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Abstract— We present a new approach to network coding
problems that could lead to a systematic method for deciding
solvability of a given network. The approach is based on a
graph theoretic formulation of the problem. The constraints at
each node in the network are represented using hyperedges in a
‘conflict’ hypergraph. This representation reduces the solvability
question to that of finding a stable set with certain properties
in a hypergraph. The approach is sufficiently general to allow
even non-linear codes by suitably modifying the conflict graph.
We also demonstrate the use of the conflict graph idea in the
context of a multicast crossbar switch. Using examples, we show
that the rate region of a multicast switch strictly improves with
network coding at the inputs, and derive an outer bound on the
rate region when intra-session network coding is allowed.

I. I NTRODUCTION

Consider a general communication network consisting of
error-free links, each with a specified capacity with some
nodes being information sources and some being information
sinks. In a fluid or transportation network, each commodity
entering a node may only be routed onto some outgoing link.
However, in information flow networks, information entering a
node may also be replicated or even encoded before being sent
out. In fact, Ahlswedeet al. [1] showed that such “network
coding” can achieve a strictly larger rate region as compared
to routing, for certain networks. The question then is to
characterize the rate region for network information flow, and
to give algorithms to construct network codes that satisfy the
rate demands of all source-sink connections in a network.

A lot of work has been done to answer these questions in
the special case of a multicast connection, where every sink
demands all information from every source. The maximum
achievable rate was characterized in terms of the min-cut
max-flow bound by [1] and [2]. Caiet al. [3] showed that
linear codes suffice to achieve the min-cut bound, while Jaggi
et al. [4] gave a polynomial time algorithm to construct
linear codes for multicast. A randomized distributed approach
was proposed by Hoet al. in [5] while deterministic coding

strategies were proposed by Fragouliet al. [6] and by Harvey
et al. [7].

For the more general case of non-multicast connections,
although several results are known, the problem predominantly
remains open. Lehmanet al. ([8]) showed that scalar linear
codes do not suffice for the non-multicast case. Médardet al.
([9]) gave an example network which requires linear coding
involving vectors over a finite field. Zegeret al. ([10]) gave
an example network that cannot be solved using a linear
code over any finite field for any vector dimension but can
be solved using a non-linear code. Reference [2] gave an
algebraic formulation of the general network coding problem
and showed that deciding solvability is equivalent to deciding
whether a certain algebraic variety is empty or not.

Our paper aims to provide a new formulation of the general
network coding problem using a graph theoretic model. The
basic idea is to note that a valid network code is essentially an
assignment of states to links such that several local constraints
are met. If the possible states of each link are represented using
vertices, and the local constraints are represented using edges
(or hyperedges) among them, then the problem of finding a
network code is essentially that of finding a stable set1 in the
“conflict hypergraph”. This formulation could potentially lead
to a systematic way of deciding the solvability of a network
coding problem. The main strength of this formulation is that
it can easily accommodate conditions such as linearity of the
code, or coding only at specific nodes, by suitably modifying
the conflict graph.

The idea of using a conflict graph to represent a problem
with several local constraints has been used before in the
context of a unicast switch scheduling in a Banyan network
in [12], and in the context of a multicast switch in [13].
This paper extends this idea to the case when fanout splitting

1In a hypergraph, astable setis a set of vertices such that no hyperedge
is fully covered.



and network coding are allowed at the inputs of a crossbar
multicast switch. Through an example we demonstrate that
network coding strictly improves the rate region of a multicast
crossbar switch. We use the conflict graph idea to derive an
outer bound on the rate region of a general multicast crossbar
with network coding.

The rest of the paper is organized as follows. Section II
gives the formal description of the conflict hypergraph repre-
sentation of a network coding problem along with an example.
Section III contains a discussion on the pros and cons of
the new formulation. In Section IV we present examples that
show that network coding strictly improves the rate region of
a multicast switch. We use the conflict graph approach to give
an outer bound on the rate region. Finally, Section V gives the
conclusions.

II. T HE CONFLICT HYPERGRAPH

We use the same network model as in [2]. We are given a
directed acyclic graphG = (V,A) representing the network.
The conflict hypergraph corresponding to a network coding
problem is defined as follows.
Vertices: Define a set of vertices for each link inA - one
vertex for each possible “composition of information” on that
link. The composition of information on a link is the net
transfer function from the source messages to the symbol
sent on the link. For example, consider a binary linear code.
The composition of information on a link refers to the set of
sources which have been XORed to form the symbol on the
link.
Edges:In a valid code, more than one vertex cannot be chosen
corresponding to each link. Hence we define an edge between
every pair of vertices that represent the same link. Moreover,
the composition on an outgoing link at any node inV is
valid only if it is a function of the incoming compositions.
Thus, the set of possible compositions of outgoing links
becomes restricted once we specify the composition of the
incoming links. This constraint is modeled using a set of
hyperedges. If the composition on an outgoing link at a node is
incompatible with a set of incoming input compositions, then
the corresponding vertices are connected by a hyperedge.

