us,.... By the Asymptotic Equipartition Property (AEP),

|A£n)| < on(H(U)+e)

and Pr(U™ € Ag")) — 1 as n — oo. Focusing on linear encoding and typical
set decoding allows us to include simple proofs and illuminates the relationships
between them.

While we choose to state and prove our results in their simplest form, we note
that all of the results given here generalize widely from the forms that we state
explicitly. Some of these generalizations are described below.

e While we focus on the binary alphabet, results generalize to arbitrary
finite fields. The requirement that the finite field be the same for all
sources, channel codewords, and additive noise processes cannot, however,
be relaxed in general. The channel output alphabet is allowed to differ
only in the inclusion of erasures. Erasures propagate as erasures when the
output of one channel is fed into another channel.

e We state results for iid source and noise random processes; the results
generalize to stationary, ergodic processes.

e We use non-systematic codes in channel coding; the results generalize to
systematic codes.

e We use source-dependent typical set decoders; many of the results in
this paper can be generalized to achieve universal coding performance
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and improved error exponents using the maximal entropy decoders of
Csiszar [Csi82].

e We ignore decoder complexity issues; good (sub-optimal) decoders with
lower complexity can be derived for many of the systems described here
using sparse matrix techniques like those of [Gal62, Mac99].

e We give results for the smallest generalizable instances of each network
type (e.g., two-receiver broadcast channels and three-receiver broadcast
system source codes); our results generalize to larger systems.

4. Single-Transmitter, Single-Receiver Networks

We begin by examining simple forms of some of the prior results described
in Section 2. In particular, we give simple new proofs for the linear source and
channel coding theorems for single-transmitter, single-receiver networks [Eli56,
TAT77, Csi82]. These new derivations demonstrate the relationships between these
algorithms and random linear network coding techniques. We further provide a
linear source coding converse. Finally, we extend the approach to design linear
joint source-channel codes for the single-transmitter, single-receiver network.

Given a single-transmitter, single-receiver network, source coding is equivalent
to network coding of compressible source sequences. We say that a network code
accomplishes optimal source coding on a noise-free network if that code can be
used to transmit any source with entropy lower than the network capacity with
asymptotically negligible error probability.

Shannon’s achievability result for lossless source coding demonstrates that for
Ui,Us,. .. drawn iid from a Bernoulli(p) distribution and any € > 0, there exists a
fixed-rate-(H (U) + €) code for which the probability of decoding error can be made
arbitrarily small as the coding dimension n grows without bound. The converse
to Shannon’s source coding theorem proves that asymptotically negligible error
probabilities cannot be achieved with rates lower than H(U). We begin by proving
that the expected error probability of a randomly chosen, rate-R, linear source
code approaches zero as n grows without bound for any source U with H(U) < R.
The fixed-rate, linear encoder is independent of the source distribution; we use
distribution-dependent typical set decoders for simplicity.

Let ap, be an [nR] X n matrix with coefficients in the binary field IF5. To use
an as a linear source code, we define encoder

a, (u™) = ayu,
for arbitrary source sequence u™ = u’ € (IF3)™. The corresponding decoder is

,Bn(v["m) _ { 1{" ifum e AE"),anu =v, Aa" € AE") N{u}¢st. ai=v
U™ otherwise,

where v["E] = vt € (IFy)["E] and decoding to U™ denotes a random decoder output
The error probability for source code a,, is

P.(an) = Pr(Bn(an(U™)) #U").

THEOREM 4.1. Let Uy, U, ..., U, be drawn iid according to distribution p(u).

Let {An}52, be a sequence of rate-R linear source codes with coefficients drawn iid
Bernoulli(1/2). For any R > H(U), EP.(A,) — 0 as n — 0.
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PROOF. Let w! € IF] be an arbitrary nonzero vector, then

EP™ = EPr(Error AU" ¢ A™) 4+ EPr(Error AU™ € A™)
(4.1) < et > pum)l(i#u)Pr(4dyi = Ayu)
un,ane A
(4.2) < et Y, puh)2rHUTI Pr(4,w = 0)
umeAl™
(4.3) < e, + 2MHU)Fe) g [nE]

for some €, — 0. Equation (4.1) and the bound on the size of the typical set follow
from the AEP. The symmetry represented by the introduction of w in (4.2) and the
bound on the corresponding probability in (4.3) result from the following argument.
Let k be the number of ones in an arbitrary w # 0. Then each coefficient of vector
Apw is the sum of k independent Bernoulli(1/2) random variables. Since summing
iid Bernoulli(1/2) random variables yields a Bernoulli(1/2) random variable and
the rows of A, are chosen independently, A, w is uniformly distributed over its
2[nR] possible outcomes. Thus EP™ — 0 as n — oo if [nR] > n(H({U) +¢). O

Lemma 4.2 provides a form of converse to Theorem 4.1. While Theorem 4.1
shows that linear source codes are asymptotically optimal, Lemma 4.2 shows that
any fixed linear code yields statistically dependent output symbols. An immedi-
ate consequence is that linear source codes cannot achieve the entropy bound for
non-uniform sources (since achieving the entropy bound would necessarily yield an
incompressible data sequence). This result highlights one difference between fixed-
rate, asymptotically lossless linear codes and variable-rate, truly lossless algorithms
like Huffman and arithmetic codes. Variable-rate schemes can achieve lossless per-
formance for any blocklength and precisely achieve the entropy for dyadic distribu-
tions. One advantage of fixed-rate codes becomes clear as we move to linear joint
source-channel codes later in this section.

