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Abstract—We consider the problem of minimizing the re- andd sinks. This result, however, is not easily generalized
sources used for network coding while achieving the desired to more than 2 sources. They also present an algorithm to
throughput in a multicast scenario. Since this problem is NP construct a minimal subtree graph. For target r&ethey

hard, we seek a method for quickly finding sufficiently good . Lz . A
solutions. To this end, we take an evolutionary approach basi first select a subgraph consisting &f link-disjoint paths to

on a genetic algorithm that works in an algebraic framework, €ach ofd sinks. In the labeled line graph corresponding to the
combined with randomized polynomial identity testing mettods. subgraph, each link is sequentially examined and removed if
We demonstrate the advantage of the proposed method over jts removal does not affect the achievable rate.

other existing minimal approaches by carrying out simulatons .
on a number of different sets of network topologies. We also Langberget al. [3] derive an upperbound on the number of

show, as the more important benefit of the proposed approach, required coding nodes for both acyc_lic and cyclic networks.
its applicability to a variety of generalized optimization scenarios. The bounds depend only on the desired rate and the number

of sinks. They first transform the given network to give a
new network in which each node has degree at most 3. Then,
similarly as above, they sequentially remove the links wuth
which the target rate is still achievable to obtain a minimal

; . . . . subgraph. The bounds are calculated for the resulting mktwo
multicast of rate 2 is possible. In this example, networkicgd They also show that even approximating the minimum number

IS nqt needed _at all nodes; only nodaeeds to.comblne |ts. of coding nodes within any multiplicative factor or withim a
two inputs while all other nodes perform routing only. Thi dditive factor offV’|1~¢ is NP-hard

observation naturally leads us to the following questioa: Both approaches, after removing links in a greedy fashion,

achieve the desired throughput, at which nodes does network : . A :
. assume network coding at all nodes with multiple incoming
coding need to occur?

If network coding is handled at the application layer, we calfﬂks in the remaining graph. An illustrative example belovv_
ows how these approaches may lead to a suboptimal solution

minimize the performance penalty incurred by network cgdinS .
a very simple network.

by identifying the nodes where access up to the applicatigh

layer is not necessary. If, on the other hand, network coding

is done by a special lower layer device such as a router with

the capability of mixing its inputs, it is of natural intetes G.Q G.Q G

reduce the number of such devices deployed while satisfyi.’

the communication demand.
Unfortunately, the problem of determining a minimal set !

of nodes where coding is required is NP-hard: its decisio ()

problem, which decides whether the given multicast ra s i) (@ () (@ (t2)

is achievable without coding, reduces to a multiple Steiner

subgraph problem, which is NP-hard [1]. (@) Network B (b) Network B’  (c) Network B (d) Network C
While most of the network coding literature assumes coding Fig. 1. Sample Networks for Example 1

is done at all nodes, the problem of reducing the amount of

resources engaged in network coding has been addressed inE:&ample 1: Suppose that link in network B has capacity

few recent works. . _ 2, which we represent by two parallel unit-capacity links as
Fragouliet al. [2] show_that coding IS reqwre_d at no Morgy, newwork B/ (Fig. 1(b)). Note that the additional capacity
thand — 1 nodes in acyclic networks with 2 unit-rate SOUrC€31iows for a multicast of rate 2 without network coding.
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I. INTRODUCTION

It is well known that in networkB (Fig. 1(a)), by allowing
network coding rather than only forwarding and replicatiag




