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Abstract—Network coding, the notion of performing
coding operations on the contents of packets while in transit
through the network, was originally developed for wired
networks; recently, however, it has been also applied with
success also to wireless ad hoc networks. In fact, it has been
shown that network coding can yield substantial performance
gains, e.g., reduced energy consumption, in ad hoc networks.
In this paper, we compare, using linear programming
formulations, the maximum throughput that a multicast
application can achieve with and without network coding in
unreliable ad hoc networks; we show that network coding
achieves 65% higher throughput than conventional multicast
in a typical ad hoc network scenario. The superiority of
network coding, already established by the analytic results,
is confirmed by simulation experiments.

I. INTRODUCTION

Recent results on the advantages of network coding in
wired networks have stimulated a lot of interest in the
subject and in particular, in the application of network
coding to wireless ad hoc networks. Network coding
refers to the basic notion of performing coding opera-
tions on the contents of packets throughout a network,
and is is generally attributed to Ahlswede et al. [1], who
showed the utility of the network coding for multicast
in wired networks. The work of Ahlswede et al. was
followed by other work by Koetter and Médard [5]
who showed that codes with a simple, linear structure
were sufficient to achieve the capacity of multicast
connections in lossless, wireline networks. This result
was augmented by Ho et al. [3], who showed that, in
fact, a random construction of the linear codes was
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sufficient. The utility of such random linear codes for
reliable communication over lossy packet networks—
such as wireless ad hoc networks—was soon realized
[7]. In [8], a prescription for the efficient operation of ad
hoc networks is given, which proposes using the random
linear coding scheme of [7] coupled with optimization
methods for selecting the times and locations for inject-
ing coded packets into the network.
In this paper, we consider the problem of identifying

the maximum end-to-end throughput that a multicast
connection can achieve with network coding given an
unreliable ad hoc network. We give two mathemati-
cal optimization formulations for maximum throughput
multicast: one with network coding and one without;
then, we compare the maximum throughput that net-
work coding achieves to the maximum throughput that
conventional multicast achieves in an example network
topology. We develop formulations based on the convex
programming formulation of the minimum cost multicast
problem for network coding given in [8]. In contrast to
the minimum cost multicast problems considered in [8],
modeling the wireless medium contention constraints is
crucial in the maximum throughput problem that we
consider. The mathematical programming formulations
of the maximum throughput multicast problem presented
in this paper includes the wireless medium contention
constraints. We use a technique similar to those proposed
in [4], [11], [13] to model such constraints.
The rest of this paper organized as follows. In Sec-

tion II, we develop mathematical formulations for maxi-
mum throughput multicast in unreliable ad hoc networks
with and without network coding; in Section III, we
compare the performance of network coding and con-
ventional multicast in ad hoc networks via numerical
analysis and simulation; finally, in Section IV, we con-
clude this paper with a brief summary.

II. MODELING MAXIMUM MULTICAST
THROUGHPUT PROBLEM IN AD HOC NETWORKS
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In this section, we formulate the maximum multicast
throughput problem in ad hoc networks with and with-
out network coding. First, we develop an optimization
formulation for the case with network coding based on
the model for the minimum cost multicast in ad hoc
networks presented in [8]. Specifically, we change the
model to maximize throughput instead of minimizing
cost and include wireless medium contention/scheduling
constraints.
As suggested in [8], we represent the network with a

directed hypergraph Ĥ = (N , Â), where N is the set
of nodes and Â is the set of hyperarcs. Each hyperarc
(i, J) represents a broadcast link from node i to nodes in
the non-empty set J ⊂ N . The hyperarc (i, J) indicates
that a packet transmitted by node i can be received by
all nodes in J (and no nodes in N \ J). For example,
if packets transmitted by node 1 can be received only
by node 2, 3, and 4, then (1, {2 3 4}) ∈ Â. We assume
that there is no rate and/or transmission/reception (tx/rx)
range adaptation, i.e, all the broadcast links operate at
the same data rate and have the same tx/rx range and thus
every node i ∈ N has at most one hyperarc (i, J) ∈ Â. In
fact, most ad hoc multicast routing protocols in assume
fixed rate broadcast links due to the lack of practical
rate adjustment schemes suitable for broadcasting. Now
let H = (N ,A) where A = {(i, K)|(i, J) ∈ Â, K ⊆
J, K $= ∅}. For examples, if (1, {2 3 4}) ∈ Â then (1,
{2}), (1, {3}), (1, {4}), (1, {2 3}, (1, {3 4}), (1, {2
4}), (1, {2 3 4}) ∈ A. Each hyperarc in A represents
a specific usage of a broadcast link in Â. The hyperarc
(1, {2 3 4}) ∈ Â can be used as (1, {2 3}) to realize a
packet transmission from node 1 to nodes 2 and 3 only.
In general, it is not harmful if the packet reaches non-
intended destinations, node 4 in this case. Describing the
exact usage of hyperarcs is needed to take interference
among hyperarcs into account. Hereafter, we use the term
hyperarc to indicate an element in A.
Under unreliable wireless channel, packets can be lost