LEMMA 4.2. Given any n > 1, let p1,-..,pn be non-uniform probability mass
functions on the mutually independent random variables Uy, ...,U,. Defining V =
Vi,..., Vi)t and U = (Uy,...,Uy,), let V. = aU for an arbitrary k x n matriz a.
If Vi, Vs, ..., Vi are mutually independent, then matriz a has at most one non-zero
element in each column.

PrOOF. The proof uses the analogue of the Darmois-Skitovich theorem for
discrete periodic Abelian groups by Fel’dman [Fel98]. Let us proceed by contra-
diction. Suppose that the jth column of a has non-zero elements in positions i and
i (i #1). Then Vi and V; both experience a non-zero contribution from Uj;. In this
case, the independence of V; and V; requires that p; be a uniform probability mass
function, which gives a contradiction. |

Just as source coding can be viewed as an extension of network coding to appli-
cations with statistically dependent input symbols, channel coding can be viewed as
an extension of network coding to unreliable channels. Prior network coding results
address the issue of robust communication over unreliable channels by consider-
ing strategies for working with non-ergodic link failures [KM02, HKM*03]. We
here investigate ergodic failures. A network code designed for a single-transmitter,
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single-receiver network with ergodic failures is a channel code for the erasure chan-
nel. We say that that network code accomplishes optimal channel coding on the
given channel if the network code can be used to transmit any source with rate lower
than the noisy channel capacity with asymptotically negligible error probability.
For any n x |nR| matrix b,, we can build a linear channel code with encoder
vy = b,v. Let X™ denote the channel input and Y™ denote the corrupted
channel output. For the erasure channel, y® = y* € {0,1, E}", and we define the
decoder as
™ if (bpv); =y; for all i s.t. y; € IFy
on(y™) = and AV #vs.t. (byV); =y; for all ¢ s.t. y; € Fy
VIrEl  otherwise,

where for any v € ]FQL"RJ, (b, v); is the ith component of the vector b,v. Decoding
to V78] denotes a random decoder output.

THEOREM 4.3. Consider an erasure channel with input and output alphabets IFa
and {0,1, E}, respectively. The erasure sequence Zy,Zs, ... is drawn iid according
to distribution q(z), where Z; = 1 denotes the erasure event, and Z; = 0 designates
a successful transmission. The channel noise is independent of the channel input.
Let {B,}22, describe a sequence of nx |[nR] linear channel encoders with elements
chosen iid Bernoulli(1/2). If R < 1 — ¢(1), then EP.(B,) = 0 as n — oo.

PROOF. For the erasure channel, we can immediately decode Z™ from the
received string Y. For any 2" € IFy, define £(2") = {e € F} : e; = z; Vis.t. z; =
0}. A decoding error occurs if there exists a v # V for which B,V—B,v = B,(V —
V) € £(Z™), since any such v would be mapped to the same channel output by Z".
For any 2™ with Y"1 | z; = k, |€(2™)| = 2F. Using the definition of the typical set,
2" € A™ implies that S zi < n(g(l) +€), where € = ¢/log(q(1)/q(0)). Thus
for any fixed 2" € A™ and wt € FS™ | Pr(B,w € £(z7)) < 2-"27a(D)+¢) (since
B, w is uniformly distributed by the argument in the proof of Theorem 4.1), giving

EP™(B,) = EPr(ErrorAZ" ¢ A"™) + EPr(Error A Z" € A™)

<t Y S (M1 £ v)
vlnRI plnRIcRLm R zn g (™)
-Pr(B,(v—v) € £(z"))

€n + Z Z p(,ULnRJ )q(zn)ZLnRJ 2—n2n(q(1)+€’)

vlnRIcRS™ B gncal™)

IA

< €+ 27”(17(](1)76’)+LTLRJ

for some €, — 0. The expected error probability decays to zero as n grows without
bound provided that R <1 —¢(1) — €. d

By Shannon’s separation theorem, we can achieve optimal communication over
the given erasure channel by concatenating optimal source and channel codes. Con-
catenating the optimal linear source and channel codes of Theorems 4.1 and 4.3
yields an optimal linear source-channel code.

As an alternative to separate design and decoding is joint design and decoding.
While we call the resulting code a joint source-channel code for historical reason, we
note that the code does not perform the separate functions of source and channel
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coding jointly. Instead, the code maps source sequences to channel inputs in a man-
ner that allows robust communication without any explicit or implicit compression
or addition of channel coding redundancy.

The joint source-channel code’s encoder is defined by ((u™) = ¢,u. Denote the

random channel input and output by X™ and Y™, respectively. For any y? =y! €
{0,1, E}" the decoder is defined by

u™  if (cou); = y; for all i s.t. y; € Fy
na(y™) = and At #ust. (c,1); =y; for all i s.t. y; € Fy
U™ otherwise.
Here, (cpu); denotes the ith component of vector c,u.
THEOREM 4.4. Consider the source of Theorem 4.1 and the channel of Theo-
rem 4.3. Let {Cp}22, describe a sequence of nxn linear joint source-channel codes

with elements chosen iid Bernoulli(1/2). If H(U) < 1—q(1), then the expected error
probability EP.(Cy) — 0 as n — c.

