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Abstract— We consider the following packet coding scheme:
The coding node has a fixed, finite memory in which it stores
packets formed from an incoming packet stream, and it sends
packets formed from random linear combinations of its memory
contents. We analyze the scheme in two settings: as a self-
contained component in a network providing reliability on a
single link, and as a component employed at intermediate nodes
in a block-coded end-to-end connection. We believe that the
scheme is a good alternative to automatic repeat request when
feedback is too slow, too unreliable, or too difficult to implement.

I. INTRODUCTION

The recent advent of linear-complexity erasure-correcting
codes in [1], [2] has made the use of coding, often called
forward error correction (FEC), much more attractive as
a means of providing reliable packet transmission. Indeed,
when the physical medium makes establishing good feed-
back links difficult—as is often the case in wireless and
satellite networks—or when the application is simply very
demanding—as is often the case in real-time applications—
using such codes is the clear strategy of choice over using
automatic repeat request (ARQ).

The schemes in [1], [2] are suitable for end-to-end coding
and thus only achieve the end-to-end capacity. More recently,
it was shown that the min-cut capacity can in fact be achieved
if we allow intermediate nodes to send out random linear
combinations of all previously received packets [3], [4], [5],
[6]. The rate benefits come, however, at the cost of memory
usage: intermediate nodes need the capability to store all
received packets that originate from the same coding block
at the source and, though some compression is possible, the
memory usage of intermediate nodes nevertheless grows with
the size of the coding block.
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In this paper, we consider fixing the memory of intermediate
nodes at a constant size. We establish the trade-off between
memory usage and achievable rate. We show that, by varying
the memory m at intermediate nodes, we can achieve all
points of the gap between the min-cut and the end-to-end
capacity. Interestingly, we can achieve a significant percentage
of this gap for a small value of m. We thus argue that, in
a practical system, where intermediate nodes have restricted
resources to be possibly shared by several connections, a
coding scheme that utilizes a small amount of memory can
still offer significant rate benefits.

The proposed encoder functions much like a convolutional
encoder at each intermediates node: it employs a fixed memory
to accommodate an arriving stream of packets of indetermi-
nate length. There is, however, one very important difference
between the coding we consider and convolutional coding on
packets [7]: Our coding scheme is rateless in the sense that
the coded packet stream can maintain any ratio that we desire
to the rate of the message packet stream and can be freely
adjusted in real-time. By contrast, packet-level convolutional
coding can adapt its rate only by puncturing the code, which
allows variation only within a limited range. This ability to
freely adapt the rate of the code allows the scheme to vary its
erasure-correcting capability to meet time-varying conditions,
which are common in packet networks.

We consider the use of our coding scheme in two settings:
first, as a self-contained component in a network providing
reliability on a single link; and, second, as a component
employed at intermediate nodes in a block-coded end-to-end
connection. We shall see that, by explicitly recognizing that
the scheme is being employed as a component at intermediate
nodes in a block-coded end-to-end connection, better perfor-
mance can be achieved than if we did not.

We begin by describing the coding scheme in the following
section. We consider its use as a self-contained component in
Section III and as a component in a block-coded end-to-end
connection in Section IV.



II. CODE DESIGN

The design of the coding scheme is simple. We assume that
packets are vectors of length L over the finite field Fq. Hence,
if the packet length is b bits, then L = �b/ log2 q�. The encoder
has a memory capable of storing m packets, and it uses this
memory in one of two ways:

1) as a shift register: arriving packets are stored in memory
and, if the memory is already full, the oldest packet in
the memory is discarded; or

2) as an accumulator: arriving packets are multiplied by
a random vector chosen uniformly over F

m
q , and the

product is added to the m memory slots.
To form coded packets, the encoder simply takes a random

linear combination (in Fq) of its memory contents, with the
vector of coefficients of the combination drawn uniformly
from F

m
q \ {0}. This can be done as often or as seldom as

we wish; hence the ratelessness of the code—the output of
coded packets does not need to be synchronized to the arrival
of packets in any way and, in particular, does not need to be
related to it according to some fixed coding rate.

