
On Minimizing Network Coding Resources:
An Evolutionary Approach

Minkyu Kim, Chang Wook Ahn, Muriel Médard, and Michelle Effros

Abstract— We consider the problem of minimizing the re-
sources used for network coding while achieving the desired
throughput in a multicast scenario. Since this problem is NP-
hard, we seek a method for quickly finding sufficiently good
solutions. To this end, we take an evolutionary approach based
on a genetic algorithm that works in an algebraic framework,
combined with randomized polynomial identity testing methods.
We demonstrate the advantage of the proposed method over
other existing minimal approaches by carrying out simulations
on a number of different sets of network topologies. We also
show, as the more important benefit of the proposed approach,
its applicability to a variety of generalized optimization scenarios.

I. I NTRODUCTION

It is well known that in networkB (Fig. 1(a)), by allowing
network coding rather than only forwarding and replicating, a
multicast of rate 2 is possible. In this example, network coding
is not needed at all nodes; only nodez needs to combine its
two inputs while all other nodes perform routing only. This
observation naturally leads us to the following question: To
achieve the desired throughput, at which nodes does network
coding need to occur?

If network coding is handled at the application layer, we can
minimize the performance penalty incurred by network coding
by identifying the nodes where access up to the application
layer is not necessary. If, on the other hand, network coding
is done by a special lower layer device such as a router with
the capability of mixing its inputs, it is of natural interest to
reduce the number of such devices deployed while satisfying
the communication demand.

Unfortunately, the problem of determining a minimal set
of nodes where coding is required is NP-hard: its decision
problem, which decides whether the given multicast rate
is achievable without coding, reduces to a multiple Steiner
subgraph problem, which is NP-hard [1].

While most of the network coding literature assumes coding
is done at all nodes, the problem of reducing the amount of
resources engaged in network coding has been addressed in a
few recent works.

Fragouliet al. [2] show that coding is required at no more
thand− 1 nodes in acyclic networks with 2 unit-rate sources

This work was done while M. Kim was doing an internship at Samsung
Advanced Institute of Technology.

M. Kim and M. Médard are with the Laboratory of Information and
Decision Systems, Massachusetts Institute of Technology,Cambridge, MA
02139, USA ({minkyu,medard}@mit.edu).

C. W. Ahn is with Communication Laboratory, Samsung Advanced Institute
of Technology, Yongin, Gyeonggi 446-712, Korea (cwan.ahn@samsung.com).

M. Effros is with Data Compression Laboratory, California Institute of
Technology, Pasadena, CA 91125, USA (effros@caltech.edu).

and d sinks. This result, however, is not easily generalized
to more than 2 sources. They also present an algorithm to
construct a minimal subtree graph. For target rateR, they
first select a subgraph consisting ofR link-disjoint paths to
each ofd sinks. In the labeled line graph corresponding to the
subgraph, each link is sequentially examined and removed if
its removal does not affect the achievable rate.

Langberget al. [3] derive an upperbound on the number of
required coding nodes for both acyclic and cyclic networks.
The bounds depend only on the desired rate and the number
of sinks. They first transform the given network to give a
new network in which each node has degree at most 3. Then,
similarly as above, they sequentially remove the links without
which the target rate is still achievable to obtain a minimal
subgraph. The bounds are calculated for the resulting network.
They also show that even approximating the minimum number
of coding nodes within any multiplicative factor or within an
additive factor of|V |1−ǫ is NP-hard.

Both approaches, after removing links in a greedy fashion,
assume network coding at all nodes with multiple incoming
links in the remaining graph. An illustrative example below
shows how these approaches may lead to a suboptimal solution
in a very simple network.

t 
s

t x yzwl
(a) NetworkB

t 
s

t x yzwl  l 
(b) NetworkB′

t 
s

t 
x yl  l z w  z z  z w w  w 

(c) NetworkB′′

t 
s

t x yz
(d) NetworkC

Fig. 1. Sample Networks for Example 1

Example 1:Suppose that linkl in networkB has capacity
2, which we represent by two parallel unit-capacity links as
in network B′ (Fig. 1(b)). Note that the additional capacity
allows for a multicast of rate 2 without network coding.