PRrROOF. We decode Z" from the received string Y. A decoding error occurs
if there exists a @1 # U for which B, (U — ) € £(Z"). Thus

EP®™(C,)
= 2e,+ EPr (Error/\ U™ e Ag") (p)ANZ" € Ag")(Q))

< 20+ ) > pum)g(z")1(i # u) Pr(Bp(u — ) € £(2"))
unan e AL (p) zn €A™ (g)
< 2, + Z Z p(un)q(zn)2n(H(U)+e)2—n2n(q(1)+e’)

ur €A (p) zneA™ (q)
< 2, + 27”(17(1(1)76’7H(U)7E)

for some ¢, — 0. Here Ag") (p) is the typical set for the source distribution and

A" (g) is the typical set for the noise. Thus EP{™(C,) — 0if H(U) < 1 — (1) —
e—¢. U

While we focus primarily on the erasure channel model, we note that both
the channel coding theorem and the joint source-channel coding extend easily to
additive noise models.

We begin with the additive noise channel’s channel coding theorem. Let a,, be
an [n(1 — R)] x n matrix with coefficients in IF. For channel coding, a, plays the
traditional role of the parity check matrix. Following Csiszar [Csi82], however, we
interpret a,, as a source code on the noise. For any matrix a,, we can design an
n X |nR] matrix b, such that b, has full rank and a,b, = 0. Matrix b,, plays the
role of the generator matrix for the desired channel code. We design b,, to have full
rank so that each length-|nR| input message maps to a distinct channel codeword.
We force a,b, = 0 so that each codeword is in the null space of a,,.

More precisely, the channel encoder is defined by (v *) = b,v. The channel
output for a random channel input b,V is Y = b,V 4+ Z. In decoding the channel
output, the receiver first multiplies Y by a, to give a,Y = a,(b,V + Z) = a,Z.
The result of this multiplication is a source coded description of the error signal
Z. Thus the decoding procedure involves applying source decoder 8, to a, Y. The
error is decoded correctly with high probability. The receiver then subtracts the
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error estimate from the received Y to yield, with high-probability, b, V. Since b,
has full rank, the receiver can recover V perfectly from b, V. Thus the channel
code’s error probability equals the error probability for the corresponding source
code on the error signal Z". Given this insight, the channel coding theorem is an
immediate extension of the source coding theorem.

THEOREM 4.5. Consider an additive noise channel with input, output, and
noise alphabets all equal to the binary field 5. Let noise Zy,Zs, ... be drawn iid
according to distribution q(z). The channel noise is independent of the channel
input. Let {(B,, An) 2, describe a sequence of channel codes. Each A, is [n(1 —
R)]| matriz with elements chosen iid Bernoulli(1/2). Each B, is designed to match
the corresponding A, as described above. If R < 1 — H(Z), then the expected error
probability EP,(B,,A,) — 0 as n = 0.

For any n X n matrix ¢,, we can build a joint source-channel code for the
additive noise channel with encoder {(u™) = ¢,u and decoder

ur ifum e A (p) and 32" € A (q) st. cout+z=y
@™ ={  and A@",z") € (A" (p) N {u}) x A" (q) st. cpitz =y
U™ otherwise.

Theorem 4.6 bounds the expected error probability for a randomly chosen linear
code C,.

THEOREM 4.6. Consider the random source Uy,Us, ... drawn iid according to
distribution p(u), and let Zy, Zs, . .. be the channel’s random additive noise, where
71,723, ... are drawn #id according to distribution q(z) and are independent of the
source. Assume that the source, channel input, channel output, and noise alphabets
are all equal to the binary field IFy. Let {C,}52, describe a sequence of n x n linear
joint source-channel codes with elements chosen iid Bernoulli(1/2). If H({U) <
1— H(Z), then the expected error probability EP.(Cy) — 0 as n — oo.

PROOF. An error occurs if there exists a i € A™ (p) such that &t # U and
Chla-U)e{0}lu{z—-Z:z¢ Al (9)}. For any fixed u — @ # 0 and randomly
chosen C,, the coefficients of vector Cy,(u — 1) are sums of fixed numbers of iid
Bernoulli(1/2) values. Thus Pr(Cp (it —u) = w) = 27" for all w € IF}, and

EP™(C,) = 2n+EPr (Error AU™ € A (p) A Z" € Ag">(q))
< 2et > P10 # v)

(un ’z")a(ﬁ"yﬁn)eAE")(p) XAS")(Q)
-Pr(Cp(u—1)=12-—12)
< 2, + Z p(un)q(zn)Q"(H(UH‘é)2"(H(Z)+e)2—n
(un,zm)€A (p)x AL (q)
< 2, + 2 MI-H(Z)-H(U)—2¢)

for some €, — 0. Here EP{™ (Cn) — 0 provided that H({U) <1— H(Z) —2. O

5. Multiple Access Systems

We next generalize to network systems. We begin with a simple re-derivation
of the linear multiple access source codes first studied by Csiszar [Csi82].
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Let each [nR;] x n matrix a1, and [nRy] x n matrix ap, define a two-
transmitter, linear multiple access source code with encoders as ,(uf’) = a1,,m
and as ,(uf) = as,,us and decoder

(uf,ud) if (uf,uf) € A, (a1,0u1,a2,012) = (v1,V2)
Bt plnRaly and Al o) € A A {(ug, 1)) sit.
R R ((11,nll1,(12,n112) = (V1,V2)
(Ur,U2) otherwise.