Langberget al’'s method first decomposes nodesandw scheme that enables dlkinks to receive all of the information
as in Fig. 1(c); for this network, there are many sequencssnt.
of link removals that result in a subgraph where coding is Given an achievable rat, we wish to determine a minimal
required: e.g., ifl; is the first visited link, nodez; must set of nodes where coding is required in order to achieve this
perform coding. Empirical tests show that the probabilitgtt rate. With network coding at all nodes, the maximum achiev-
coding is required for random link removals is about 0.68. able multicast rate is the minimum of the individual max-
Let us consider another netwo€k (Fig. 1(d)). Here further flow bounds between the source and each of the sinks [5]. An
link removal is not possible, but coding at the merging nedealgebraic formulation of the general network coding prable
is not needed. We can observe that obtaining a subgraph végpears in [6]. We will consider how this algebraic formidat
minimal, or even minimum, link usage does not rule out thean be applied to the case where network coding is done only
nodes where coding is possible but not necessary. [0 at some subset of the nodes.
We only consider linear coding, where a node’s output on
Bhattad et al. [4] give linear programming formulations an outgoing link is a linear combination of the inputs from it
for the problems of optimizing over various resources uségacoming links. Linear coding is sufficient for multicast][7
for network coding, based on a model allowing continuousis clear that no coding is required at a node with only a
flows. Their optimal formulations, however, involve a numbesingle input since these nodes have nothing to combine with
of variables and constraints that grows exponentially whiln (a formal proof appears in [8]).
number of sinks, which makes it hard to apply the formulation If the linearly coded output from a node with multiple
to the case of a large number of sinks, even at the price inEoming links weights all but one incoming message by zero,
sacrificed optimality. then effectively no coding occurs on that link; even if the
Rather than tackling an NP-hard problem, we focus amnly nonzero coefficient is not identity, there is anotheding
quickly finding a sufficiently good solution. One can observecheme that replaces the coefficient by identity [3]. Hetze,
in the above example that finding a good order of linknd the nodes where coding is not necessary, we need to verify
traversal, out of exponentially many possible sequencesdheach of the nodes with multiple incoming links whether we
general, is critical to the quality of the solutions by theotwcan restrict the given node’s outputs to depend on a single
minimal approaches. Likewise, the problem of deciding whemput without destroying the achievability of the givenaat
to perform coding involves a selection out of a large number We perform the above verification as follows: We first
of choices. Our method manages a set of candidate soluti@esstruct the labeled line graghf = (V’, E’) corresponding
of a suitably small size, sequentially enhancing thesetisnlsi to G [6]. Then, to each link irG’ we assign a link coefficient,
in an evolutionary manner. denoted by¢;, and construct a system matrix for each of
The above example also illustrates a possible tradeoff hi-connections. Each system matrix is dtrby-R matrix
tween network coding and link usage. Reducing usage asdi@scribing the relationship between the input from the caur
the subgraph selection of Fragoetial.s method may increase and the output to that sink. Le®(¢) denote the product of
coding in the remaining subgraph; minimizing coding firsymathe determinants of thoseématrices. The given multicast rate
increase link usage. An optimal choice depends on thevelatis achievable if and only ifP(£) is nonzero over the ring of
cost of each resource; our proposed method can be gendralzelynomials in variableg [6].
to the case where optimization over both kinds of costs isEach output of any node i@ with multiple incoming links
needed. is represented by a node & with multiple incoming links.
This paper is organized as follows. Section Il preseniherefore, we need to inspect only the nodes@h with
the problem formulation with a brief introduction to Gemeti multiple incoming links. If there exists a vector of coeféints
Algorithms. Section 1l describes the details of our progms for the given node iz’ such that all but one of the coefficients
approach. Section IV gives experimental results and coimpds zero and the resulting (&) is a nonzero polynomial, we can
son with other minimal approaches. Section V generalizes atonclude that coding is not required at nadassuming that
method to other optimization scenarios. Section VI conetudall other nodes perform coding.
with a summary of the results and a discussion of future work. The difficulty arises when several nodes are considered
together; whether coding is needed at a node depends on
Il. PROBLEM FORMULATION whether coding is done at other nodes and thus the above
Throughout the paper, we assume that a network is giveerification procedure cannot be applied separately to each
by an acyclic directed multigrapl = (V, E') where each link node. For example, in networR (Fig. 2) with three sinks
has a unit capacity. To represent links with larger capagiti and the target multicast rate 2, when either nad® nodeb
multiple links are allowed between a pair of nodes. Onlig tested separately, we find that neither must be a coding
integer flows are allowed, hence there is either no flow orrde. Looking at the network as a whole, however, we
unit rate of flow on each link. We consider the single multicagéind that coding is required at at least one @fand b to
scenario in which a single soureee V wishes to transmit achieve capacity. As the number of involved nodes increases
data at rateR to a setl’ C V of sink nodes, wherél'| = d. checking the necessity of coding may require the evaluation
Rate R is said to be achievable if there exists a transmissiaf exponentially many selections of link coefficients.