Under such a construction, a selection of vertices, one
corresponding to each link, gives a code. For a code to be
valid, the set of vertices must form a stable set,i.e. no
hyperedge may be fully covered by the chosen vertices. Thus,
a valid code has a one-to-one correspondence to a stable set in
which there is exactly one vertex corresponding to each link
in the network. In fact, any point in the convex hull of such
stable sets is achievable through time-sharing.

Fig. 1 shows an example network with a traffic demand of
1 unit from s1 to t1 and 1 unit froms2 to t2. The example
is somewhat similar in structure to the example in [11]. All
links have unit capacity. It is assumed that nodes with only
one incoming edge simply forward whatever they receive on
all outgoing links. Fig. 2 shows the corresponding conflict
hypergraph for a scalar linear code overGF (2). The two
numbers in parentheses are indicators for which of the two

Fig. 1. Example network

Fig. 2. Conflict graph corresponding to the example

sources are present in the composition of information on
that link. For instance,e3(1, 1) means link e3 carries the
XOR of both sources. Note that the only stable set that
has a vertex corresponding to every link in the network
is {e1(1, 0), e2(0, 1), e3(1, 1), e4(0, 1), e5(1, 0), e6(0, 1)}. This
gives a valid code with nodesv1, v3 and v5 XORing their
inputs while the other nodes simply forward the incoming
information. The given network is thus solvable overGF (2).

III. PROS AND CONS OF THECONFLICT GRAPH

REPRESENTATION

The conflict graph approach gives a systematic method to
find a valid code. Deciding whether a network coding problem
has a solution over a given alphabet and class of codes can
be reduced to finding whether the conflict hypergraph has a
stable set that has exactly one representative vertex for every
link in the network. Since the overall problem is represented
in terms of local constraints (hyperedges involve only vertices
corresponding to links at the same node), the representation
scales with the size of the network. The other main advantage
of this approach is the flexibility it offers to impose extra
constraints on the problem. For instance, if we want to find
a solution with network coding only at certain nodes in the
network, then we can modify the conflict graph accordingly by



restricting the output composition vertices at the other nodes,
and choose a stable set in the resulting hypergraph.

A potential problem with this approach is that the size of the
conflict graph may not scale well with the field size used even
for linear codes, since the number of possible compositions on
a link grows exponentially with the field size. Also, the general
problem of finding a stable set with the required properties
may be a hard one in some cases. Structural properties of the
conflict graph will have to be utilized to simplify the task of
finding such a stable set. This is part of future work.

IV. CONFLICT GRAPHS AND THEMULTICAST SWITCH

This section aims to demonstrate the application of the
conflict graph idea in the context of a crossbar multicast
switch. First we summarize the result given in [13]. Then we
describe examples to show the benefit of network coding in the
switch, in terms of the rate region. Finally, we use the conflict
graph idea to derive an outer bound on the rate region of a
general multicast crossbar switch with intra-session network
coding.

The result in [13] gives a graph theoretic characterization
of the rate region of a multicast crossbar switch, under the
assumption that fanout splitting2 is not allowed. The basic
idea is to represent the multicast traffic pattern in the switch
using a conflict graph. A traffic pattern consists of several
multicast flows. (The term “flow” will be used to denote any
set of packets with the same input and same set of destinations
in the switch) Each flow in the switch is represented by a
vertex in the conflict graph, and two vertices are connected
by an edge, if the corresponding flows cannot be scheduled
simultaneously in the switch. This could be due to a conflict on
the input or the output side. Under this model, a valid switch
configuration corresponds to a stable set (a set of vertices, no
two of which are connected to each other) in the conflict graph.
Any switch schedule can be viewed as a time sharing between
valid switch configurations. In the conflict graph picture, this
corresponds to a convex combination of stable sets. As a result,
the achievable rate region with no fanout splitting is the stable
set polytope of the conflict graph.

In this section, we wish to understand whether network cod-
ing improves the achievable rate region. By network coding,
we mean that the inputs of the switch are allowed to code
over the packets that are waiting in the queue. We present an
example to show that network coding, even when restricted to
packets of the same flow, can improve the rate region.