THEOREM 5.1. Let (U1,1,Us,1),(Ui,2,Us,2), - .. be drawn iid according to distri-
bution p(u1,us) on (IF3)2. Choose the sequence {(A1,n, A2,) 52, of rate-(Ri, Ry)
linear multiple-access source codes iid uniform. Then for any rates

Ry > H({U1|U2), R2 > H(Us|U1), Ry + R2> H(Uy,Us),
EP,(A1n,A2,) = 0 asn — o0.
PROOF. An error occurs if either or both of (U*, UZ') is decoded in error. Thus,
EP,(A1n,Asp)
= en+ EPr(Bn(a1,n(U]), 02.n(U3))) # (U, UF) A (UF,UF) € AM)
< et Y. pluf,up) > L(dy # uy) Pr(Asn(u2 —d2) = 0)

(uf ,ug)eAl™ ag:(up,ug)e Al
+ Y p(uf,up) > 1(a7 # uf) Pr(Ain(u — 1) = 0)
(up,ug)eAl™ ap:(ay ug)e Al
+ > p(uf, uz)1(ay # uf)1(as # uy)

(up up),(at ag) €A™
“Pr((Ayn(ag — ), A2 n(uz — 2)) = (0,0))
€n 4 2MHWIU)H2) pr( 4, w = 0) + 2n(HU=IU0+20) pr(4, w = 0)
+2nHULUDFI Pr(A) wy =0 A Ay, wy = 0)
= e+ 9~ ([nR1]-n(H(U1|U2)+2¢)) | 9~ ([nRe]-n(H(Uz2|U1)+2¢))
49— ([nR11+[nR2]—n(H(U1,U2)+e))

IA

for arbitrary, non-zero w',w!,wl € F} and some ¢, — 0. Thus if [nRi] >
n(H (U1|U2) +2¢€), [nR2] > n(H(U2|Ur) +2¢), and [nR1]+ [nRa2] > n(H(U1,Us) +
€), then EP, (A1, As,,) — 0 as n grows without bound. O

We next turn to linear channel coding on the two additive multiple access
channels shown in Figure 1. The first is the additive multiple access channel with
erasures, and the second is the additive multiple access channel with additive noise.
The additive channel with interference only (no channel noise) can be viewed as
a special case of either of the noisy models where errors or erasures occur with
probability zero. Let X* and X3 denote the random channel inputs, and use Y
to denote the corresponding random channel output. Then Y™ equals X" + X7}
corrupted by erasures in the erasure channel model, and Y = X' + X3 + Z" for
iid additive binary noise Z" in the additive noise channel model. Both examples
use addition over the binary field. All noise is independent of the channel input.

We begin by deriving the multiple access capacities.
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X; X5 X; X,
\"/ X17X23Y17Z€]F2
Y! Y’
BEC [ Z 4
Y Y Y elF,
Y Ye{01,E}
(a) (b)
FIGURE 1. Binary additive multiple access channels with (a) era-
sures and (b) additive noise. In both cases, Z1, Zs, . .. are iid and

independent of the channel inputs.

LEMMA 5.2. The multiple access capacities of both the additive multiple access
channel with erasures and the additive multiple access channel with additive noise.
equal the rate region achieved by time-sharing between the points (C,0) and (0,C),
respectively, where C = 1 — q(1) for the erasure model and C = 1 — H(Z) for the
additive noise model.

ProOF. The cooperative capacity for each channel equals the corresponding
value of C. Since the multiple access capacity without cooperation cannot exceed
the cooperative capacity and the time-sharing solution achieves the cooperative
capacity, we have the desired result. O

Since time-sharing between two linear codes yields a linear code, all points in
the set of achievable rates are achievable by linear multiple access channel codes.

THEOREM 5.3. Consider a multiple access channel with input alphabets X1 =
Xo = TFy and output alphabet Y = {0,1, E}. If the channel inputs at time i are
X1,: and X3 ;, then the channel output at time 4 is the binary sum Xy ; + Xo; with
probability q(0) and E with probability q(1). Erasures are iid and independent of the
channel inputs. Let {(B1 n,Ban)}S>, describe a sequence of rate-(Ry, Ry) multiple
access channel codes. Let

Ba, 0 o o
e om0 50

where By, and B(y_y), are |[AnR] x | An] and ([nR]—[AnR])x (n—|An]) matrices,
respectively, with coefficients chosen iid Bernoulli(1/2). For any A € [0,1] and
R < 1 - q(1), the given sequence of linear multiple access channel codes gives
expected error probability EP, (B, B2.n) — 0 as n — 0o. Thus all rates (Ry, R2)
with Ry + R2 < 1 — ¢(1) are achievable.