In Fragouliet al.’s approach, either of linksl1 andl2 may be
removed while selecting the subgraph, which renders codingat
z necessary in the remaining graph. If, on the other hand, both
links l1 andl2 are retained in the subgraph, whether coding is
required depends on the order in which the links are visited
to construct a minimal subtree graph; for a randomly chosen
order of link inspection, coding is required with probability 1

2 .

Langberget al.’s method first decomposes nodesz and w
as in Fig. 1(c); for this network, there are many sequences
of link removals that result in a subgraph where coding is
required: e.g., ifl1 is the first visited link, nodez4 must
perform coding. Empirical tests show that the probability that
coding is required for random link removals is about 0.68.

Let us consider another networkC (Fig. 1(d)). Here further
link removal is not possible, but coding at the merging nodez
is not needed. We can observe that obtaining a subgraph with
minimal, or even minimum, link usage does not rule out the
nodes where coding is possible but not necessary. �

Bhattad et al. [4] give linear programming formulations
for the problems of optimizing over various resources used
for network coding, based on a model allowing continuous
flows. Their optimal formulations, however, involve a number
of variables and constraints that grows exponentially withthe
number of sinks, which makes it hard to apply the formulations
to the case of a large number of sinks, even at the price of
sacrificed optimality.

Rather than tackling an NP-hard problem, we focus on
quickly finding a sufficiently good solution. One can observe
in the above example that finding a good order of link
traversal, out of exponentially many possible sequences in
general, is critical to the quality of the solutions by the two
minimal approaches. Likewise, the problem of deciding where
to perform coding involves a selection out of a large number
of choices. Our method manages a set of candidate solutions
of a suitably small size, sequentially enhancing these solutions
in an evolutionary manner.

The above example also illustrates a possible tradeoff be-
tween network coding and link usage. Reducing usage as in
the subgraph selection of Fragouliet al.’s method may increase
coding in the remaining subgraph; minimizing coding first may
increase link usage. An optimal choice depends on the relative
cost of each resource; our proposed method can be generalized
to the case where optimization over both kinds of costs is
needed.

This paper is organized as follows. Section II presents
the problem formulation with a brief introduction to Genetic
Algorithms. Section III describes the details of our proposed
approach. Section IV gives experimental results and compari-
son with other minimal approaches. Section V generalizes our
method to other optimization scenarios. Section VI concludes
with a summary of the results and a discussion of future work.

II. PROBLEM FORMULATION

Throughout the paper, we assume that a network is given
by an acyclic directed multigraphG = (V, E) where each link
has a unit capacity. To represent links with larger capacities,
multiple links are allowed between a pair of nodes. Only
integer flows are allowed, hence there is either no flow or a
unit rate of flow on each link. We consider the single multicast
scenario in which a single sources ∈ V wishes to transmit
data at rateR to a setT ⊂ V of sink nodes, where|T | = d.
RateR is said to be achievable if there exists a transmission

scheme that enables alld sinks to receive all of the information
sent.

Given an achievable rateR, we wish to determine a minimal
set of nodes where coding is required in order to achieve this
rate. With network coding at all nodes, the maximum achiev-
able multicast rate is the minimum of the individual max-
flow bounds between the source and each of the sinks [5]. An
algebraic formulation of the general network coding problem
appears in [6]. We will consider how this algebraic formulation
can be applied to the case where network coding is done only
at some subset of the nodes.

We only consider linear coding, where a node’s output on
an outgoing link is a linear combination of the inputs from its
incoming links. Linear coding is sufficient for multicast [7].
It is clear that no coding is required at a node with only a
single input since these nodes have nothing to combine with
(a formal proof appears in [8]).

If the linearly coded output from a node with multiple
incoming links weights all but one incoming message by zero,
then effectively no coding occurs on that link; even if the
only nonzero coefficient is not identity, there is another coding
scheme that replaces the coefficient by identity [3]. Hence,to
find the nodes where coding is not necessary, we need to verify
at each of the nodes with multiple incoming links whether we
can restrict the given node’s outputs to depend on a single
input without destroying the achievability of the given rate.

We perform the above verification as follows: We first
construct the labeled line graphG′ = (V ′, E′) corresponding
to G [6]. Then, to each link inG′ we assign a link coefficient,
denoted byξi, and construct a system matrix for each of
d connections. Each system matrix is anR-by-R matrix
describing the relationship between the input from the source
and the output to that sink. LetP (ξ) denote the product of
the determinants of thosed matrices. The given multicast rate
is achievable if and only ifP (ξ) is nonzero over the ring of
polynomials in variablesξ [6].

