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Abstract

We consider the problem of establishing minimum-cost multicast connections over coded packet

networks, i.e. packet networks where the contents of outgoing packets are arbitrary, causal functions of

the contents of received packets. We consider both wireline and wireless packet networks as well as

both static multicast (where membership of the multicast group remains constant for the duration of the

connection) and dynamic multicast (where membership of the multicast group changes in time, with

nodes joining and leaving the group).

For static multicast, we reduce the problem to a polynomial-time solvable optimization problem,

and we present decentralized algorithms for solving it. These algorithms, when coupled with existing

decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving

minimum-cost multicast. By contrast, establishing minimum-cost static multicast connections over routed

packet networks is a very difficult problem even using centralized computation, except in the special

cases of unicast and broadcast connections.
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For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the

theory of dynamic programming to suggest how it may be solved.
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Minimum-Cost Multicast over

Coded Packet Networks

I. INTRODUCTION

A typical node in today’s packet networks is capable of two functions: forwarding (i.e. copying

an incoming packet onto an outgoing link) and replicating (i.e. copying an incoming packet onto

several outgoing links). But there is no intrinsic reason why we must assume these are the

only functions ever permitted to nodes and, in application-level overlay networks and multi-hop

wireless networks, for example, allowing nodes to have a wider variety of functions makes sense.

We therefore consider packet networks where the contents of outgoing packets are arbitrary,

causal functions of the contents of received packets, and we call such networks coded packet

networks.

Coded packet networks were put forward by Ahlswede et al. [1], and numerous subsequent

papers, e.g., [2], [3], [4], [5], [6], have built upon their work. These papers, however, all assume

the availability of dedicated network resources, and scant attention is paid to the problem of

determining the allocation of network resources to dedicate to a particular connection or set

of connections. This is the problem we tackle. More precisely, we aim to find minimum-cost

subgraphs that allow given multicast connections to be established (with appropriate coding)

over coded packet networks.

The analogous problem for routed packet networks is old and difficult. It dates to the 1980s

and, in the simplest case—that of static multicast in wireline networks with linear cost—it

equates to the Steiner tree problem, which is well-known to be NP-complete [7], [8]. The

emphasis, therefore, has been on heuristic methods. These methods include heuristics for the

Steiner tree problem on undirected (e.g., [7], [9], [8]) and directed (e.g., [10], [11], [12]) graphs,

for multicast tree generation in wireless networks (e.g. [13]), and for the dynamic or on-line

Steiner tree problem (e.g., [8], [14], [15]). Finding minimum-cost subgraphs in coded packet

networks, however, is much easier and as we shall see, in many cases, we are able to find

optimal subgraphs in polynomial time using decentralized computation. Moreover, since coded

packet networks are less constrained than routed ones, the minimum cost for a given connection
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is generally less.

In our problem, we take given multicast connections and thus include unicast and broadcast

connections as special cases. But we do not consider optimizing the subgraph for multiple connec-

tions taking place simultaneously. One reason for this is that coding for multiple connections is a

very difficult problem—one that, in fact, remains currently open with only cumbersome bounds

on the asymptotic capability of coding [16] and examples that demonstrate the insufficiency of

various classes of linear codes [17], [18], [19], [20]. An obvious, but sub-optimal, approach to

coding is to code for each connection separately, which is referred to as superposition coding [21].

When using superposition coding, finding minimum-cost allocations for multiple connections

means extending the approach for single connections (namely, the approach taken in this paper)

in a straightforward way that is completely analogous to the extension that needs to be done for

traditional routed packet networks, and this problem of minimum-cost allocations for multiple

connections using superposition coding is addressed in [22]. An alternative approach to coding

that outperforms superposition coding, but that remains sub-optimal, is discussed in [23].

We choose here to restrict our attention to single connections because the subgraph selection

problem is simpler and because minimum-cost single connections are interesting in their own

right: Whenever each multicast group has a selfish cost objective, or when the network sets link

weights to meet its objective or enforce certain policies and each multicast group is subject to

a minimum-weight objective, we wish to set up single multicast connections at minimum cost.

Finally, we mention that a related problem to subgraph selection, that of throughput maxi-

mization, is studied for coded networks in [24], [25] and that an alternative formulation of the

subgraph selection problem for coded wireless packet networks is given in [26].