Consider the traffic patternT shown in Fig. 3. This is a
3× 3 switch, with 4 flows – one multicast flow from input 1
to all 3 outputs, and 3 unicast flows from input 2 to outputs
1, 2 and 3 respectively. The rates of the 4 flows are set at2

3 ,
1
3 , 1

3 and 1
3 respectively3.

This traffic pattern cannot be served without fanout splitting.
The reason is as follows. The unicasts cannot be served while
the multicast is being served. If the multicast flow occupies

2Fanout splitting means serving a multicast packet over several time slots,
a few destinations at a time, as opposed to transfering them all at once.

3These rates are normalized with respect to the arrival rates

Fig. 3. The example traffic pattern showing the benefit of network coding

Time Slot Code Outputs
1 P1 1,2
2 P2 2,3
3 P1 ⊕ P2 3,1

TABLE I

THE NETWORK CODE USED BY INPUT1 FOR THE MULTICAST FLOW

two-thirds of the schedule, that leaves only one third of the
time for the three unicasts. But each unicast needs a rate
of 1

3 . This cannot be achieved since they cannot be served
simultaneously.

This traffic pattern cannot be achieved even when fanout
splitting is allowed. To show this, we note that at all times
in the schedule, one of the unicasts from input 2 has to be
served, since it is a saturated input (i.e. the total inflow is 1).
Hence, in any time slot, the multicast packet can be sent to at
most 2 outputs. Thus, for every packet, there has to be at least
one more time slot where it is sent to the output(s) that have
not received it. In other words, every packet of the multicast
flow will use up at least 2 time slots, implying that a rate of
more than1

2 is not achievable. Since the required rate is2
3 ,

fanout splitting cannot achieve the given traffic pattern.
However, the traffic pattern in Fig. 3 can be achieved if

intra-flow network coding and fanout splitting are allowed. In
fact, a code over the binary field is sufficient. This is explained
next.

A. The Network Code that Solves the Example

The network code involves coding at input 1, over packets
only from the multicast flow. Input 1 codes over blocks of
2 packets, and sends them over 3 time slots. For instance,
consider a block of packets{P1, P2} from the multicast flow.
The packets in a block are coded in various ways, and sent to
different combinations of outputs, in each time slot. The code
is described in Table I. All operations are overGF (2). The⊕
sign indicates that the packets are XORed bitwise and sent.

It can be verified that this code enables each of the three
destinations to decode both packets in the block, at the end of
3 time slots. For instance, output 1 receivesP1 andP1 ⊕ P2.
From these,P1 and P2 can be recovered. Thus, each output
receives 2 packets of the multicast flow, every 3 slots. This



Flow id Input Fanout Set
1 1 1,2,3
2 1 2,3,4
3 2 1,3
4 2 2,4
5 2 1,4

TABLE II

AN EXAMPLE THAT REQUIRES CODING ACROSS FLOWS

Input 1 Input 2
Time Slot 1 P1 → {1, 3} P4 → {2, 4}
Time Slot 2 P2 → {2, 4} P3 → {1, 3}
Time Slot 3 P1 ⊕ P2 → {2, 3} P5 → {1, 4}

TABLE III

THE NETWORK CODE USED TO SATISFY THE PATTERN INTABLE II

means, an average rate of2
3 has been achieved.

As for the unicast flows, they are also served in these time
slots, in parallel. Note that, input 1 talks to only 2 outputs at
any given time (column 3 of the table). Input 2 uses this fact
to send a unicast packet to the third unoccupied output. For
instance, input 2 can talk to output 3 in time slot 1. In this
manner, input 2 conveys one unicast packet to each output in
every 3 slots. Thus, a rate of13 is achieved for each of the
unicasts. In other words, the given code satisfies all the rate
requirements of the example.

B. An Example that Requires Inter-Flow Coding

Whereas the above example shows that intra-session coding
improves the rate region, we now present another example
traffic pattern that requires inter-flow coding to be satisfied.
This example is in a2×4 switch, with 5 multicast flows. The
flows are described in Table II. The required rate for each flow
is 1

3 .
In any schedule that achieves a rate of1

3 for each of these
flows, it is easily seen that the last 3 flows have to be served at
different times (since they are from the same input), and their
fanout cannot be split. If inter-flow coding is not allowed,
then it is not possible to accommodate the first two flows
into this schedule since that would require input 1 to send
out information from two different flows at once. However,
if inter-flow coding is allowed, then the required rate can be
achieved. The schedule that achieves the required rate is shown
in Table III. In this table,Pi denotes the packet of theith flow
in Table II.