Each output of any node inG with multiple incoming links
is represented by a node inG′ with multiple incoming links.
Therefore, we need to inspect only the nodes inG′ with
multiple incoming links. If there exists a vector of coefficients
for the given node inG′ such that all but one of the coefficients
is zero and the resultingP (ξ) is a nonzero polynomial, we can
conclude that coding is not required at nodev assuming that
all other nodes perform coding.

The difficulty arises when several nodes are considered
together; whether coding is needed at a node depends on
whether coding is done at other nodes and thus the above
verification procedure cannot be applied separately to each
node. For example, in networkD (Fig. 2) with three sinks
and the target multicast rate 2, when either nodea or nodeb
is tested separately, we find that neither must be a coding
node. Looking at the network as a whole, however, we
find that coding is required at at least one ofa and b to
achieve capacity. As the number of involved nodes increases,
checking the necessity of coding may require the evaluation
of exponentially many selections of link coefficients.

t 
s

t 
x za c bdt 

y
Fig. 2. NetworkD showing correlation between coding at different nodes.

Note that we are only interested in whether or not all but one
of the coefficients can zero. Hence if there arem coefficients,
we are to explore anm-dimensional binary space. As we try
to find the nodes where coding is necessary, we consider2m

choices with little theoretical guidance on the optimal choice.
We employ a search method, based on a Genetic Algorithm
(GA), that serves to efficiently reduce the size of the space
to be searched using an evolutionary mechanism. We begin
with an introduction to GAs. Details on our algorithm follow
in subsequent sections.

A. A Brief Introduction to Genetic Algorithms

GAs are stochastic search methods that mimic genetic
phenomena such as gene recombination, mutation and survival
of the fittest. GAs have been applied to a large number of
scientific and engineering problems, including many combi-
natorial optimization problems in networks (e.g., [9], [10]).

GAs [11], [12] operate on a set of candidate solutions, called
a population. Each solution is typically represented by a bit
string, called achromosome. Each chromosome is assigned a
fitness valuethat measures how well the chromosome solves
the problem at hand, compared with other chromosomes in
the population. From the current population, a new population
is generated typically using three genetic operators:selection,
crossoverandmutation. Chromosomes for the new population
are selected randomly (with replacement) in such a way that
fitter chromosomes are selected with higher probability. For
crossover, survived chromosomes are randomly paired, and
then two chromosomes in each pair exchange a subset of
their bit strings to create two offspring. Chromosomes are then
subject to mutation, which refers to random flips of the bits
applied individually to each of the new chromosomes. The
process of evaluation, selection, crossover and mutation forms
onegenerationin the execution of a GA. The above process
is iterated with the newly generated population successively
replacing the current one. The GA terminates when a certain
stopping criterion is reached, e.g., after a predefined number
of generations.

There are several aspects of our problem suggesting that
a GA-based method may be a promising candidate: GA has
proven to work well if the space to be searched is large, but
known not to be perfectly smooth or unimodal, or if the space
is not well understood, and if finding a global optimum is
not critical [11]. Note that the search space consisting ofm-

dimensional binary vectors is not smooth or unimodal with
respect to the number of coding nodes and the structure of the
space consisting of the feasible vectors is not well understood.
Also, the NP-hardness of the problem allows us to only hope
for quickly finding a good solution, even if that solution is not
necessarily optimal.

Note also that, while it is hard to characterize the structure
of the search space, once provided with a solution we can
easily verify its feasibility and count the number of coding
nodes therein. Thus, if the use of genetic operations can
suitably limit the size of the search space, a solution can be
obtained fairly efficiently.

III. PROPOSEDAPPROACH

Since our decision on the necessity of coding at a node is
based on the inspection of all of its outgoing links, and the
number of coding links is a more accurate estimator of the
amount of computation incurred by coding [3], our objective
in this section is to minimize the number of codinglinks. We
discuss the generalization to codingnodesin the next section.