(s) dimensional binary vectors is not smooth or unimodal with
respect to the number of coding nodes and the structure of the
O /@\ () space consisting of the feasible vectors is not well undedst
O) O Also, the NP-hardness of the problem allows us to only hope
for quickly finding a good solution, even if that solution istn
() () necessarily optimal.
Note also that, while it is hard to characterize the striectur
@ ©) @) of the search space, once provided with a solution we can
easily verify its feasibility and count the number of coding
Fig. 2. Network D showing correlation between coding at different nodesnodes therein. Thus, if the use of genetic operations can
suitably limit the size of the search space, a solution can be

obtained fairly efficiently.
Note that we are only interested in whether or not all but one

of the coefficients can zero. Hence if there arecoefficients, Ill. PROPOSEDAPPROACH

we are to explore am-dimensional binary space. As we try Since our decision on the necessity of coding at a node is
to find the nodes where coding is necessary, we congitter based on the inspection of all of its outgoing links, and the
choices with little theoretical guidance on the optimalicko number of coding links is a more accurate estimator of the
We employ a search method, based on a Genetic Algorittamount of computation incurred by coding [3], our objective
(GA), that serves to efficiently reduce the size of the spaaethis section is to minimize the number of codiligks. We

to be searched using an evolutionary mechanism. We bediscuss the generalization to codingdesin the next section.
with an introduction to GAs. Details on our algorithm follow We employ the structure of the standard GA introduced

in subsequent sections. by Holland [13] (see Fig. 3) with its elements specifically
_ ) ) ) designed to fit our problem, as will be described below.
A. A Brief Introduction to Genetic Algorithms Note that GAs performance depends on the details of its

GAs are stochastic search methods that mimic gene@tements such as the selection mechanism, crossover aperat
phenomena such as gene recombination, mutation and survivgmerical parameters, etc. Theory to accurately prediatiwh
of the fittest. GAs have been applied to a large number e@@mbination of such elements is best suited to a specific
scientific and engineering problems, including many combproblem is not yet available [11]. We thus test several awic
natorial optimization problems in networks (e.g., [9], JLO that work well in many other studies and pick the one that
GAs [11], [12] operate on a set of candidate solutions, dallavorks best for our problem.
a population Each solution is typically represented by a bit
string, called achromosomeEach chromosome is assigned a

fitness valughat measures how well the chromosome solves { ; i

: H nitialize population;
the problem at hand, compared with o'Fher chromosome§ in evaluate population;
the population. From the current population, a new poparati while termination criterion not reached
is generated typ|ca_lly using three genetic operatmiectlom. select solutions for next population:
crossoverandmutation Chromosomes for the new population perform crossover and mutation;

are selected randomly (with replacement) in such a way that evaluate population;

fitter chromosomes are selected with higher probability. Fo v

crossover, survived chromosomes are randomly paired, and

then two chromosomes in each pair exchange a subset of

their bit strings to create two offspring. Chromosomes heat Fig. 3. Standard Genetic Algorithm Structure [12]

subject to mutation, which refers to random flips of the bits

applied individually to each of the new chromosomes. The ) o

process of evaluation, selection, crossover and mutationd A- Notations and Preliminaries

onegenerationin the execution of a GA. The above process We first construct the labeled line grajgh, in which we

is iterated with the newly generated population succelsiveefer to each node with multiple incoming links asading

replacing the current one. The GA terminates when a certgioint and letC' be the the set of all coding points. For the