The coding scheme we propose results essentially from
taking the coding scheme described in [3], [4], [5] for a
single intermediate node and limiting the encoder’s memory
to a size that is fixed with respect to the input. Related
random linear coding schemes are described in [8], [9] for
the application of multicast over lossless networks, in [10] for
data dissemination, and in [11] for data storage.

III. USE AS A SELF-CONTAINED COMPONENT

When used as a self-contained component, the encoder
takes an incoming stream of message packets, u1, u2, . . ., and
forms a coded stream of packets that is placed on its lossy
outgoing link and decoded on reception. The decoder, we
assume, knows the linear transformations that the packets it
receives are of the message packets. This information can be
communicated to the decoder by a variety of means, which
include placing it into the header of each packet (which is
certainly viable when the memory is used as a shift register—
the overhead is m log2 q bits plus that of a sequence number),
and initializing the random number generators at the encoder
and decoder with the same seed.

The task of decoding, then, equates to matrix inversion in
Fq, which can be done straightforwardly by applying Gaussian
elimination to each packet as it is received. This procedure
produces an approximately-steady stream of decoded packets
with an expected delay that is constant in the length of the
input stream. Moreover, if the memory is used as a shift
register, then the complexity of this decoding procedure is also
constant with the length of the input stream and, on average,
is O(m2) per packet.

A. Model

We discretize the time axis into epochs that correspond to
the transmission of an outgoing packet. Thus, in each epoch,
an outgoing packet is transmitted, which may be lost, and
one or more incoming packets are received. If transmission is

to be reliable, then the average number of incoming packets
received in each epoch must be at most one.

We adopt the following simple model of incoming packet
arrivals and outgoing packet losses, with the understanding that
generalizations are certainly possible. We assume that, in an
epoch, a single packet arrives independently with probability r
and no packets arrive otherwise, and the transmitted outgoing
packet is lost independently with probability ε and is received
otherwise. This model is appropriate when losses and arrivals
are steady—and not bursty.

B. Analysis

The following analysis is in the limit of q → ∞, i.e. the limit
of infinite field size. We later discuss how the analysis may
be adapted for finite q, and, in Section III-C, we quantify by
simulation the difference between the performance in the case
of finite q and that of infinite q in some particular instances.

We begin by considering the difference between the number
of packets received by the encoder and the number of packets
transmitted and not lost. This quantity, we see, evolves ac-
cording to the infinite-state Markov chain shown in Figure 1,
where α = rε, β = (1−r)(1−ε), and γ = r(1−ε)+(1−r)ε.

At epoch 0, the memory of the encoder is empty and we
are in state 0. We continue to remain in state 0 in subsequent
epochs at least until the first packet u1 arrives. Suppose the
next outgoing packet is not lost. Then we remain in state
0, and the decoder receives a packet that is a random linear
combination of u1, i.e. a random scalar multiple of u1, and,
since q is infinitely large by assumption, this scalar multiple
is non-zero with probability 1; so the decoder can recover u 1

from the packet that it receives.
Now suppose the next outgoing packet is lost; so we move to

state 1. If an outgoing packet is transmitted and not lost before
the next packet arrives, then we again receive a random scalar
multiple of u1 and return to state 0. So suppose u2 arrives.
Then, the next outgoing packet is a random linear combination
of u1 and u2. Suppose further that this packet is received by
the decoder, so we are again in state 1. This packet, currently,
is more or less useless to the decoder; it represents a mixture
between u1 and u2 and does not allow us to determine either.
Nevertheless, it gives the decoder some information that it did
not previously know, namely, that u1 and u2 lie in a particular
linear subspace of F

2
q . Any subsequent packet received by the

decoder, then, also gives the decoder information that it did
not previously know, provided that the linear combination that
it is formed from is linearly independent of the one already
received. We call such an informative packet innovative.

