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Abstract—In wideband channels, the energy per degree of
freedom does not suffice to provide an accurate measurement of
the channel over the entire spectrum. However, in the presence
of feedback, we may garner information at the sender about
some aspects of the channel quality over certain portion of the
spectrum. In this paper, we investigate a scheme to capture
the effect of such information. We consider channel sounding
with a finite amount of energy over a block-fading channel
in both time and frequency. The quality of each subchannel
is assessed as being the cross-over probability in a BSC. In
order to characterize a judicious policy for allocating energy
to different subchannels in view of establishing their usefulness
for transmission, we use a multi-armed bandit approach. This
approach provides us with a cohesive framework to consider the
relative costs and benefits of allotting energy for sounding versus
transmission, and for repeated sounding of a single channel
versus sounding of different channels. In particular, we are able
to give a characterization of the number of subchannels that
should be probed for capacity maximization in terms of the
available transmission energy, the available bandwidth and the
fading characteristics of the channel.

I. INTRODUCTION

For communications in wideband channels, the energy per
degree of freedom is usually not sufficient to measure accu-
rately the channel over the entire spectrum. However, with a
feedback channel, we are able to collect some information
at the sender about some aspects of the channel quality
over certain portions of the spectrum. We need to balance
the energy between sounding the channels and transmitting
information. We model the independently fading channels as
a set of independent Binary Symmetric Channels (BSC) and
the quality of each channel is characterized as the BSC’s
cross-over probability. A multi-armed bandit approach is used
to study the tradeoff between allotting energy for sounding
channels and transmitting information. Specifically, we are
able to characterize the number of subchannels that should
be probed for capacity maximization in terms of the available
transmission energy, the available bandwidth and the fading
characteristics.

A. Physical Channel

A wideband channel with a large bandwidth, B is assumed
and divided into subchannels. Each subchannel has the same
bandwidth equal to the coherence bandwidth, W,.. They are
centered at {f;, i = 1,2,...,L, L > 1}. The i subchannel
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occupies the frequency band of (f; — %=, f; + %<). The

subchannels are mutually independent.
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Fig. 1. Wideband Channel Divided into Subchannels

B. System Model

The " subchannel is modeled as a BSC (Figure 2), with
the cross-over probability P; characterizing its quality.
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Fig. 2. System Model: i Subchannel

The subchannel is assumed to experience block fading: the
cross-over probability P; keeps constant in the &™ coherence
block, kT, W. < m < (k+1)T.W,; P; in different coherence
blocks are mutually independent. For example, communication
on a block fading channel using BPSK perturbed by AWGN
is equivalent to transmission through a BSC, in which the
cross-over probability P; is determined by the amplitude of
the fading coefficient. The feedback channel only provides
noiseless duplicates of the testings. The energy consumption
of each input symbol is assumed to be 1 unit. Given E units
of energy over all subchannels in one coherence block T,
which is equivalent to an average power constraint Tﬁc (units
per second) over all subchannels, we are allowed to input at
most E symbols into all the subchannels in one coherence
block. The channel state information F; is unknown to either
the sender or the receiver.

II. COMMUNICATION SCHEME

Each coherence block is divided into two parts: the channel
testing phase and the data transmission phase. We assume
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Fig. 3. Coherence Block

the existence of a noiseless feedback channel but only for



the channel testing phase. Thus, in the data transmission
phase, each subchannel is treated as an ordinary BSC without
feedback. Let F,., Ey, be the energy consumed in the channel
testing phase and the data transmission phase, respectively.
The testing and transmission scheme in a coherence block is
as follows:

1) At the beginning of each coherence block, we choose
a subset of M subchannels from the L available sub-
channels, (L > 1);

2) We use Ey units of energy to test the M subchannels
with a channel testing algorithm;

3) At the end of the channel testing phase, we choose one
subchannel according to the testing results;

4) We spend the remaining E), units of energy in trans-
mitting information on the chosen subchannel;

5) We go to Step 1 at the beginning of the next block.

We assume that only one subchannel is chosen at the end
of the channel testing phase. This assumption can be better
understood through the example in Figure 4.
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Fig. 4. How T, affects channel selection

We assume that subchannel 1 is the best and subchannel 2 is
the second best according to the testing results. In the upper
figure where T, is small, we cannot consume all the E},- units
of energy by the end of T, if we only choose to transmit on
subchannel 1. Thus, we can send more data by choosing more
than one subchannel, i.e. subchannel 2. In the lower figure
where T, is large, we can use the entire Ey, units of energy by
the end of 7, on subchannel 1. Since subchannel 1 has a better
quality than any other subchannel, it is desirable to transmit
only on subchannel 1. We assume a relationship between E
and T, such that, for every coherence block, the transmission
energy E,,. can be used entirely on a single subchannel by
the end of that coherence block. This relationship guarantees
no loss of average rate per block if we only choose the best
subchannel for transmission, rather than a set of subchannels.