stopping criterion is reached, e.g., after a predefined mumbth coding pointc; € C, we let x; be the set of coefficients

of generations. associated with the incoming links tq, and letxy denote
There are several aspects of our problem suggesting tte union of all suchy;’s where|x| = m. We assume that the

a GA-based method may be a promising candidate: GA ha@mponents of vectaf, which consists of all link coefficients,

proven to work well if the space to be searched is large, baite rearranged such that the firstcomponents of belong

known not to be perfectly smooth or unimodal, or if the spade x, i.e.,§ € x(1 < j < m). As discussed in Section I,

is not well understood, and if finding a global optimum igach chromosome is represented byraimensional binary

not critical [11]. Note that the search space consistingnef vector, whosekth component is associated with. Once a




chromosomey is given, we refer to each coding poiat as by increasing the field size or repeating the random test at an
inactiveif the number of 1's in the,'s components associatedadditional cost of computation.

with the sety; is at most one, andctive otherwise. Alternatively, since we are interested in the existence of a
N ) network code in a field of any size, the above randomized
B. Initial Population test, as those originally developed by Schwartz, Zippeti an

The initial population is randomly constructed such thamany others (e.g., [15]), can generalize as follows: If we
each component of the chromosomes is assigned 0 omdsign random integers from a finite s&tand operate in
with equal probabilities. Note, however, that the size af tHhe real field, the randomized test, which now has the error
population, typically not exceeding a few hundred, is mugbrobability no greater tha(l — dv/|S|), can run substantially
smaller than the size of the entire space, and thus it is vdagter than that performing matrix computations in a large
unlikely that a feasible chromosome is seeded into thealnitifinite field. Note, however, that very large components of
population. As a result, the algorithm may fail to yield a/;'s due to the matrix inversion(/ — F)~!, can prevent
single feasible solution for a considerable number of eardkact calculation of determinants numerically, and in sach
generations. case we may choose to use a numerical method such as the

We thus insert into the randomly generated population tieendition number, which signifies that the matrix is singula
vector of all 1’s, which renders all coding points active.isTh The condition number is efficiently calculated by singular
solution is feasible by assumption, and in our experimentglue decomposition and is considered a numerically rigliab
this insertion improves the performance of the algorithmyveindicator of matrix singularity [16], [17].
significantly. For instance, without the all-one vectorg th In addition, there are many more recent algorithms for this
algorithm almost always ends with the population of onlpurpose, called polynomial identity tests, some of which as
infeasible chromosomes for a mid-sized problem with= 80. reduced number of random bits [18], [19] and some of which

take deterministic approaches [20], [21]. These algorithm
C. Fitness Evaluation are not used for our numerical simulations, nevertheless th

We define the fitness valuE of chromosomey as possibility of adopting any efficient testing method, irdihg
h those mentioned above, is fully open.

D. Genetic Operators and Numerical Parameters
We employ a rank-based selection mechanism which in
To verify the feasibility of a given chromosomewe evaluate Many cases allows for more successful search than the akigin

Fly) = number of activer;’s, if y is feasible,
Y\, it y is infeasible

the polynomialP(¢) such that fitness-proportionate selection methods [11]; in parégudn
- exponential ranking method is used, as suggested by [22],
P(&)]en=0for k sit.ye=0(1<k<m). where the probability of a particular chromosome’s setecti

decreases exponentially with its rank in the population. We

Note that each transfer matrix/; (1 < i < d), which is also putelitisminto effect by retaining the best chromosome
defined as\f; = A(I — F)~'B7 in [6], has sizeR-by-R for P y ngu
! unaltered at each generation, which is found by many re-

multicast rateR, and each of its elements is a polynomial CON- - rchers to significantly improve the GAS erformancd.[11
sisting ofO(u|E|?) terms, where: is the maximum number of 9 y Imp P !

. . . We use parameterized uniform crossover, where each pair
ways to traverse from any link to another in the network, Whic ) ! "
. . . . of chromosomes is selected for crossover with probabili®y 0
in general grows exponentially with the size of the network.