What we see is that, provided that packets arrive only in
states 0, 1, . . . , m − 1, then every packet that is transmitted
from a non-zero state is innovative at the decoder if it is not
lost, and, at every return to state 0, the decoder is able to
recover one or more packets. If a packet arrives in state m,
then losses start to occur. Information in the encoder’s memory
is overwritten or corrupted, and will never be recovered. The
current contents of the encoder’s memory, however, can still
be recovered and, from the point of view of recovering these
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Fig. 1. Markov chain modeling the evolution of the difference between the number of packets received by the encoder and the number of packets transmitted
and not lost.
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Fig. 2. Markov chain modeling the behavior of the coding scheme in the limit of q → ∞.

contents, the coding system behaves as though we were in state
m. Hence, to analyze the performance of the coding scheme,
we modify the Markov chain shown in Figure 1 to that in
Figure 2. Let xt be the state of this Markov chain at time t.
We can interpret xt as the number of innovative packets the
encoder has to send at time t.

We now proceed to derive some quantities that are useful for
designing the parameters of the coding scheme. We begin with
the steady-state probabilities πi := limt→∞ Pr(xt = i). Since
{xt} is a birth-death process, its steady-state probabilities are
readily obtained. We obtain

πi =
ρi(1 − ρ)
1 − σρm

(1)

for i = 0, 1, . . . , m − 1, and

πm =
εσρm−1(1 − ρ)

1 − σρm
, (2)

where ρ := α/β = rε/(1 − r)(1 − ε) and σ := r/(1 − ε).
We assume ρ < 1, which is equivalent to r < 1 − ε, for,
if not, the capacity of the outgoing link is exceeded, and we
cannot hope for the coding scheme to be effective.

We now derive the probability of packet loss, p l. Evaluating
pl is not straightforward because, since coded packets depend
on each other, the loss of a packet owing to the encoder
exceeding its memory is usually accompanied by other packet
losses. We derive an upper bound on the probability of loss.

A packet is successfully recovered by the decoder if the
ensuing path taken in the Markov chain in Figure 2 returns to
state 0 without a packet arrival occurring in state m. Let q i be
the probability that a path, originating in state i, reaches state
0 without a packet arrival occurring in state m. Our problem
is very similar to a random walk, or ruin, problem (see, for
example, [12, Chapter XIV]). We obtain

qi =
1 − σρm−i

1 − σρm

for i = 0, 1, . . . , m.

Now, after the coding scheme has been running for some
time, a random arriving packet finds the scheme in state i with
probability πi and, with probability 1− ε, the scheme returns
to state i after the next packet transmission or, with probability
ε, it moves to state i + 1. Hence

1 − pl ≥
m−1∑

i=0

{(1 − ε)qi + εqi+1}πi

=
1

(1 − σρm)2
{1 − ρm − (1 − 2ε)mσρm

− εmσρm−1 + (1 − ε)mσρm+1}.

From which we obtain

pl ≤ ρm−1

(1 − σρm)2
{εmσ + (1 − 2σ + mσ − 2εmσ)ρ

− (1 − ε)mσρ2 + σ2ρm+1}.
(3)

We have thus far looked at the limit of q → ∞, while, in
reality, q must be finite. There are two effects of having finite
q: The first is that, while the encoder may have innovative
information to send to the decoder (i.e. x t > 0), it fails
to do so because the linear combination it chooses is not
linearly independent of the combinations already received by
the decoder. For analysis, we can consider such non-innovative
packets to be equivalent to erasures, and we find that the
effective erasure rate is ε(1 − q−xt). The Markov chain in
Figure 2 can certainly be modified to account for this effective
erasure rate, but doing so makes analysis much more tedious.

The second of the effects is that, when a new packet arrives,
it may not increase the level of innovation at the encoder.
When the memory is used as a shift register, this event arises
because a packet is overwritten before it has participated as
a linear factor in any successfully received packets, i.e. all
successfully received packets have had a coefficient of zero for
that packet. When the memory is used as an accumulator, this
event arises because the random vector chosen to multiply the
new packet results in the dimension of the encoder’s memory
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Fig. 3. Average loss (top) and delay (bottom) for 200,000 packets as a
function of memory size m with r = 0.8, ε = 0.1, and various coding field
sizes q. The upper bound on the probability of loss for q → ∞ is also drawn.

not being increased. The event of the level of innovation not
being increased by a new packet can be quite disastrous,
because it is effectively equivalent to the encoder exceeding its
memory. Fortunately, the event seems rare; in the accumulator
case, we can quantify the probability of the event exactly as
1 − qxt−m.