on their way to destinations when they are injected into
the links (or hyperarcs). In case of a packet injected into
a hyperarc with multiple destinations, the packet may
reach only a subset of destinations. Let ziJ (≤ L, the
link capacity) be the average rate at which packets are
injected into hyperarc (i, J) and let ziJK be the average
rate at which packets are received by all nodes in K (and
no nodes in N \ K) given ziJ . Assuming a node j ∈ J
receives a packet injected into a hyperarc (i, J) with
probability p and independence of the packet reception
events, we have ziJK = ziJ p|K|(1 − p)(|J |−|K|). More
precisely, let AiJK(τ) for τ ≥ 0 be the total number of
packets that are injected on hyperarc (i, J) and received
by all nodes in K (and no nodes in N \ K) between

time 0 and time τ then we assume almost surely that
limτ→∞

AiJK(τ)
τ = ziJK and ziJ =

∑

K⊂J ziJK . The
rate vector z consisting of ziJ ’s is the coding subgraph
(indicating the times and locations for injecting coded
packets into the network) for the multicast connection of
interest and can be varied within a convex, constrained
set Z ⊂ [0, L]|A|.
We assume that the network is time-slotted. That is,

time is divided into slots and packet transmissions are
restricted to start at slot boundaries. Some hyperarcs
interfere each other such that in a specific time slot only a
certain set of hyperarcs can be activated simultaneously.
Consider the following set of hyperarcs: (1, {2}), (1,
{3}), (1, {2 3}), (4, {3}), (4, {5}), (4, {6}), (4, {3,
5}), (4, {3, 6}), (4, {5, 6}), and (4, {3 5 6}). Node
1 and node 4 cannot transmit packets simultaneously
using hyperarcs (1, {2 3}) and (4, {3 5 6}) since a
collision occurs at node 3; however, simultaneous packet
transmissions can be scheduled if two non-interfering
hyperarcs (1, {2}) and (4, {5 6}) are used. Formally,
we define two hyperarcs (i, J) and (i′, J ′) to be non-
interfering if and only if the three following condition
are satisfied:

• i $= i′

• !(i′, K) ∈ A s.t. K ∩ J $= ∅
• !(i, K) ∈ A s.t. K ∩ J ′ $= ∅

The second and third condition state that if there is any
hyperarc connecting any j ∈ J and i′ or any hyperarc
connecting any node in J ′ and i, a collision occurs. Note
that a hyperarc (i, J) in A denotes a specific usage of a
broadcast link in Â and thus a packet transmission using
(i, J) may reach other nodes in N \ J .
Based on the time slotted network assumption, we

model the wireless medium contention as the following
scheduling constraints:

∑

k

λkck(i, J) − ziJ ≥ 0, ∀ (i, J) ∈ A,

∑

k

λk ≤ 1
(1)

where

ck(i, J) =

{

L if (i, J) ∈ Ak,

0 otherwise.

We enumerate all the possible maximal sets of non-
interfering hyperarcs as Ak (⊂ A) where k = 1, ..., M
(M varies as the network topology changes and by
maximal sets we mean Ai " Aj for all i, j ∈ {1 ... M},
i $= j) and λk ∈ [0, 1] denotes the fraction of time
allocated to Ak. These constraints are used to impose
a feasible scheduling over the network. Any solution
satisfying these constraints is always feasible and the
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corresponding feasible link schedule is having every
hyperarc set Ak exclusively active for λk fraction of
time. In fact, it is also easy to see that the converse
holds, i.e., if a solution is feasible then it must satisfied
inequalities (1). This make the constraints a sufficient
and necessary condition for feasible scheduling. This
modeling approach is similar to those discussed in [4],
[11], [13] and is basically the same as the one in [4]
except that we use the notion of hyperarc. In [4],
the network is modeled as a graph (as opposed to a
hypergraph) since neither network coding nor multicast
is considered.
Now suppose we have a source node s ∈ N transmit-