The body of this paper is composed of four sections: Sections II and III deal with static

multicast (where membership of the multicast group remains constant for the duration of the

connection) for wireline and wireless packet networks, respectively; Section IV gives a compar-

ison of the proposed techniques for static multicast with techniques in routed packet networks;

and Section V deals with dynamic multicast (where membership of the multicast group changes

in time, with nodes joining and leaving the group). We conclude in Section VI and, in doing

so, we give a sampling of the avenues for future investigation that our work opens up.
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II. WIRELINE PACKET NETWORKS

We represent the network with a directed graph G = (N ,A), where N is the set of nodes

and A is the set of arcs. Each arc (i, j) represents a lossless point-to-point link from node i

to node j. We denote by zij the rate at which coded packets are injected into arc (i, j). The

rate vector z, consisting of zij, (i, j) ∈ A, is called a subgraph, and we assume that it must lie

within a constraint set Z for, if not, the packet queues associated with one or more arcs becomes

unstable. We reasonably assume that Z is a convex subset of the positive orthant containing the

origin. We associate with the network a cost function f (reflecting, for example, the average

latency or energy consumption) that maps valid rate vectors to real numbers and that we seek

to minimize.

Suppose we have a source node s wishing to transmit packets at a positive, real rate R to a

non-empty set of sink nodes T . Consider the following optimization problem:

minimize f(z)

subject to z ∈ Z,

zij ≥ x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,∑

{j|(i,j)∈A}
x

(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T ,

(1)

where

σ
(t)
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R if i = s,

−R if i = t,

0 otherwise.

Theorem 1: The vector z is part of a feasible solution for the optimization problem (1) if and

only if there exists a network code that sets up a multicast connection in the wireline network

represented by graph G at rate arbitrarily close to R from source s to sinks in the set T and that

injects packets at rate arbitrarily close to zij on each arc (i, j).

Proof: First suppose that z is part of a feasible solution for the problem. Then, for any

t in T , we see that the maximum flow from s to t in the network where each arc (i, j) has

maximum input rate zij is at least R. So, by Theorem 1 of [1], a coding solution that injects

packets at rate arbitrarily close to zij on each arc (i, j) exists. Conversely, suppose that we have

a coding solution that injects packets at rate arbitrarily close to zij on each arc (i, j). Then the
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maximum input rate of each arc must be at least zij and moreover, again by Theorem 1 of [1],

flows of size R exist from s to t for each t in T . Therefore the vector z is part of a feasible

solution for the optimization problem.

From Theorem 1, it follows immediately that optimization problem (1) finds the optimal cost

for an asymptotically-achievable, rate-R multicast connection from s to T .

As an example, consider the network depicted in Figure 1(a). We wish to achieve multicast

of unit rate to two sinks, t1 and t2. We have Z = [0, 1]|A| and f(z) =
∑

(i,j)∈A aijzij , where

aij is the cost per unit rate shown beside each link. An optimal solution to problem (1) for this

network is shown in Figure 1(b). We have flows, x(1) and x(2), of unit size from s to t1 and t2,

respectively and, for each arc (i, j), zij = max(x
(1)
ij , x

(2)
ij ), as we expect from the optimization.

To achieve the optimal cost, we code over the subgraph z. A code of length 2 for the subgraph

is given in [1, Figure 7], which we reproduce in Figure 1(c). In the figure, X1 and X2 refer to

the two packets in a coding block. The coding that is performed is that one of the interior nodes

receives both X1 and X2 and forms the binary sum of the two, outputting the packet X1 + X2.

The code allows both t1 and t2 to recover both X1 and X2 and it achieves a cost of 19/2.

Given a solution of problem (1), there are various coding schemes that can be used to realize the

connection. The schemes described in [27], [6] operate continuously, with each node continually

sending out packets as causal functions of received packets. The schemes described in [1], [2],

[3], [4], [5], on the other hand, operate in a block-by-block manner, with each node sending

out a block of packets as a function of its received block. In the latter case, the delay incurred

by each arc’s block is upper bounded by δ/R for some non-negative integer δ provided that

zij/R ∈ Z/δ for all (i, j) ∈ A. We unfortunately cannot place such constraints into problem (1)

since they would make it prohibitively difficult. An alternative is, given z, to take �δz/R�R/δ

as the subgraph instead. Since �δz/R�R/δ < (δz/R + 1)R/δ = z + R/δ, we can guarantee

that �δz/R�R/δ lies in the constraint set Z by looking at z + R/δ instead of z, resulting in the
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Fig. 1. A network with multicast from s to T = {t1, t2}.
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optimization problem

minimize f(z + R/δ)

subject to z + R/δ ∈ Z,

zij ≥ x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,∑

{j|(i,j)∈A}
x

(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T .