C. Simulation results

We chose ε = 0.1 and simulated the performance of
our coding scheme for 200,000 packets with various choices
of the parameters r, q, and m (see Figures 3 and 4). We
decoded using Gaussian elimination on packets as they were
received and used the encoder’s memory as a shift register
to keep decoding complexity constant with the length of the
packet stream. Delay was evaluated as the number of epochs
between a packet’s arrival at the encoder and it being decoded,
neglecting transmission delay. We see that a field size q ≥ 28

(perhaps even q ≥ 24) is adequate for attaining loss rates close
to the upper bound for infinite field size.

IV. USE IN A BLOCK-CODED END-TO-END CONNECTION

When our coding scheme is used as a self-contained
component, packets are sometimes lost because the decoder
receives linear combinations that, although innovative, are
not decodable. For example, suppose the decoder receives
u1 + u2, but is neither able to recover u1 nor u2 from other
packets. This packet, u1+u2, definitely gives the decoder some
information, but, without either u1 or u2, the packet must be
discarded. This would not be the case, however, if u1 and u2

were themselves coded packets—a trivial example, assuming
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Fig. 4. Average loss (top) and delay (bottom) for 200,000 packets as a
function of memory size m with r = 0.6, ε = 0.1, and various coding field
sizes q. The upper bound on the probability of loss for q → ∞ is also drawn.
Average losses of zero are not shown.
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Fig. 5. A two-link tandem network.

that we are not coding over F2, is if u1 = u2 = w1, where
w1 is a message packet for an outer code.

In such a case, we can use the encoder described in
Section II, but we should not attempt to recover the stream fed
to the encoder with the procedure detailed in Section III, or
rather, if we do, then the decoder should preserve any packets
that are linearly independent after Gaussian elimination, not
only those that are copies of packets in the encoder’s input
stream.

In this section, we consider using our coding scheme in
the simplest network with end-to-end coding and intermediate
node coding: a two-link tandem network with coding at the
intermediate node (see Figure 5). This simple two-link tandem
network that we analyze serves as a basis for longer tandem
networks and more general network topologies.

The source A has K message packets w1, w2, . . . , wK that
it encodes with an erasure code into N packets u1, u2, . . . , uN .
These packets are sent over link AB with loss rate δ to the
intermediate node B. Node B uses our coding scheme to
encode the packets that it receives, and sends coded packets
over link BC with loss rate ε to the destination C. Node C,
now, cares only about receiving K packets that are linearly-



independent transformations of u1, u2, . . . , uN because, from
these, it has an invertible linear transformation of the original
message packets w1, w2, . . . , wK . Recovering w1, w2, . . . , wK

at C is done by Gaussian elimination.

A. Model

We again adopt a discrete-time model. This model, which
is identical to that used in [6], supposes that packets are
transmitted on both links AB and BC at each epoch and that
packets transmitted on AB and BC are lost independently
with probability δ and ε, respectively. Although actual net-
works may not have transmissions that are synchronized in
this way, the synchronicity assumption may be relaxed to an
extent by accounting for differences in the packet injection
rates on links AB and BC using the loss rates δ and ε.

B. Analysis

We again conduct our analysis in the limit of infinite field
size. The considerations for finite field size are the same as
those mentioned in Section III-B.

Let xt denote the number of innovative packets (relative to
u1, u2, . . . , uN ) node B has to send at time t, and let yt denote
the number of innovative packets received by node C at time
t. By the arguments of Section III-B, the following principles
govern the evolution of xt and yt over time:

• As long as xt < m, i.e. the memory is not fully
innovative, node B increases the innovation contents of
its memory by 1 upon successful reception of a packet
over link AB.

• As long as xt > 0, i.e. the memory is not completely
redundant, the output of B is innovative, so y t will
increase by 1 provided that transmission over BC is
successful.

Let α := (1 − δ)ε, β := δ(1 − ε), and λ := (1 − δ)(1 − ε).
Then the evolution of xt and yt is modeled by the Markov
chain shown in Figure 6, where the horizontal coordinate of a
state indicates xt, and the vertical coordinate corresponds to
the variable yt.