We employ the structure of the standard GA introduced
by Holland [13] (see Fig. 3) with its elements specifically
designed to fit our problem, as will be described below.
Note that GA’s performance depends on the details of its
elements such as the selection mechanism, crossover operator,
numerical parameters, etc. Theory to accurately predict which
combination of such elements is best suited to a specific
problem is not yet available [11]. We thus test several choices
that work well in many other studies and pick the one that
works best for our problem.{ i n i t i a l i z e p o p u l a t i o n ;e v a l u a t e p o p u l a t i o n ;w h i l e t e r m i n a t i o n c r i t e r i o n n o t r e a c h e d{ s e l e c t s o l u t i o n s f o r n e x t p o p u l a t i o n ;p e r f o r m c r o s s o v e r a n d m u t a t i o n ;e v a l u a t e p o p u l a t i o n ;}}

Fig. 3. Standard Genetic Algorithm Structure [12]

A. Notations and Preliminaries

We first construct the labeled line graphG′, in which we
refer to each node with multiple incoming links as acoding
point and letC be the the set of all coding points. For the
ith coding pointci ∈ C, we let χi be the set of coefficients
associated with the incoming links toci, and let χ denote
the union of all suchχi’s where|χ| = m. We assume that the
components of vectorξ, which consists of all link coefficients,
are rearranged such that the firstm components ofξ belong
to χ, i.e., ξj ∈ χ(1 ≤ j ≤ m). As discussed in Section II,
each chromosome is represented by anm-dimensional binary
vector, whosekth component is associated withξk. Once a

chromosomey is given, we refer to each coding pointci as
inactiveif the number of 1’s in they’s components associated
with the setχi is at most one, andactiveotherwise.

B. Initial Population

The initial population is randomly constructed such that
each component of the chromosomes is assigned 0 or 1
with equal probabilities. Note, however, that the size of the
population, typically not exceeding a few hundred, is much
smaller than the size of the entire space, and thus it is very
unlikely that a feasible chromosome is seeded into the initial
population. As a result, the algorithm may fail to yield a
single feasible solution for a considerable number of early
generations.

We thus insert into the randomly generated population the
vector of all 1’s, which renders all coding points active. This
solution is feasible by assumption, and in our experiments
this insertion improves the performance of the algorithm very
significantly. For instance, without the all-one vector, the
algorithm almost always ends with the population of only
infeasible chromosomes for a mid-sized problem withm = 80.

C. Fitness Evaluation

We define the fitness valueF of chromosomey as

F (y) =

{

number of activeci
′s, if y is feasible,

∞, if y is infeasible.

To verify the feasibility of a given chromosomey, we evaluate
the polynomialP (ξ) such that

P (ξ)|ξk=0 for k s.t. yk=0(1≤k≤m).

Note that each transfer matrixMi (1 ≤ i ≤ d), which is
defined asMi = A(I − F)−1BT

i in [6], has sizeR-by-R for
multicast rateR, and each of its elements is a polynomial con-
sisting ofO(µ|E|2) terms, whereµ is the maximum number of
ways to traverse from any link to another in the network, which
in general grows exponentially with the size of the network.
The determinant ofMi thus containsO((µ|E|2)R ·R!) terms,
which makes keepingP (ξ) in polynomial form very inefficient
(or even impossible) for its exponential size.

Rather than treatingP (ξ) explicitly in polynomial form, we
keepA, F , andBi’s in matrix form and rely on one of the
following approaches: The first method is to assign random
elements from a finite fieldFq to the nonzero elements ofA,
F , and theBi’s, and then to declareP (ξ) to be nonzero if the
product of the determinants evaluates to a nonzero element
in Fq, and zero otherwise. The probability of an error in
declaringP (ξ) 6= 0 is 0; the probability of an error in declaring
P (ξ) = 0 is bounded above by1 − (1 − d/q)ν , whereν is
the maximum number of links in any set of links constituting
a flow solution from the source to any receiver [14]. In our
optimization, this one-sided error makes our solution more
conservative, which is far less critical than the opposite case,
where an infeasible solution might mistakenly be declared
feasible. We can lower the error bound as much as we desire

by increasing the field size or repeating the random test at an
additional cost of computation.