ting data to a non-empty set of terminal nodes T . The
maximum throughput multicast with network coding can
be formulated as follows:

maximize f

subject to
∑

k

λkck(i, J) − ziJ ≥ 0, ∀ (i, J) ∈ A,

∑

k

λk ≤ 1,

∑

{L⊂J|L∩K #=∅}

ziJL −
∑

j∈K

x(t)
iJj ≥ 0,

∀ (i, J) ∈ A,K ⊂ J, t ∈ T,

∑

{J|(i,J)∈A}

∑

j∈J

x(t)
iJj −

∑

{j|(j,I)∈A,i∈I}

x(t)
jIi

=











f if i = s,

−f if i = t,

0 otherwise,

∀ i ∈ N , t ∈ T,

x(t)
iJj ≥ 0, ∀ (i, J) ∈ A, j ∈ J, t ∈ T,

ziJ ≥ 0, ∀(i, J) ∈ A,

λk ≥ 0, ∀k

where

ck(i, J) =

{

L if (i, J) ∈ Ak,

0 otherwise.

The quantity x(t)
iJj represents the amount of data flow

transmitted from node i to j with respect to destination
t using hyperarc (i, J). The solution produced by this
linear program is always feasible and asymptotically
exact. That is, given a network Ĥ = (N , Â) the multicast
connection (s, T ) can achieve the maximum throughput
f∗ arbitrarily closely and this is feasible when all the
hyperarcs belongs to Ak simultaneously activated for λk

fraction of time, which will result in the optimal rate
vector z∗. Given z∗, how to encode packets on each node
to achieve f∗ is a separate problem and we can use a
scheme described in [7], namely random network coding.
The maximum throughput multicast without network

coding in wired networks can be achieved using the tree
packing strategy (e.g., [12]), i.e., constructing multiple
multicast trees (or subgraphs) each of which carries an
independent flow such that the aggregated flow is max-
imized. Thus, we formulate the maximum throughput
multicast problem in an ad hoc network not performing
network coding as the tree packing problem. Let us
first consider the following program ([2], modified for
consistency):

minimize
∑

xij

subject to
∑

{j|(i,j)∈A′}

x(t)
ij −

∑

{j|(j,i)∈A′}

x(t)
ji

=











1 if i = s,

−1 if i = t,

0 otherwise,

∀ i ∈ N , t ∈ T, (2)

xij ≥ x(t)
ij ∀(i, j) ∈ A′, t ∈ T,

x(t)
ij ∈ {0, 1} ∀(i, j) ∈ A′, t ∈ T

where A′ := {(i, j)|(i, J) ∈ A, J + j}.
The above program solves the single multicast tree

construction problem given an ad hoc network H =
(N ,A) and the source and the destination set (s, T ).
Owing to the integrality constraint the program finds
a multicast tree where only one path from the source
to each destination exists. Now we extend this idea to
formulate the tree packing problem in ad hoc networks as
a mixed integer linear program. Consider the following
program:

maximize
∑

c

f (c)

subject to
∑

k

λkck(i, J) −
∑

c

z(c)
iJ ≥ 0, ∀ (i, J) ∈ A, (3)

∑

k

λk ≤ 1, (4)

∑

{L⊂J|L∩K #=∅}

z(c)
iJL −

∑

j∈K

x(t,c)
iJj ≥ 0,

∀ (i, J) ∈ A,K ⊂ J, t ∈ T, c, (5)
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∑

{J|(i,J)∈A}

∑

j∈J

x(t,c)
iJj −

∑

{j|(j,I)∈A,i∈I}

x(t,c)
jIi

=











f (c) if i = s,

−f (c) if i = t,

0 otherwise,

∀ i ∈ N , t ∈ T, c, (6)

x(t,c)
ij =

∑

{J'j|(i,J)∈A}

x(t,c)
iJj ,∀ (i, j) ∈ A′, t ∈ T, c, (7)

∑

{j|(i,j)∈A′}

n(t,c)
ij ≤ 1,∀ i ∈ N , t ∈ T, c, (8)

∑

{i|(i,j)∈A′}

n(t,c)
ij ≤ 1,∀ j ∈ N , t ∈ T, c, (9)

x(t,c)
ij ≤ n(t,c)

ij ,∀ (i, j) ∈ A′, t ∈ T, c, (10)