By, =

)

THEOREM 5.4. Consider a multiple access channel with input-independent, ad-
ditive noise. Suppose that the input alphabets, output alphabet, and noise alphabet
are all equal to the binary field IFy. Let noise Zy, Zs, ... be drawn iid according to
distribution q(z). If the channel inputs at time i are X1 ; and Xo;, then the chan-
nel output at time i is Y; = X1, + Xo; + Z;. Let {(B1,n, Ba,n, An)}or, describe a
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sequence of rate-(R1, R2) multiple access channel codes. Matriz A,, takes form

Ay 0
An = " )
[ 0 A(u)n]

where Axn and A_»), are [(1 = R)An] x An and [(1 — R)(1 — A)n] x (1 = A)n
matrices, respectively, with entries chosen #d Bernoulli(1/2). Matrices B1,, and
B, take the forms

B 0 0 0
Bl’":[ 0 0] ande’":[O By ]
—A)n

where Bxp, and B(1_ ), are the generator matrices corresponding to random parity
check matrices Ax, and A(1_»),, respectively. For any A\ € [0,1] and R < 1 —
H(Z), the given sequence of linear multiple access channel codes gives expected
error probability EP,(B1,n, B2n, An) = 0 as n = co. Thus all rates (R1, Ry) with
Ri1 + R: < 1— H(Z) are achievable.

We next tackle the issue of source-channel separation.

THEOREM 5.5. Given the source of Theorem 5.1 and the channel of Theo-
rem 5.3, if H(Uy,Us) < 1—q(1), then there exists a sequence of joint source-channel
codes with probability of error Pe(") — 0. Conversely, if H(U1,Us) > 1—¢q(1), then
the probability of error for any communication system is bounded away from zero.
Thus source-channel separation holds for the multiple access erasure channel.

PrOOF. By Theorem 5.1, the Slepian-Wolf region is Ry > H(U;|Uz), Ry >
H(U3|Uy), and Ry + Ry > H(Uy,Uz). By Theorem 5.3, the capacity region for the
given channel is Ry + Ry > 1 — ¢(1). If H(U;,Us) < 1 — ¢g(1), then the regions
overlap, and the given source can reliably communicated across the given channel
with separate source and channel coding schemes.

Since separation holds for the channel with vector input (X7, Xs) and scalar
output Y, no source pair (U, Us) with H(Uy,Us) > 1 —¢(1) = I(X;,X5;Y) can
be reliably transmitted across the given communication system. |

THEOREM 5.6. Consider a multiple access channel with input-independent, ad-
ditive noise. Suppose that the input alphabets, output alphabet, and noise alphabet
are all equal to the binary field IFy. Let noise Zy, Zs, ... be drawn iid according to
distribution q(z). If source pair (Ui,1,Us1), (Ur,2,U2,2),. .. is drawn éid according
to distribution p(ui,us) with H(Uy,Us) < 1 — H(Z), then there exists a sequence
of joint source-channel codes with probability of error Pe(") — 0. Conversely, if
H(U,Us) >1— H(Z), then the probability of error is bounded away from zero.

ProOOF. Parallels the proof of Theorem 5.5. O

We next turn to random linear joint source-channel coding.

THEOREM 5.7. Consider the source of Theorem 5.1 and the channel of The-
orem 5.3. Let {(Ci,n,Copn)}al, describe a sequence of n x n linear joint source-
channel coding encoders with elements chosen #d Bernoulli(1/2). Each C;, (i €
{1,2}) is an n X n matriz with elements chosen iid Bernoulli(1/2). If H(Uy,Us) <
1 —q(1), then the expected error probability EP.(Cy) — 0 as n — oo.
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PROOF. A decoding error occurs if there exists a @; # U for which C; ,,(U; —
fll) S g(Zn)’ a g # U, for which Cz’n(Uz - ﬁz) S E(Zn)’ or a iy # U; and
Us 75 U, for which Cl,n(Ul — ﬁl) + CQ’n(UQ — ﬁ2) (S g(Zn) Thus

Epe(n) (Cl,na C2,n)
= 2, +EPr (Error AUP U € A™ (p) A Z™ € A (q))
< 20+ Y > pul,up)e(z")

(uf,up)eAr (p) 2m €A (g)

Z Pr(Cyn(uy — 1) € £(2"))

ap £t (@ ut)eAM™ (p)

+ E Pr(Cyn(uz —t2) € £(2"))

ag #uy:(uy,ag)e A (p)

+ Z Pr(Cin(u; — 1) + Cy n(up — 1p) € £(2"))
ap £up,ap £ud: (4,43 )eA™ (p)
< 2+ > > put,uf)g(z") [2"(H(U1|U2)+€)2*”2”(Q(1)+f’)

(up,up) €A (p) 2m €A (g)

L on(H(U2|U1)+e)g—ngn(a(1)+€) 4 2n<H(U1,Ug)+e>2—n2n<q(1>+e')]

for some €, — 0. Thus the expected error probability decays to zero as n grows
without bound provided that max{H(U1|U2), H(U2|U1), H(Ul, U2)} = H(Ul, U2) <
1—q(1)—e—¢€. O

THEOREM 5.8. Consider the source of Theorem 5.1 and the channel of Theo-
rem 5.4. Let {(Cin,Capn)}oe, describe a sequence of linear joint source-channel
codes with elements chosen iid Bernoulli(1/2). If H(U,,Us) < 1 — H(Z), then the
expected error probability EP,(C4 p,Ca,,) = 0 as n — oo.