? : and the two chromosomes in a selected pair exchange each
The determinant ofi/; thus containg)((u|E|?)f - R!) terms, P 9

. . . . Sl bit independently with probability 0.8. Parameterizedfomm
which makes keeping'(¢) in polynomial form very inefficient crossover is commonly used in recent GA applications [11]

(or even impossible) for its exponential size. and indeed turns out to work better for our problem than

Rather than treatm@’(g) explicity in polynomial form, we other traditional crossover operators such as one- or vwatp

keepA, F, and B;'s |r.1 matr|>_< form and r_ely on one of the crossovers. This fact may indicate that the correlatiomben
following approaches: The first method is to assign random . S . : . -
L coding points is not necessarily associated with the priyxim
elements from a finite field to the nonzero elements of, between their corresponding components in a chromosome
F, and theB;’s, and then to declar®(¢) to be nonzero if the P 9 P ’

roduct of the determinants evaluates to a nonzero elemgﬁ mutation, we use simple binary mutation, where each bit
P i - .Ih 'each chromosome is flipped independently with probabilit
in F,, and zero otherwise. The probability of an error i

declaringP (&) # 0 is 0; the probability of an error in declaring .Th.e population size is set to 150, and the iteration is

P(£) = 0 is bounded above by — (1 — d/q)”, wherev is terminated if no progress is made in the best value of the

the maximum number of links in any set of I|_nks COnStItUtIn%opula’[ion for 100 generations or if the generation number
a flow solution from the source to any receiver [14]. In ouf

N . : ; eaches a limit: 300 for the simulations in the next section.
optimization, this one-sided error makes our solution more

conservative, which is far less critical than the oppositee; IV. PERFORMANCEEVALUATION

where an infeasible solution might mistakenly be declaredWe demonstrate the performance of our approach by car-

feasible. We can lower the error bound as much as we desiyeng out simulations on various network topologies. For



Set | Set Il Set Il
3 Copies 7 Copies 15 Copies 31 Copies LATA-X ISP 1755 (20,12,4) (40,12,3)
Best | Avg. | Best | Avg. | Best | Avg. Best | Avg. Best | Avg. | Best | Avg. | Best | Avg. | Best | Avg.
Proposed 0 0.65 0 2.15 3 5.35 12 17.20 0 0.35 0 0.25 0 1.20 0 1.05
Minimal 1 3 3.00 7 7.00 | 15 15.00 | 31 | 31.00 0 0.90 0 1.05 0 1.35 1 1.85
Minimal 2 0 2.15 2 4.70 7 11.60 | 28 | 52.80 0 1.10 0 0.80 0 1.85 0 1.90

TABLE |
NUMBER OF CODING LINKS CALCULATED BY THE PROPOSEDMETHOD AND TWO MINIMAL APPROACHES

comparison, we also perform numerical tests using the twelected; in particular, the parameters used are (9 siaks, r
previously mentioned minimal approaches by Fragaetli 2) for LATA-X and (4 sinks, rate 3) for ISP 1755.

al. [2] ("Minimal 1") and Langberget al. [3] ("Minimal

27), in both of which link removal is done in a randomC- Set Il of Networks

order. For Minimal 1, the subgraph is selected also by aAs another set of sample networks, we employ the topolo-
minimal approach, which starting from the original graplyies generated by the algorithm in [24], which constructs
sequentially removes the links whose removal does notaestconnected acyclic directed graphs uniformly at random; two
the achievability. For each of the three methods, the bedt ametworks with parameters (20 nodes, 80 links, 12 sinks, rate
the average values obtained in 20 random trials are showndinand (40 nodes, 120 links, 12 sinks, rate 3) are used for
Table 1. simulations.