Alternatively, since we are interested in the existence of a
network code in a field of any size, the above randomized
test, as those originally developed by Schwartz, Zippel, and
many others (e.g., [15]), can generalize as follows: If we
assign random integers from a finite setS and operate in
the real field, the randomized test, which now has the error
probability no greater than(1−dν/|S|), can run substantially
faster than that performing matrix computations in a large
finite field. Note, however, that very large components of
Mi’s due to the matrix inversion,(I − F)−1, can prevent
exact calculation of determinants numerically, and in sucha
case we may choose to use a numerical method such as the
condition number, which signifies that the matrix is singular.
The condition number is efficiently calculated by singular
value decomposition and is considered a numerically reliable
indicator of matrix singularity [16], [17].

In addition, there are many more recent algorithms for this
purpose, called polynomial identity tests, some of which use a
reduced number of random bits [18], [19] and some of which
take deterministic approaches [20], [21]. These algorithms
are not used for our numerical simulations, nevertheless the
possibility of adopting any efficient testing method, including
those mentioned above, is fully open.

D. Genetic Operators and Numerical Parameters

We employ a rank-based selection mechanism which in
many cases allows for more successful search than the original
fitness-proportionate selection methods [11]; in particular, an
exponential ranking method is used, as suggested by [22],
where the probability of a particular chromosome’s selection
decreases exponentially with its rank in the population. We
also putelitism into effect by retaining the best chromosome
unaltered at each generation, which is found by many re-
searchers to significantly improve the GA’s performance [11].

We use parameterized uniform crossover, where each pair
of chromosomes is selected for crossover with probability 0.8
and the two chromosomes in a selected pair exchange each
bit independently with probability 0.8. Parameterized uniform
crossover is commonly used in recent GA applications [11]
and indeed turns out to work better for our problem than
other traditional crossover operators such as one- or two-point
crossovers. This fact may indicate that the correlation between
coding points is not necessarily associated with the proximity
between their corresponding components in a chromosome.
For mutation, we use simple binary mutation, where each bit
in each chromosome is flipped independently with probability
0.01.

The population size is set to 150, and the iteration is
terminated if no progress is made in the best value of the
population for 100 generations or if the generation number
reaches a limit: 300 for the simulations in the next section.

IV. PERFORMANCEEVALUATION

We demonstrate the performance of our approach by car-
rying out simulations on various network topologies. For

Set I Set II Set III
3 Copies 7 Copies 15 Copies 31 Copies LATA-X ISP 1755 (20,12,4) (40,12,3)

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.
Proposed 0 0.65 0 2.15 3 5.35 12 17.20 0 0.35 0 0.25 0 1.20 0 1.05

Minimal 1 3 3.00 7 7.00 15 15.00 31 31.00 0 0.90 0 1.05 0 1.35 1 1.85
Minimal 2 0 2.15 2 4.70 7 11.60 28 52.80 0 1.10 0 0.80 0 1.85 0 1.90

TABLE I

NUMBER OF CODING L INKS CALCULATED BY THE PROPOSEDMETHOD AND TWO M INIMAL APPROACHES

comparison, we also perform numerical tests using the two
previously mentioned minimal approaches by Fragouliet
al. [2] (”Minimal 1”) and Langberget al. [3] (”Minimal
2”), in both of which link removal is done in a random
order. For Minimal 1, the subgraph is selected also by a
minimal approach, which starting from the original graph
sequentially removes the links whose removal does not destroy
the achievability. For each of the three methods, the best and
the average values obtained in 20 random trials are shown in
Table I.

A. Set I of Networks

Consider the network constructed by cascading a number
of copies of networkB′ in Example 1(Fig. 1(b)) such that
the source of each subsequent copy ofB′ is replaced by an
earlier copy’s sink (see Fig. 4). It is clear that the networks
constructed in this way have maximum multicast rate 2, which
is achievable without coding; i.e., the optimal number of
coding links is always zero. For simulations, we use fixed-
depth binary trees containing 3, 7, 15, and 31 copies ofB′

and 4, 8, 16, and 32 sinks, respectively; in each network, the
tree’s root node is the network’s source and the end nodes are
the network’s sinks. s

t  t  t  t 
Fig. 4. Example from the set I of networks: 3 copies ofB′ in a depth-1
binary tree

B. Set II of Networks

We also apply our method to sample backbone topologies:
the local access transport area network X (LATA-X) and ISP
1755 (Ebone) topology obtained from the Rocketfuel Project
[23]. Assuming for simplicity that each link has unit capacity,
we choose the orientation of each link such that no cycle is
generated while the given multicast rate is achievable between
a source and the given number of sinks that are arbitrarily

selected; in particular, the parameters used are (9 sinks, rate
2) for LATA-X and (4 sinks, rate 3) for ISP 1755.