(2)

We see that, by suitable redefinition of f and Z, problem (2) can be reduced to problem (1).

Hence, in the remainder of the paper, we focus only on problem (1).

A. Linear, separable cost and separable constraints

The case of linear, separable cost and separable constraints addresses scenarios where a fixed

cost (e.g., monetary cost, energy cost, or imaginary weight cost) is paid per unit rate placed

on an arc and each arc is subject to a separate constraint (the closed interval from 0 to some

non-negative capacity). This is the case in the network depicted in Figure 1(a). So, with each

arc (i, j), we associate non-negative numbers aij and cij, which are the cost per unit rate and

the capacity of the arc, respectively. Hence, the optimization problem (1) becomes the following

linear optimization problem.

minimize
∑

(i,j)∈A
aijzij

subject to cij ≥ zij , ∀ (i, j) ∈ A,

zij ≥ x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,∑

{j|(i,j)∈A}
x

(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T .

(3)

Unfortunately, the linear optimization problem (3) as it stands requires centralized computa-

tion with full knowledge of the network. Motivated by successful network algorithms such as

distributed Bellman-Ford [29, Section 5.2], we seek a decentralized method for solving problem

(3), which, when married with decentralized schemes for constructing network codes [5], [6],

[27], results in a fully decentralized approach for achieving minimum-cost multicast in the case

of linear, separable cost and separable constraints.
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Toward the end of developing such an algorithm, we consider the Lagrangian dual problem

maximize
∑
t∈T

q(t)(p(t))

subject to
∑
t∈T

p
(t)
ij = aij , ∀ (i, j) ∈ A,

p
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,

(4)

where

q(t)(p(t)) := min
x(t)∈F (t)

∑
(i,j)∈A

p
(t)
ij x

(t)
ij , (5)

and F (t) is the bounded polyhedron of points x(t) satisfying the conservation of flow constraints∑
{j|(i,j)∈A}

x
(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i , ∀ i ∈ N ,

and capacity constraints

0 ≤ x
(t)
ij ≤ cij, ∀ (i, j) ∈ A.

Subproblem (5) is a standard linear minimum-cost flow problem, which can be solved using

a multitude of different methods (see, for example, [30, Chapters 4–7] or [31, Chapters 9–11]);

in particular, it can be solved in an asynchronous, distributed manner using the ε-relaxation

method [32, Sections 5.3 and 6.5]. In addition, if the connection rate is small compared to the

arc capacities (more precisely, if R ≤ cij for all (i, j) ∈ A), then subproblem (5) reduces to a

shortest path problem, which admits a simple, asynchronous, distributed solution [29, Section

5.2].

Now, to solve the dual problem (4), we employ subgradient optimization (see, for example,

[33, Section 6.3.1] or [34, Section I.2.4]). We start with an iterate p[0] in the feasible set of (4)

and, given an iterate p[n] for some non-negative integer n, we solve subproblem (5) for each t

in T to obtain x[n]. We then assign

pij[n + 1] := arg min
v∈Pij

∑
t∈T

(v(t) − (p
(t)
ij [n] + θ[n]x

(t)
ij [n]))2 (6)

for each (i, j) ∈ A, where Pij is the |T |-dimensional simplex

Pij =

{
v

∣∣∣∣∣
∑
t∈T

v(t) = aij , v ≥ 0

}
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and θ[n] > 0 is an appropriate step size. Thus, pij [n + 1] is set to be the Euclidean projection

of pij[n] + θ[n]xij [n] onto Pij.

To perform the projection, we use the following algorithm, the justification of which we defer

to Appendix I. Let u := pij[n] + θ[n]xij [n] and suppose we index the elements of T such that

u(t1) ≥ u(t2) ≥ . . . ≥ u(t|T |). Take k̂ to be the smallest k such that

1

k

(
aij −

tk∑
r=1

u(r)

)
≤ −u(tk+1)

or set k̂ = |T | if no such k exists. Then the projection is achieved by

p
(t)
ij [n + 1] =

⎧⎪⎨
⎪⎩

u(t) +
aij−

Pt
k̂

r=1 u(r)

k̂
if t ∈ {t1, . . . , tk̂},

0 otherwise.