We see that {xt} evolves as in Section III-B, so its steady-
state probabilities are given by (1) and (2) with r = 1 − δ.
Hence, once the system is sufficiently mixed, the probability
that yt increases at time t is given by

λπ0 + (1 − ε)π1 + · · · + (1 − ε)πm = (1 − ε)(1 − δπ0)
= (1 − δ)(1 − πm).

Therefore the system can operate at rate

R = (1 − δ)(1 − πm) (4)

with high probability of success.
Suppose, without loss of generality, that δ > ε, so ρ < 1. Let

R∗ be the min-cut capacity, or maximum rate, of the system,
which, in this case, is 1 − δ. Then the relative rate loss with
respect to the min-cut rate is

1 − R

R∗ = πm. (5)
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size m for δ = 0.2, ε = 0.1, and various coding field sizes q.
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C. Simulation results

As discussed before, the analysis of Section IV assumes
forming linear combinations over an infinitely large field,
resulting in a Markov chain model with transition probabilities
given in Figure 6. If on the other hand the field size is
finite, we can still find new expressions for the transition
probabilities, although the complete analysis becomes very
complex. In particular, assume that the memory is used as
an accumulator, so that the contents of the memory at each
time are uniformly random linear combinations, over F q, of
the received packets at B by that time. Then, as we have
mentioned, if the innovation content of the memory is x and a
new packet arrives at B, the probability that B can increase the
innovation of its memory by 1 is (1 − qx−m), independently
from all other past events. Similarly, the probability that the
output of B is innovative is (1 − q−x).

To quantify the effect of operations over a finite field,
we simulated the evolution of this Markov chain for two
combinations of δ and ε values that were also considered
in Section III (see Figures 7 and 8). The effective rate is
considered to be Re := yN/N , where N is the number of
packet transmissions at A, and as before, yN is the number
of innovative packets received at C by time N . We simulated
this process for N = 109 packets. For different field sizes, we
plot the relative rate loss with respect to the min-cut rate—i.e.
1 − Re/R∗—as a function of the memory size. Also plotted
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is the theoretical result from (5).
By comparing Figures 7 and 8 with Figures 3 and 4,

respectively, we see the advantage that comes from explicitly
recognizing that the coding scheme is being employed at the
intermediate node of a block-coded end-to-end connection.
The loss rate in the latter plots essentially equates to the factor
1 − Re/R∗ in the former. Thus, in the limit of infinite q, we
compare the probability of loss pl upper bounded by equation
(3) and the expression for 1 − R/R∗ given by equation (5).
We note that, in both cases, the decay as m → ∞ is as ρm.
Moreover, it follows from our discussion that 1−R/R∗ must
be a lower bound for pl, hence pl itself decays as ρm as
m → ∞.

V. CONCLUSION AND DISCUSSION

We analyzed the performance of finite-memory random
linear coding and saw that it shows promise as a means of
providing reliability in packet networks. This task is performed
in many current packet networks using ARQ, which relies
on feedback. But feedback is sometimes either not available
or not of high enough quality; and, in this case, feedforward
coding schemes such as ours become useful. We therefore
believe that our coding scheme is a good alternative to ARQ
when feedback is too slow, too unreliable, or too difficult
to implement. (Indeed, the Markov chain in Figure 2 also
describes the behavior of stop-and-wait ARQ with delay-free
feedback.)

If some feedback is available, however, it can be used to
assist our coding scheme. For example, feedback messages
can be sent from the decoder when the state of the coding
scheme approaches m, which the encoder should respond to
either by decreasing the code rate, by increasing m, or both.
This strategy requires some level of feedback that is less than
that required by an ARQ scheme and, indeed, by varying the
threshold state above which feedback messages are sent, it is
possible to obtain a full trade off of coding with feedback.

Looking more broadly, we see from this and other work that
random linear coding, as a general technique, is a promising

way of providing reliability and enabling multicast in packet
networks and that, while various implementation issues have
been discussed, no clear picture guiding the path toward a
protocol has yet been offered. This picture, we believe, should
include the finite-memory considerations of this paper as well
as the use of feedback. It may even allows us to view ARQ
as a special case.
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