C. An Outer Bound on the Rate Region of a General Multicast
Switch

To derive an outer bound on the rate region of a general
multicast switch with fanout splitting and intra-flow network
coding, we define theenhanced conflict graphas follows. If
fanout splitting is allowed, then, one possible approach is to
think of a multicast flow as being made up of several sub-
flows. Hence, for a multicast flow with a fanout of sizef ,
define f vertices, one for each sub-flow. Conflict edges are
defined between every pair of sub-flows originating at the same

input or terminating at the same output, except that sub-flows
belonging to the same flow are not connected to each other.

Theorem 1:The stable set polytope of the enhanced conflict
graph (suitably projected from sub-flows to flows)4 is an outer
bound on the rate region with fanout splitting and intra-flow
network coding.

Proof: Let r be any achievable rate vector with one
entry for each flow. Letr’ be the corresponding rate vector
with one entry for each sub-flow – where all entries for sub-
flows of the same flow are equal to the rate of that flow in
r . Since r is within the rate region, there exists a schedule
that achieves it. In other words, there is a sequence of switch
configurations and associated codes for each time slot in the
schedule such that the average over time of the rate served for
each sub-flow equals the required rate for the corresponding
flow. More formally, given the achieving schedule, define an
indicator vector in each time slot, with one entry for each
sub-flow. This entry has a 1 for those sub-flows in which a
new degree of freedom is conveyed by the code in that time
slot. Then r’ is the time average of such indicator vectors
over all the time slots. But then, each indicator vector is the
incidence vector of some stable set of the enhanced conflict
graph. Thus, any achievable rate vector can be expressed as
a convex combination of stable sets of the enhanced conflict
graph, and this proves the theorem.

D. Network Coding Region is Within the Admissible Region

For any multicast traffic pattern, a trivial outer bound on
the rate region is that the total rate of all flows destined for
any output in the switch must be at most 1. This condition
is called theadmissibility condition. It is interesting to note
that there are traffic patterns that are admissible, but cannot be
achieved even with inter-flow network coding in a multicast
switch. One such example is given here. Consider the traffic
pattern shown in Fig. 4. Clearly, no output is oversubscribed
and therefore, the pattern is within the admissible region.
However, this traffic pattern cannot be supported even if inter-
flow network coding is allowed. To show this, we first note
that if fanout splitting is not allowed, then after serving the
multicast flow, we have only13 time for the two unicast flows
from input 2. But these flows require a rate of1

3 each, which
cannot be supported since they themselves are in conflict. Now,
suppose fanout splitting is allowed. Even then, the multicast
flow can never be split, since input 1 is saturated and splitting
the multicast flow will not allow enough time to serve all
the incoming flow at input 1. This problem remains even
if intra-flow network coding is allowed. Note that, no input
has 2 flows going to the same output. Hence, coding across
any two different flows at an input will “poison” both flows,
with some unnecessary flow’s packet. To undo the poisoning,
extra time has to be spent to send a “remedy”. But, since the
outputs are already saturated, there is no time for a remedy
flow to be sent. Therefore, inter-flow network coding will also

4Note that the enhanced conflict graph has one vertex for each sub-flow. To
project the stable set polytope onto flows, we need to impose the condition
that the rates of all sub-flows of the same flow are equal.



Fig. 4. An admissible traffic pattern that cannot be achieved even with
inter-flow network coding

not help. The problem here is that, even if we allow coding
across flows, we are still restricted to code only over flows at
the same input. This example implies that although network
coding does improve the rate region, it cannot achieve the
entire admissible region. Reference [14] gives an example of
an admissible traffic pattern that cannot be achieved even with
fanout splitting. In the same example, even if network coding
is allowed in addition to fanout splitting, the traffic cannot be
served. Hence, this is yet another example for the fact there
are admissible traffic patterns that cannot be sustained even
with network coding.

V. CONCLUSION

In this paper we have introduced a new graph-theoretic
formulation of the non-multicast network coding problem
using the concept of conflict graphs. This formulation could
provide a systematic approach to the problem of deciding
solvability of a given network, over a given field and a given
class of codes. The approach has its own pros and cons. In
particular, it can easily incorporate extra constraints on the
problem by suitably modifying the conflict graph.

We have also demonstrated the use of the conflict graph idea
in the context of a multicast crossbar switch. We have shown
that allowing network coding at the inputs of a crossbar switch
can provide benefits in the rate region and have derived an
outer bound on the general rate region when fanout splitting
and network coding are allowed using the conflict graph.
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