Mx(t,c)
ij ≥ n(t,c)

ij ,∀ (i, j) ∈ A′, t ∈ T, c, (11)

n(t,c)
ij ∈ {0, 1} ∀(i, j) ∈ A′, t ∈ T, c, (12)

x(t,c)
iJj ≥ 0, ∀ (i, J) ∈ A, j ∈ J, t ∈ T, c, (13)

z(c)
iJ ≥ 0, ∀(i, J) ∈ A, c, (14)
λk ≥ 0, ∀k (15)

(16)

where A′ := {(i, j)|(i, J) ∈ A, J + j},

ck(i, J) =

{

L if (i, J) ∈ Ak,

0 otherwise,

and M is a sufficiently large number.
This program finds the maximum achievable multicast

throughput under the tree packing strategy given (N , Â)
and (s, T ). We attempt to build C multicast subgraphs,
each of which connects the source s to the destination set
T and admits an independent data flow, i.e., no mixing
is allowed between different flows. The amount of inde-
pendent data flow through each structure is represented
as f (c) where c = 1, ..., C and C = max(i,J)∈A |J |

is sufficient. The rate vector z(c) consisting of z(c)
iJ ’s

represents a specific multicast subgraph c (by indicating
the times and locations that the multicast subgraph is
injecting packets into the network). In detail, inequalities
(3) and (4) impose that all distribution subgraphs share
the wireless medium, i.e., the fraction of time assigned
to hyperarc (i, J) must be now shared among every
subgraph using that hyperarc. The variable x(t,c)

ij depicts
the amount of flow from i to j with respect to destination
t on subgraph c and the binary variable n(t,c)

ij is linked
to variable x(t,c)

ij through constraints (10) and (11). The
idea here is to construct tree-like structures as we did in
the previous program (2). Since n(t,c)

ij equals to 1 if and
only if there is data flow from i to j using any eligible
hyperarc, (8) and (9) allow no split (or allow no gain

receivers 

sender 

Fig. 1. 4x3 grid network topology graph where each edge represents
a unit-capacity link. (The sender is located in the top row, middle
column and three receivers are in the bottom row.)
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Fig. 2. Maximum Throughput in 4x3 grid network

from split) of data flow from source s to destination t in
a multicast subgraph.

In this formulation for multicast without network
coding, we assume hop-by-hop error correction (by
retransmission or hop-by-hop erasure coding). For each
packet, nodes transmit multiple packets to ensure that
the packet is communicated despite random packet drops
caused by channel error. When the error probability is p,
for example, it is assumed that the sender transmits 1/p
packets to communicate a single packet to the receiver.
Retransmissions and erasure coding consume additional
channel bandwidth and thus the maximum throughput
of a multicast connection with unreliable channels will
be less than that with reliable channels. In the case
of retransmissions, we assume free feedback, i.e., the
sender knows (magically with no cost) whether the
receiver has received the transmitted packet correctly
or not. In the network coding case, error correction
is automatically provided by the network code and no
additional mechanism for hop-by-hop error correction is
required. We refer readers to [8] for details.
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Fig. 3. Coding example achieving multicast throughput of 2/3 in 4x3 grid network with unit link capacity.
(Three receivers in the bottom row receive 2 packets every 3 slots after 6

th slot.)

III. PERFORMANCE COMPARISON OF NETWORK
CODING AND CONVENTIONAL MULTICAST IN AD

HOC NETWORKS

By solving the two optimization formulations using
the same input we can compare the maximum multicast
throughput with and without network coding for the
given input. The results obtained by solving the programs
using the 4x3 grid network illustrated in Figure 1 as
the input are shown in Figure 2. We assume that in
the network every link has unit capacity. We can see
in the results that network coding achieves a maximum
throughput of 2/3, which is 65% higher than a maximum
throughput of conventional multicast, which is 2/5 when
there is no error. A link schedule and coding example
achieving 2/3 throughput is presented in Figure 3. In con-
ventional multicast as expected, the throughput is higher
in the case when tree packing strategy is used (denoted
as “Multicast with Tree Packing” in the figure) than the
case with a single distribution tree (denoted as “Multicast
with Single Tree”). The throughput decreases linearly
in the link error probability for both network coding
and conventional multicast case. This linear decrease of
throughput in the link error probability is achieved under
the assumption of a hypothetical error correction scheme.
Network coding achieves the same results without the
assumption.
The above comparison between network coding and