The disadvantage of subgradient optimization is that, whilst it yields good approximations

of the optimal value of the Lagrangian dual problem (4) after sufficient iteration, it does not

necessarily yield a primal optimal solution. There are, however, methods for recovering primal

solutions in subgradient optimization. We employ the following method, which is due to Sherali

and Choi [35].

Let {µl[n]}l=1,...,n be a sequence of convex combination weights for each non-negative integer

n, i.e.
∑n

l=1 µl[n] = 1 and µl[n] ≥ 0 for all l = 1, . . . , n. Further, let us define

γln :=
µl[n]

θ[n]
, l = 1, . . . , n, n = 0, 1, . . .,

and

∆γmax
n := max

l=2,...,n
{γln − γ(l−1)n}.

If the step sizes {θ[n]} and convex combination weights {µl[n]} are chosen such that

1) γln ≥ γ(l−1)n for all l = 2, . . . , n and n = 0, 1, . . .,

2) ∆γmax
n → 0 as n → ∞, and

3) γ1n → 0 as n → ∞ and γnn ≤ δ for all n = 0, 1, . . . for some δ > 0,

then we obtain an optimal solution to the primal problem (3) from any accumulation point of

the sequence of primal iterates {x̃[n]} given by

x̃[n] :=

n∑
l=1

µl[n]x[l], n = 0, 1, . . . . (7)

We justify this primal recovery method in Appendix I.
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The required conditions on the step sizes and convex combination weights are satisfied by the

following choices [35, Corollaries 2–4]:

1) step sizes {θ[n]} such that θ[n] > 0, limn→0 θ[n] = 0,
∑∞

n=1 θn = ∞, and convex

combination weights {µl[n]} given by µl[n] = θ[l]/
∑n

k=1 θ[k] for all l = 1, . . . , n,

n = 0, 1, . . .;

2) step sizes {θ[n]} given by θ[n] = a/(b + cn) for all n = 0, 1, . . ., where a > 0, b ≥ 0 and

c > 0, and convex combination weights {µl[n]} given by µl[n] = 1/n for all l = 1, . . . , n,

n = 0, 1, . . .; and

3) step sizes {θ[n]} given by θ[n] = n−α for all n = 0, 1, . . ., where 0 < α < 1, and convex

combination weights {µl[n]} given by µl[n] = 1/n for all l = 1, . . . , n, n = 0, 1, . . ..

Moreover, for all three choices, we have µl[n + 1]/µl[n] independent of l for all n, so primal

iterates can be computed iteratively using

x̃[n] =
n∑

l=1

µl[n]x[l]

=
n−1∑
l=1

µl[n]x[l] + µn[n]x[n]

= φ[n − 1]x̃[n − 1] + µn[n]x[n],

where φ[n] := µl[n + 1]/µl[n].

We now have a relatively simple algorithm for computing optimal feasible solutions to problem

(3) in a decentralized manner, with computation taking place at each node, which needs only to

be aware of the capacities and costs of its incoming and outgoing arcs. For example, for all arcs

(i, j) in A, we can set p
(t)
ij [0] = aij/|T | at both nodes i and j. Since each node has the capacities

and costs of its incoming and outgoing arcs for subproblem (5) for each t ∈ T , we can apply

the ε-relaxation method to obtain flows x(t)[0] for each t ∈ T , which we use to compute pij[1]

and x̃ij [0] at both nodes i and j using equations (6) and (7), respectively. We then re-apply the

ε-relaxation method and so on.

Although the decentralized algorithm that we have just discussed could perhaps be extended

to convex cost functions (by modifying the dual problem and employing the ε-relaxation method

for convex cost network flow problems [36], [37]), a significantly more direct and natural method

is possible, which we proceed to present.
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B. Convex, separable cost and separable constraints

Let us now consider the case where, rather than a cost per unit rate for each arc, we have

a convex, monotonically increasing cost function fij for arc (i, j). Such cost functions arise

naturally when the cost is, e.g., latency or congestion. The optimization problem (1) becomes

the following convex optimization problem.

minimize
∑

(i,j)∈A
fij(zij)

subject to zij ≥ x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,∑

{j|(i,j)∈A}
x

(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T .