The channel testing algorithm allocates the Ej. units of
energy over the M subchannels and choose the subchannel
that has the best testing result. This is similar to the setup of
Multi-Armed Bandit Problem (MABP).

III. INTRODUCTION TO MABP

MABP is a classical problem in the decision theory. We
play with M machines, each of which is associated with a
stochastic reward. The objective is to design a scheme of
pulling machines to maximize the total rewards. “In spite of
MABP’s simplicity, it includes the tradeoff between explo-
ration over more machines and exploitation on a particular
machine” [3]. MABP has been studied in various settings [1].
In [3], the authors considered MABP from a new perspective,
i.e. the Probably Approximately Correct (PAC) model. When
the 7" machine is pulled, a stochastic reward R(i) is received,
which is assumed to be distributed in {0, 1} with probability
{1— P, P;} respectively. The values of {FP;,i =1,2,...,M}
are unknown. The optimal machine, denoted as machine I*,
is the one with the biggest expected reward, denoted as r*.
We define the s-optimal machine to be those whose expected
rewards are no less than r* —e. As stated in [3], the objective
in PAC model is to find out a near optimal machine with high
probability, i.e. an e-optimal machine with probability at least
1—9. We consider the complexity to be the number of machine
uses before the decision is made. We denote machine I** to
be the selected machine. The objective in the PAC model is
to design a strategy to minimize the number of machine uses
such that

PT{P]M>P[*—€}>1—6 (D)

where § and € are positive parameters. The algorithm which
satisfies (1) is called a (e, §)-PAC algorithm. In [3], the Median
Elimination algorithm is proposed as a (e, d)-PAC algorithm

losgz% M ). Here is the
general form of the Median Elimination algorithm (¢;s and d;s

are determined from e and §):
1) Let Sy be the set of initial M sub-channels;
2) €1, 01, 1 =1;

3) Test every subchannel k in S; for

and its complexity is proved to be O

(F)?
ﬁﬁc denote the empirical crossover probability of sub-
channel & up to the /™ stage;

4) Find the median of {p},k € S}, denoted by m;

5) St =S\ {k:pf, <y}

6) If |S;| = 1, then algorithm terminates and output S as
the chosen sub-channel; Otherwise, ;11 < €, ;11 <
d;, L=1+1, go to step 3.

In [4], The complexity of the (e, )-PAC algorithm is shown

to be lower bounded by © iijjw P We adopt the Median

Elimination algorithm as the channel testing algorithm, since

it achieves the lower bound of complexity.

times, and let

IV. PERFORMANCE EXPRESSION

The performance of the i subchannel is a monotonically
non-increasing function of the cross-over probability P;. An
example is the BSC’s capacity C; = 1 — Hy(FP;). We consider
the simple case where P; takes two possible values, p; and
pp- The probability density function (PDF) of P;, fp,(p), is
composed of two impulses, one at p and the other at pp.
Figure 5 is a typical example of fp(p) and fc(c), where
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Fig. 5. Typical Probability Distribution of P;, C;

When constructing the communication scheme, an (e, d) Me-
dian Elimination algorithm is generated (¢ = pp — pg) and
applied. The testing results satisfy

PT‘{P[** :pG|P[* :pG}>1—6 (2)
The energy consumption of the channel testing, which is equal

to the complexity of the testing algorithm, is bounded as
follows

AIM < Ei. < AM 3)
C; 1
where A, = = lo 5 1=1,2

We examine the influence of M and o (parameter of fp,(p))
on the average number of bits that can be reliably sent during
the transmission phase, R(E, M, o). This equals to the ergodic
capacity for the given transmission energy, if we allow for
coding over many coherence blocks. An upper bound and
a lower bound of R(E, M, o) are derived in the following
lemma.

Lemma 1: R(E, M, o) is bounded as follows

R(M,E,o0) < R(E,M,0) < R,(M,E,o0) “
where R, (M, E, o) =max{0,(E — A1 M) [cp
+(ce —c)(1—o™)]} ®)
Ri(M,E, o) =max {0,(E — A2 M) [cp
+(cg —ep)(1—68)(1—o™)]} (6)
Proof: R R
Let I** = argmini—; o, a{P}, where P; is the i
subchannel’s empirical crossover probability. Then we have
the expression:

E{bits reliably sent in one coherence block}
= (E—E)-(cB + (cg —cB)Pr[Pr+ =pg|) (1)

where Pr[{Pj«« = pg}] is derived as follows:

Pr[{Pr+ = pc}]

1—=Pr[{Pr+ =pp}
= 1-=Pr[{{Pr =pa} N {Pr+ =pp}}t U{Pr =ps}
= 1-(1-—"Pr[Pps — Pre > | Pre =pg] — oM
> (1-9)-(1=0M) 8)

(8) comes from the definition of the (¢, d)-PAC algorithm. On
the other hand,

Pr[Prs = pg]
= 1-(1-0")Pr[Pp« — Ppo >¢| Ppe = pg| — oM
< 1-oM ©)