conventional multicast is based on several assumptions
which are not easy to replicate in real life systems:
time-slotted scheduled multiple access, the existence of
“genie” that can tell the sender wether the multicast
receivers received the packet correctly or not in conven-
tional multicast cast. Moreover, nodes are assumed to be
static. To get a more realistic assessment, we compare,
via simulation, a realistic implementation of network
coding, namely CodeCast [9] with a realistic implemen-

tation of conventional multicast, namely ODMRP [6].
These results were actually already reported in an earlier
paper [9]. They are repeated here to contrast them with
the linear programming comparison and to confirm the
superiority of network coding even in realistic scenarios.
The most important difference between linear pro-

gramming solutions and simulation is that in the latter
there is no time-slotted and scheduled access to wireless
channel, nor a “genie” that retransmits packets. Thus,
in the multicast implementation packets are lost. The
proper measure for comparison is then the delivery ratio
(of network coding and multicast respectively) under the
same input rate.
Using [10] we conducted a set of experiment with the

following settings: 802.11 DCF MAC; two-ray ground
path-loss propagation model; 376m of transmission
range and 2Mbits/sec of bandwidth; 100 nodes randomly
placed on 1500×1500m2 field; single multicast group
with single source and 10 receivers; constant bit-rate,
5Kbytes/sec, application using fixed 512bytes packet
size; Random Waypoint Mobility model with 0 pause
time, 0 minimum speed, and varying maximum speed.
For CodeCast, two different block sizes are used to

evaluate the impact of the block size on the performance.
In Figure 4, CodeCast-α-dpβ denotes CodeCast using α-
packet blocks and operating in the artificial lossy channel
with packet drop probability β%. (Nodes are forced
to drop successfully received packets randomly with a
certain probability.) CodeCast-8-dp0 indicates 8-packet
block and packet drop probability 0 case, CodeCast-8-
dp10 does 8-packet block and packet drop probability
10% case, and CodeCast-4-dp0 is CodeCast for 4-packet
block and packet drop probability 0. Similarly, ODMRP-
dpβ denotes ODMRP for the packet drop probability β%
case.
In Fig.4(a), CodeCast demonstrates near 100% data

delivery regardless of mobility speed, block size, packet
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Fig. 4. CodeCast vs. ODMRP

drop probability. On the other hand, the packet delivery
ratio of the conventional multicasting represented by
ODMRP degrades from 99% to 94% as mobility and
packet drop probability increase. The packet delivery
ratio is defined as the ratio of data packets received by all
receivers over total data packets sent. More importantly,
as shown in4(b), CodeCast incurs less overhead than
ODMRP (if the block size is 8 packets). When the maxi-
mum node speed is 40 m/sec the reduction in overhead is
as much as 40%. To measure protocol overhead, we use a
common metric, the normalized packet overhead, defined
as the number of any packets transmitted to the broadcast
channel divided by the total number of data packets
delivered to any receiver. The overhead of CodeCast
with 4-packet block is comparable to that of ODMRP
when mobility is high. ODMRP is designed to use more
and more nodes as forwarding nodes when mobility
increases, which is equivalent to trading off overhead
for high packet delivery ratio to cope with mobility. 4(c)
exposes one of the weak points of CodeCast, namely
end-to-end delay. The end-to-end delay is the difference
between packet generation time at the source and packet
delivery to the receiver. In CodeCast, a certain level of
increase in end-to-end delay is inevitable since the source
must take time to collect a block of packets such that
coding over that block is possible. In our simulations, the
application generates packets at a rate of 10 packets/sec
so on average each packet spends 0.35 seconds waiting
in the buffer at the source if the block size is 8 packets.
It spends 0.15 seconds if the block size is 4 packets.
This explains in part why CodeCast-4 has lower average
end-to-end delay than CodeCast-8s.

IV. CONCLUSIONS
In this paper, we discussed the problem of identifying

the maximum throughput that a multicast connection
with or without network coding can achieve in a an
unreliable static ad hoc network. We presented mathe-
matical programming formulations for the problem that

include wireless medium contention constraints, which
are crucial to the problem, and, through numerical anal-
ysis using the formulations, we show that network cod-
ing achieves 65% higher throughput than conventional
multicast in a typical setting. In addition, we showed
through simulation that network coding allowed very
robust communications with significantly less overhead
than conventional multicast.
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