PROOF. An error occurs if two values of 4} are mapped to the same value of 27,
two values of uf} are mapped to the same value of 27, or if there exist distinct noise
vectors that map distinct source vectors to the same channel output. Thus, setting
Fiz") ={z2—2z:2 # 7,2 € A (¢)} and restricting our attention to typical
error sequences, we sum up the error events as: Ci,(U; — ;) € {0} U F(Z"),
02’n(U2 — flz) S {0} @] .7:(Zn), and Cl,n(Ul — ﬁl) + Cz’n(Uz — ﬁz) S ].‘(Zn)
From here, the proof parallels the proof of Theorem 5.7. In this case, |F(Z")| <
2n(H(Z)+€) _ 1, giving

Epe(n) (Cl,n; C2,n)

< 2t ) > pluf,up)g(en) [T g
(uf up) €A (p) 2n € AL (q)
+2n(H(U2|U1)+e)27n2n(H(Z)+e) + 2n(H(U1,U2)+e)27n2n(H(Z)+e)

for some €, — 0. Thus the expected error probability decays to zero as n grows
without bound if max{H(U1|U2), H(U2|U1), H(U1, Uz)} <1l- H(Z) — 2e. O
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U1,Us,Us, U2, Ua3, U3, Uras

Y

DEC, DEC, DEC,
Ui,Ui2,U13,Ur2s Us, U13,Ua3, U123
U27 U127 U237 U123

FIGURE 2. A broadcast system source code with three receivers.

6. Broadcast Systems

A broadcast system source code comprises a single encoder and a collection of
decoders. Since the case with two receivers has special structure absent from general
broadcast system source codes [ZE99, ZE0O], we focus on the three-receiver system
of Figure 2. Samples of source vector (Uy,Us,Us,Us, Usz, Uiz, Ura3) are drawn
iid from some distribution p(uy,us2,us,u12,u23,u13,u123). The source description
contains components of rates Ry, R, R3, Ri2, Ra3, Ri13, and Rys3. Decoder 1
receives the rate Ry, Ri2, Ri3, and Ri23 descriptions and uses them to decode
(Uy, Uiz, Urs, Ur23). Decoder 2 receives the rate Rz, Ri2, Rag, and Rya3 descriptions
and uses them to decode (Uz, U1z, Uas, Ui23). Decoder 3 receives the rate R3, Ris,
Ro3, and Rja3 descriptions and uses them to decode (Us,Uis,Uss,Uiaz). While
several receivers decode the common information, each has a different subset of the
descriptions with which to decode.

Theorem 6.1 proves the optimality of linear broadcast system source codes. In
this case, the linear encoder is a matrix of dimension

([an] + [HRQ-] + |_TLR3-] + [_’I’LR12-| + [nR23-| + |_TLR13-| + [-TLR123-|) Xn.

The first [nR;] bits of the output go to receiver 1 only. The subsequent [nR2] and
[nR3] bits similarly go to receivers 2 and 3, respectively, and so on. We again use
typical set decoding.

THEOREM 6.1. Let samples of source vector (Uy,Us, Us, Ura, Usz, U1z, Ui23) be
drawn iid according to distribution p(uy,us,us, U1z, Uzs, U1z, u1e3) on (Fy)7. Let
{A4,}52, be a sequence of rate-(R1, Rz, R3, R12, Ra3, R13, R123) linear broadcast sys-
tem source codes with coefficients chosen iid Bernoulli(1/2). For any

s C{1,2,3,12,23,13,123},

let us = (Uqg)acs, and let (nR)s =Y. ..[nR,]. Then for any rates satisfying

acs
nR), > HU.|Us,—,) ¥ sCS ={1,12,13,123},5# ¢
nR), > HU,|Us,—,) ¥ sCS»={2,12,23,123},5# ¢

)
(
(
(nR), > H{U,|Us,—s) V sC Ss=1{3,13,23,123},s # ¢
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{A4,}52, achieves expected error probability EP.(A,) — 0 as n — 0.

ProOOF. We break encoder matrix A,, into a collection of [nR,] X n sub-
matrices, a € {1,2,3,12,23,13,123}, such that
Aib = [Atl,nAt2,nAg,nAi2,nAt23,nAi3,nAi23,n:| -

Let EP,(A14,n) denote the expected probability of decoding in error at receiver 1.
The arguments for receivers 2 and 3 are similar, and the code error probability is
bounded by the sum of the individual decoder error probabilities. An error occurs
at receiver 1 if any subset of the desired sources is decoded in error. Thus,

n n n n
EP,(A1xn) < €t E , p(uy, uly, uis, uisg)
(u¥7u¥2’“?3’“?23)€‘4gn)
E E Pr(A, ,(us; —1,) = 0)
SCS1870 anur:(ar ug, ) €A

€n + Z 2n(H(Us\Usl_s)+2e)2—(nR)s
sCS1:8#¢

VA

for some ¢, — 0. O

We next consider two erasure broadcast channel models. In each, a single
channel input is sent to receivers 1 and 2. In the first model, the output at receiver 1
is an erasure with probability ¢;(1) and the transmitted value with probability
q1(0); likewise, the output at receiver 2 is an erasure with probability ¢2(1) and is
otherwise received correctly. Without loss of generality, assume that ¢; (1) < g2(1).
In this model, erasures are assumed to be independent events. In the second model,
the erasure probabilities for the two receivers are the same, but the erasures are
dependent random variables, with all erasures at the first receiver propagating
to the second receiver. By [CT91, Theorem 14.6.1], the capacity of the broadcast
channel depends only on the conditional marginal distributions p(y1|z) and p(y2|z),
thus the capacity of the two channels shown and all channels with the same p(y; |z)
and p(y2|z) (regardless of the statistical dependencies between erasure events Z;
and Z5) are identical.®> Since we consider discrete channels, the degraded broadcast
channel converses of [AK75] or of [vdM75], which allows no or partial common
information, are applicable. Note that the elegant and simple converse for degraded
BSC broadcast channels of [Wyn73], which relies on properties of binary sequences,
might be readily extended to our model, albeit without the generality of [AK75,
vdM75].