A. Set | of Networks In our experiments, the performance of our approach is

) , everywhere at least as good and often far better than that
Consider the network constructed by cascading a numk?ﬁrboth Minimal 1 and Minimal 2 both in the best and in

of copies of networkB’ in Example 1(Fig. 1(b)) such that e average values. For networks in set I, note that the gap

the source ?f e_ach subse_quent co_pyBﬁﬂs replaced by an poyeen the best values of our algorithm and the two minimal
earlier copy's smk (see Fig. 4). I,t is clear Fhat the netvmorl<a proaches grows with the size of the network. For netwarks i
constructed in this way have maximum multicast rate 2, whi ts Il and 111, in most cases, there is no difference in that be
is achievable without coding; i.e., the optimal number Qfyes obtained by 20 trials of the proposed and the minimal
coding links is always zero. For simulations, we use flxeda'pproaches, which may indicate that the scenario captuyred b
depth binary trees containing 3, 7, 15, and 31 copied3of network B’ in Example 1 is not very likely to occur in general

and,4, 8, 16, a”?' 32 sinks, re§pectlvely; in each network, '%fpologies. The proposed method may be even more useful
tree’s root node is the network’s source and the end nodes e running many iterations is computationally infeasibl

the network's sinks. The benefit of the proposed method goes beyond its superior
performance in reducing the number of coding links. A more
important benefit is its applicability to various generatiz
scenarios, as will be discussed in the next section.

V. GENERALIZATION
Unlike Minimal 1 and Minimal 2, our proposed approach

can be readily applied to a variety of generalized problems
8 that involve non-coding links/nodes and thus are hard teesol
N optimally.
@ & O 1) Number of Coding NodesThe proposed method can

easily generalize to the case of minimizing coding nodes,

Fig. 4. Example from the set | of networks: 3 copies®f in a depth-1 which initially was our objective. For feasible chromosome
binary tree y, we alternatively defineF(y) as the number of nodes
that require coding on one or more outgoing links. Table Il
shows the number of required coding nodes computed by this
B. Set Il of Networks modified method for the set | of networks. (For the minimal

We also apply our method to sample backbone topologiegproaches, the number of coding nodes happens to be the
the local access transport area network X (LATA-X) and ISPame as that of coding links; i.e., at any merging node, if one
1755 (Ebone) topology obtained from the Rocketfuel Projeotitgoing link does coding, the other outgoing link is always
[23]. Assuming for simplicity that each link has unit caggci removed. Thus, see Table | for comparison.)
we choose the orientation of each link such that no cycle is2) Different Coding Coststf the cost for coding is different
generated while the given multicast rate is achievable &éetw at each of the links, one would be interested in minimizing
a source and the given number of sinks that are arbitrarilye total overhead incurred by coding, which can be caledlat



PERFORMANCE OF THEPROPOSEDMETHOD FORCODING NODES

3 Copies 7 Copies 15 Copies 31 Copies

Best [ Avg. | Best]| Avg. | Best| Avg. | Best| Avg.

0 0.85 0 2.60 3 6.00 | 12 | 19.05
TABLE I

There are several topics for further research. GA compo-
nents of the proposed approach, such as the method for con-
structing the initial population, can be further speciadiZor
the problem at hand to improve the algorithm’s performance.
The framework of the proposed approach may be modified
to work with cyclic graphs or to allow for semi-decentratize
operation with only a limited amount of feedback. Also, more

by summing up the coding cost at each of the active codifigcent GA techniques, e.g., linkage learning GA which sffer
points and using this sum as the fitness value of a feasiljleproved scalability by exploiting the correlations beéme
chromosome. A similar generalization works for the cag@riables that are to be learned as the algorithm progresses
of coding nodes. On the other hand, the previous minimafe worth investigating for their applicability in the cert of
approaches do not have a natural generalization to thisgoennetwork coding.

unless the coding costs can be clearly ordered, in which case
traversing the links/nodes in descending order of cost seer,

reasonable.

3) Routing Solution and Network Cod@ur method deter-
mines if each of the link coefficients ipis either to be zeroed
out or to remain indeterminate. Note that the link coeffitsen
not belonging toy, which we callrouting coefficientsalso
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