C. Set III of Networks

As another set of sample networks, we employ the topolo-
gies generated by the algorithm in [24], which constructs
connected acyclic directed graphs uniformly at random; two
networks with parameters (20 nodes, 80 links, 12 sinks, rate
4) and (40 nodes, 120 links, 12 sinks, rate 3) are used for
simulations.

In our experiments, the performance of our approach is
everywhere at least as good and often far better than that
of both Minimal 1 and Minimal 2 both in the best and in
the average values. For networks in set I, note that the gap
between the best values of our algorithm and the two minimal
approaches grows with the size of the network. For networks in
sets II and III, in most cases, there is no difference in the best
values obtained by 20 trials of the proposed and the minimal
approaches, which may indicate that the scenario captured by
networkB′ in Example 1 is not very likely to occur in general
topologies. The proposed method may be even more useful
when running many iterations is computationally infeasible.
The benefit of the proposed method goes beyond its superior
performance in reducing the number of coding links. A more
important benefit is its applicability to various generalized
scenarios, as will be discussed in the next section.

V. GENERALIZATION

Unlike Minimal 1 and Minimal 2, our proposed approach
can be readily applied to a variety of generalized problems
that involve non-coding links/nodes and thus are hard to solve
optimally.

1) Number of Coding Nodes:The proposed method can
easily generalize to the case of minimizing coding nodes,
which initially was our objective. For feasible chromosome
y, we alternatively defineF (y) as the number of nodes
that require coding on one or more outgoing links. Table II
shows the number of required coding nodes computed by this
modified method for the set I of networks. (For the minimal
approaches, the number of coding nodes happens to be the
same as that of coding links; i.e., at any merging node, if one
outgoing link does coding, the other outgoing link is always
removed. Thus, see Table I for comparison.)

2) Different Coding Costs:If the cost for coding is different
at each of the links, one would be interested in minimizing
the total overhead incurred by coding, which can be calculated

3 Copies 7 Copies 15 Copies 31 Copies
Best Avg. Best Avg. Best Avg. Best Avg.
0 0.85 0 2.60 3 6.00 12 19.05

TABLE II

PERFORMANCE OF THEPROPOSEDMETHOD FORCODING NODES

by summing up the coding cost at each of the active coding
points and using this sum as the fitness value of a feasible
chromosome. A similar generalization works for the case
of coding nodes. On the other hand, the previous minimal
approaches do not have a natural generalization to this scenario
unless the coding costs can be clearly ordered, in which case
traversing the links/nodes in descending order of cost seems
reasonable.

3) Routing Solution and Network Code:Our method deter-
mines if each of the link coefficients inχ is either to be zeroed
out or to remain indeterminate. Note that the link coefficients
not belonging toχ, which we call routing coefficients, also
have binary choices: either zero oridentity. Hence, by simply
adding the routing coefficients to the solution vector, we
can obtain a feasible routing solution that determines which
links are used for routing, for now without any optimization.
Furthermore, if the randomized fitness evaluation method in
a finite field is used with all nonzero routing coefficients
being replaced by identity, a feasible network code is obtained,
without any additional code construction procedure, at theend
of the iteration.

4) Consideration of Link Costs:The cost for link usage is
clearly subject to optimization, which alone can be efficiently
solved by assuming coding at all possible places [25] while
joint optimization over the coding and link costs is difficult;
e.g., the formulation in [4] entails an exponential number of
variables and constraints. We note that the optimization of
link cost jointly with coding cost can be incorporated into
our GA-based framework by adjusting the fitness value as
follows: Given a feasible chromosome that includes the routing
coefficients, for each of the links if any of its associated
coefficients is nonzero, we add the associated link cost to
the fitness value in which the coding cost has already been
taken into account. Note that, for Minimal 1, one may consider
a two-phase method such that link cost is reduced while
selecting the subgraph and coding cost is reduced separately
by the minimal approach. Note that, in the previous section,
the numerical experiments for Minimal 1 are, in fact, done in
this manner.