Lemma 6.2 proves time-sharing to be optimal for broadcast coding over the
given family of channels. Theorem 6.3, is then immediate by the previous linearity
of time-sharing argument.

LEMMA 6.2. Consider a binary erasure channel with output alphabets {0,1, E}
at each of two receivers. The erasure sequences Z1,1,2Z1,2,... and Zy 1,222, ... are
drawn éid according to distributions q1(z1) and q2(22), respectively, where Z; ; =1
denotes an erasure event at receiver i at time j. The channel noise is independent
of the channel input. The joint distribution q(z1,22) may be any distribution with

3All channel models considered here assume Z; and Z3 are independent of the channel input.
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the given marginals. The capacity region for sending independent information to
the two receivers is described by
R
L Ry <1
1—qi(l)  1-gx(1)
If independent rates (Ry, Ra) are achievable and Ry < Rz, then (Ri, Ry, Ri,) =

(R1,R2— Ro, Ro) is achievable with common information rate R, and independent
information rates R} and R).

Proor. By [CT91, Theorem 14.6.1,Theorem 14.6.2], the capacity of the given
channel is the convex hull of the closure of all (R, R») satisfying Ry < I(W;Y2) and
R, < I(X;Y1|W) for some joint distribution p(w)p(z|w)p(y1 |z)p(y2|y1). Auxiliary
random variable W is has alphabet size 2, and p(ya|y1) is derived from the physically
degraded channel model. By a symmetry argument, the optimal W is a uniform
binary random variable with p(z|lw) =1 — 8 if £ = w and p(z|w) = 8 otherwise.
Thus

Ry < IXnW)=(1-qa(1)H(B)

Ry < I(W;Y2) = (1-¢q2(1))(1 — H(B)).

Varying H(B) from 0 to 1 gives the independent coding result. The common infor-

mation result comes from [CT91, Theorem14.6.4]. O
THEOREM 6.3. Consider the channel from Lemma 6.2. Let {B,}>2, describe

a sequence of linear channel codes for the broadcast channel, where

By, 0
0 B(I—A)n

Each By, has elements chosen iid Bernoulli(1/2). If Ri/(1 — ¢1(1)) + Ra/(1 —
g2(1)) < 1, then the expected error probability EP.(B,) — 0 as n — oo.

B, =

For the additive noise broadcast channel model, linear codes can do at least as
well as the time-sharing bound, but that bound is not the optimal solution [CT91].

7. Input-Dependent Noise

By assuming that the channel noise is independent of the channel input, the
theorems of the previous section rule out asymmetrical channels like the Z-channel.
Unfortunately, the above techniques do not extend to the case where the noise
random variable is dependent on the channel input. In the case of the single-
transmitter, single-receiver channel, source-channel coding holds in general, but
fails for linear codes. In the case of the additive multiple access channel with
additive noise, separation fails more generally, as shown next. The same phenomena
may be observed in erasure channels.

THEOREM T7.1. Consider a multiple access channel where the input alphabets
X1 and X, output alphabet Y, and noise alphabet Z are all equal to the binary field
W¥y. Let Z1,Z5,... be the noise random process, and use X1 ; and Xy ; to describe
the channel inputs at time i. The channel output ot time ¢ is Y; = X;; + Xo,; +
Z;. Separation fails when Z; and (X1, X>,;) are statistically dependent random
variables.
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ProoF. The maximal rate attainable in separate source and channel coding is
bounded by the multiple access channel capacity’s bound on the sum rate

R1 +R2 S max I(Xl,XQ;Y),
Py, Py

where P; and P» are the marginal probability mass functions of X; and X5, respec-
tively. The cooperative capacity of the network provides the alternative bound

Ri+ Ry < II}HXI(Xl,Xz;Y)-
12

When

113111,3413; I(Xl,XQ,Y) < H})?;XI(XDXQ,Y),

separation fails since the cooperative capacity is achievable through joint coding
for the source with p(u1,u2) = Pia(u1,us2).

For all Z,] € {0,1}, let PI‘(Z = 1|X1 = i,X]_ = ]) = Qqi;j = 1-— q’] For the
multiple access capacity, let p; = Pr(X; =1) =1 — p;. Then

max [(X:1,X5;Y) = max[H(P1P2Goo + Pip2go1 + pi1P2gio + p1p2qit)
P1,P> P1,p2

—p1P2H (qoo) — P1p2H (qo1) — p192H (q10) — p1p2H (q11)]-
For the cooperative capacity, let Pr(X; = i, X» = j) = p;j, where p11 = 1 — poo —
Po1 — P1o- Then we similarly find
I%axI(Xl,Xg;Y) = max [HY)-HY|U,V)]
12

P00,P01,P10,P11
= max [H (poodoo + Po1901 + P10gio + P11Gi1)