Thus, we have a lower bound and an upper bound:

1-68)-(1-c™M)<PrlPr.=pg]<1-0cM  (10)

Combining (3), (7) and (10), we get desired bounds for
R(M,E, o). |

V. DESIGN OF THE TESTING SCHEME

We use lemma 1 to characterize the desirable range
of M. The maximum points M (o, E) and M} (o, E) for
R,(M,E,o) and R/(M, E, ) are derived in the appendix. It
is reasonable to choose M™, the desirable number of subchan-
nels we should start testing, between M (o, E) and M} (0, E).
For a fixed testing algorithm, we have A = A; = A,, and M™*,
M and M converge as 0 — 0. In practice, our computation
shows the difference to be negligibly small (Figure 7 and 6)
The following results show that M (o, E) and M} (o, E) grow
as O(log E) when E is large.

When E > Acy

(ca—cp)In % ’

M;(o,E)
In %

1—f—lnBl
— dogs (14 (0 VB f10g, (LB
Oga( +<A(1+1n31)> )+Oga( In B, >

where B; = (Cpcch)'
When E >

ACB
(ca—cp)(1—0)In % ’

M} (0, E)

111l 1—f—ll’lBg
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where By =1+ ufzs)(ccﬁ'

As for the influence of o, since we have

dM¥ (o, E) 1+1InB 1
Y = . 0 11
do In B o(ln %)2 ~ (i
dM}(o,E) 1+InB, 1
= . 0 12
do In B, o(ln %)2 - (12)

so M} (o, E) and Mj (o, E) increase with o. This indicates
that, for large E, when the subchannel grows worse, we spend
a larger portion of energy in channel testing.

For the integer constraint on M, when M™* is not an integer,
we can find My < M* < M, where My and M; are
integers and M; — My = 1. M* can be expressed as a
linear combination of My and M, i.e. M* = qoMy + q1 M7,
where q¢o + g1 = 1,q0 > 0,q1 > 0. Then at the beginning
of each coherence block, we flip a coin which gives “head”
with probability go and “tail” with probability ¢;. Then we set
M = M, if we get a head and set M = M, if we get a tail.
Due to the concavity of R;(M, E, o), the scheme described
above gives the best achievable R;(M, E, o) under the integer



constraint on M. The problem can be then solved without
considering the integer constraint.
The case where pg = 0.1, pg = 0.45,9 = 0.01 is studied.

1) Fix o = 0.95, plot M* for various £ € (0,4 x 10°)

pg=0-1,pg=0.45, 8=0.01, 6=0.95
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Fig. 6. M™ vs. E (o fixed)

2) Fix E =5 x 10, plot M* for various o € (0,1)

Pg=0-1,p,=0.45, 8=0.01, E=50000

Fig. 7. M;" and My, vs. o (for a fixed large F)

VI. CONCLUSIONS

In order to maximize the rate per block for a wideband
block fading channel, with energy constraint E per block, we
select a portion of the frequency band to test and transmit
over one subchannel. The desirable size of this portion of the
frequency band, M* has the following properties:

o M* grows asymptotically with O(log E), when E is

large;

e For large F, when each subchannel grows worse, we

spend a larger portion of E in testing subchannels (M™
increases).
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APPENDIX
Since cg > ¢, 0 < d < 1, 0 < o < 1, we have that

d*R, (M, E, o) E

dM? A} (13)

Ri(M,E,o) is a concave function of M, so the maxi-
mum point R} (M, E,o) exists either within [0, £] when

< 0 for M € {0,

% =0 or on the boundary.

de -

m(]\/{ = 0, E, O')
1

= —Acp+ E(cg —cp)(1—0)In— (14)

o

dR, E

m( - ZaEaa)

A (ent e — )1 - 81— aF)) (13)

daM
Ml*(aa E)
E Ba(+,E)—1 . Ac
— { A 21n(1) leZ(CG*CBf)‘(—lB*5)1n§06)
i c
’ it E < e Gm T
1
where By(=,E)
o
ln(l)E
(222
= LambertW (Cc —6(Cq —Cg))-e

(1-0)(Ca—Ch)

Since the he Lambert function W (z) has the following asymp-
totic expansion when z is large:

Inz—Inlnz+ 0O {(mlnz)}
Inz

Acp
N 1
(cg—cr)(1=9)In -

W(z) =

Then, when E >

M (o, E)
Ini 1+1n By
— logi (14 (- VE) 4logs [ —252
oo (U (oo ) &) s (M)
WhereBzzl—*‘m. N
cB

Similarly, for R, (M =0, E,0), when E >

(ca—cp)In %

M (o, E)

Ini 1+1InB;
= logi (1 — K log:1 | ————
%83 < - (A(1+lnBl)) ) ey ( In B, >

where B; = (CG‘%B)