VI. CONCLUSIONS ANDFUTURE WORK

We have proposed an evolutionary approach to the problem
of minimizing the amount of resources used for network
coding and compared its performance with other existing min-
imal approaches. Our results show that the proposed approach
achieves superior performance over the minimal approaches.
More importantly, the proposed approach generalizes easily to
a variety of optimization scenarios.

There are several topics for further research. GA compo-
nents of the proposed approach, such as the method for con-
structing the initial population, can be further specialized for
the problem at hand to improve the algorithm’s performance.
The framework of the proposed approach may be modified
to work with cyclic graphs or to allow for semi-decentralized
operation with only a limited amount of feedback. Also, more
recent GA techniques, e.g., linkage learning GA which offers
improved scalability by exploiting the correlations between
variables that are to be learned as the algorithm progresses,
are worth investigating for their applicability in the context of
network coding.

REFERENCES

[1] M. B. Richey and R. G. Parker, “On multiple steiner subgraph prob-
lems,” Networks, vol. 16, no. 4, pp. 423–438, 1986.

[2] C. Fragouli and E. Soljanin, “Information flow decomposition for
network coding,”IEEE Trans. Inform. Theory, to appear.

[3] M. Langberg, A. Sprintson, and J. Bruck, “The encoding complexity of
network coding,” inProc. IEEE ISIT ’05.

[4] K. Bhattad, N. Ratnakar, R. Koetter, and K. R. Narayanan,“Minimal
network coding for multicast,” inProc. IEEE ISIT ’05.

[5] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Networkinforma-
tion flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216,
2000.

[6] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782–795, 2003.

[7] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, 2003.

[8] Y. Wu, P. A. Chou, and S. Kung, “Minimum-energy multicastin mobile
ad hoc networks using network coding,”IEEE Trans. Commun., to
appear.

[9] R. Elbaum and M. Sidi, “Topological design of local-areanetworks
using genetic algorithms,”IEEE/ACM Trans. Networking, vol. 4, no. 5,
pp. 766–778, 1996.

[10] B. Dengiza, F. Altiparmak, and A. E. Smith, “Efficient optimization of
all-terminal reliable networks, using an evolutionary approach,” IEEE
Trans. Rel., vol. 46, no. 1, pp. 18–26, 1997.

[11] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1996.
[12] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” IEEE

Computer, vol. 27, no. 6, pp. 17–26, 1994.
[13] J. H. Holland,Adaptation in Natural and Artificial Systems. Univ. of

Michigan Press, 1975.
[14] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The benefits

of coding over routing in a randomized setting,” inProc. IEEE ISIT ’03.
[15] J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-

mial identities,” J. ACM, vol. 27, no. 4, pp. 701–717, 1980.
[16] G. H. Golub and C. F. van Loan,Matrix Computations, 3rd ed. Johns

Hopkins University Press, 1993.
[17] J. W. Demmel, Applied Numerical Linear Algebra. Society for

Industrial and Applied Mathematics, 1997.
[18] Z.-Z. Chen and M.-Y. Kao, “Reducing randomness via irrational num-

bers,” SIAM J. Comput., vol. 29, no. 4, pp. 1247–1256, 2000.
[19] D. Lewin and S. Vadhan, “Checking polynomial identities over any field:

towards a derandomization?” inProc. ACM STOC ’98, pp. 438–447.
[20] R. Lipton and N. Vishnoi, “Deterministic identity testing for multivariate

polynomials,” inProc. SODA ’03, pp. 756–760.
[21] V. Kabanets and R. Impagliazzo, “Derandomizing polynomial identity

tests means proving circuit lower bounds,” inProc. ACM STOC ’03, pp.
355–364.

[22] C. R. Houck, J. A. Joines, and M. G. Kay, “A genetic algorithm for
function optimization : a matlab implementation,” NCSU-IE, Tech. Rep.
95-09, 1995.

[23] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISPtopologies
with rocketfuel,” in Proc. of ACM/SIGCOMM ’02, pp. 133–145.

[24] G. Melançon and F. Philippe, “Generating connected acyclic digraphs
uniformly at random,”Inf. Process. Lett., vol. 90, no. 4, pp. 209–213,
2004.

[25] D. S. Lun, M. Médard, T. Ho, and R. Koetter, “Network coding with a
cost criterion,” MIT-LIDS, Tech. Rep. P-2584, 2004.