P00,P01,P10,P11
—pooH (qo0) — po1H (go1) — p1oH (qi0) — p11H (q11)]-

The two equations are not equal in general. For example, let goo = g11 = 0 while
do1 = Q10 = 1/2 Then maxp, p, I(Xl,XQ; Y) = 0.311 while maxp,, I(Xl,Xz;Y) =
1. (The maxima occur at p; = p2 = 1/2 and pgo = p11 = 1/2.) Separation fails
in this example since the source pair (Uy,Us) with Pr(Uy = 0,U; = 0) = Pr(Up =
1,U; = 1) = 1/2 can be reliably transmitted across the given channel, despite the
fact that the achievable rate region for Slepian-Wolf source coding and the capacity
region for the given channel do not overlap. (Slepian-Wolf source coding requires a
rate Ry + Ry > 1 while the multiple access capacity region extends only as far as
R; + Ry < .311.) d

8. The Case for End-to-End Coding

The preceding sections treat the topics of source and channel coding using the
tools of linear network coding, bringing previously disparate areas into a common
framework. We end by demonstrating that this unification is not only useful in
its combination of tasks once treated entirely separately but is in fact crucial to
achieving optimal, reliable communication.

Traditional routing techniques rely entirely on repeat and forward strategies
for getting a source from its point of origin to its desired destination. The network
coding literature demonstrates the failure of that approach in achieving the optimal
performance for some simple multi-cast examples [ACLY00]. We next demonstrate
the failure of the network coding model.

The common network coding model assumes that all sources are independent
and all links are noiseless. Implicit in the given model is the assumption that source
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U, @ U,
© 3
U @ U
(b)
—-O—Q—03)— Xy
H(U2) Us X1 X
(a) (c)

FIGURE 3. Networks for which (a) separation of source and net-
work coding and (b) separation of channel and network coding fail.
(c) A network for which decoding at intermediate nodes is required
for optimal coding.

and channel coding are performed separately from network coding at the edges of
the network, so that the internal nodes need only pass along the information to
the appropriate receivers. We next demonstrate that source-network separation
and channel-network separation both fail. That is, there exist networks for which
network coding and source coding must be performed jointly in order to achieve
the optimal performance. Likewise, there exist networks for which network coding
and channel coding must be performed jointly in order to achieve the optimal
performance. We use a sequence of simple examples to prove these results.

EXxAMPLE 8.1. The network of Figure 3(a) comprises two transmitters and
three receivers. Receiver nodes 1, 2, and 3 wish to receive Uy, Us and (Uy, Us),
respectively. Sources (Uy,Us) are dependent random variables, with H(Uy,Us) <
H(Uy) + H(Uz). All network links are lossless, and the capacities are noted in the
figure. Achieving reliable communication in this example requires the descriptions
received by nodes 1 and 2 to be dependent random variables and requires sources
U; and Us to be re-compressed at nodes 1 and 2, respectively. Thus separation of
source coding and network coding fails.

ExAMPLE 8.2. In the network shown in Figure 3(b), the channel between node 0
and nodes 1 and 2 is a broadcast erasure channel with independent erasures of
probabilities ¢; (1) = ¢g2(1) = ¢. The channel between nodes 1 and 2 and node 3
is a multiple access channel without interference. The network coding approach
requires labeling each link with its corresponding link capacity. If Ry and R» are
the capacities of the edges to receivers 1 and 2, then Ry + Ry must be less than 1—g¢q
by Theorem 6.3. The links from node 1 to node 3 and from node 2 to node 3 are
both lossless, with capacity 1 bit per channel use. Optimal network coding on the
given channel gives a maximal rate of 1 — p; from the encoder to the decoder. We
contrast with the above separated channel and network coding approach an end-
to-end coding strategy. In this case, we do not force zero error probability between
node 0 and nodes 1 and 2 but instead simply forward the information received by
those nodes to the decoder. The capacity of the resulting code is 1 — pypo since
receiver 3 suffers an erasure only if both node 1 and node 2 receive erasures.

In addition to illustrating the failure of separate channel and network coding
schemes, Example 8.2 serves as a reminder that while canonical network elements
can be strung together to achieve codes for more complicated networks, the resulting
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solutions are not optimal in general. While Example 8.2 demonstrates that failure
to decode at intermediate nodes of the network can yield performance superior to
that achieved by decoding at intermediate nodes, Example 8.3 teaches the opposite
lesson.

EXAMPLE 8.3. In the channel of Figure 3(c), the links between nodes 1 and 2
and nodes 2 and 3 are independent erasure channels with probabilities of erasure
¢1(1) and ¢2(1), respectively. If we do not decode at the intermediate node, then the
maximal achievable rate from node 1 to node 3 is 1 — (¢1(1) + ¢2(1)). Decoding at
node 2 yields maximal achievable rate min{1—g¢;(1),1—g2(1)} > 1—(g1(1) +¢2(1)).

The failure of separation in Examples 8.1 and 8.2 and the contrasting lessons
regarding decoding at intermediate nodes demonstrated by Examples 8.2 and 8.3
make the case for the need for end-to-end coding in network environments. The
success of the linear coding technique in network coding, source coding, and channel
coding suggests that a unified approach that obviates the need for separate routing,
compression, and error correction codes may be within reach. In contrast, the
failure of separation across canonical network systems seems to present a far greater
challenge to optimal code design in networks.
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