(8)

Note that the capacity constraints have been removed, since they can be enforced by making arcs

arbitrarily costly as their flows approach their respective capacities. We again seek a decentralized

method for solving the subgraph selection problem.

We note that zij = maxt∈T x
(t)
ij at an optimal solution of problem (8) and that fij(maxt∈T x

(t)
ij )

is a convex function of xij since a monotonically increasing, convex function of a convex function

is convex. Hence it follows that problem (8) can be restated as the following convex optimization

problem.

minimize
∑

(i,j)∈A
fij(zij)

subject to zij = max
t∈T

x
(t)
ij , ∀ (i, j) ∈ A,∑

{j|(i,j)∈A}
x

(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T ,

x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T .

(9)

Unfortunately, the max function is not everywhere differentiable, and this can pose problems

for algorithm design. We therefore solve the following modification of problem (9) where the
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max norm is replaced by an ln-norm. This replacement was originally proposed in [38].

minimize
∑

(i,j)∈A
fij(z

′
ij)

subject to z′
ij =

(∑
t∈T

(x
(t)
ij )n

)1/n

, ∀ (i, j) ∈ A,

∑
{j|(i,j)∈A}

x
(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T ,

x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T .

(10)

We have that z′ij ≥ zij for all n > 0 and that z′
ij approaches zij as n approaches infinity. Thus, we

shall assume that n is large and attempt to develop a decentralized algorithm to solve problem

(10). Note that, since z′
ij ≥ zij , a code with rate z′ij on each arc (i, j) exists for any feasible

solution.

Problem (10) is a convex multicommodity flow problem. There are many algorithms for convex

multicommodity flow problems (see [39] for a survey), some of which (e.g. the algorithms in

[40], [41]) are well-suited for decentralized implementation. These algorithms can certainly be

used, but, in this paper, we propose solving problem (10) using a primal-dual algorithm derived

from the primal-dual approach to internet congestion control (see [42, Section 3.4]).

We restrict ourselves to the case where {fij} are strictly convex. Since the variable z′
ij is

a strictly convex function of xij , it follows that the objective function for problem (10) is

strictly convex, so the problem admits a unique solution for any integer n > 0. Let U(x) :=

−
∑

(i,j)∈A fij((
∑

t∈T (x
(t)
ij )n)1/n), and let (y)+

x for x ≥ 0 denote the following function of y:

(y)+
x =

⎧⎪⎨
⎪⎩

y if x > 0,

max{y, 0} if x ≤ 0.

Consider the following continuous-time primal-dual algorithm:

ẋ
(t)
ij = k

(t)
ij (x

(t)
ij )

(
∂U(x)

∂x
(t)
ij

− q
(t)
ij + λ

(t)
ij

)
, (11)

ṗ
(t)
i = h

(t)
i (p

(t)
i )(y

(t)
i − σ

(t)
i ), (12)

λ̇
(t)
ij = m

(t)
ij (λ

(t)
ij )
(
−x

(t)
ij

)+

λ
(t)
ij

, (13)
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where

q
(t)
ij := p

(t)
i − p

(t)
j ,

y
(t)
i :=

∑
{j|(i,j)∈A}

x
(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji ,

and k
(t)
ij (x

(t)
ij ) > 0, h

(t)
i (p

(t)
i ) > 0, and m

(t)
ij (λ

(t)
ij ) > 0 are non-decreasing continuous functions of

x
(t)
ij , p

(t)
i , and λ

(t)
ij respectively.

Proposition 1: The algorithm specified by Equations (11)–(13) is globally, asymptotically

stable.

Proof: See Appendix II.

The global, asymptotic stability of the algorithm implies that no matter what the initial choice

of (x, p) is, the primal-dual algorithm will converge to the unique solution of problem (10). We

have to choose λ, however, with non-negative entries as the initial choice.

We associate a processor with each arc (i, j) and node i. In a typical setting where there is

one processor at every node, we could assign the processor at a node to be its own processor

as well as the processor for all its outgoing arcs.

We assume that the processor for node i keeps track of the variables {p(t)
i }t∈T , while the

processor for arc (i, j) keeps track of the variables {λ(t)
ij }t∈T and {x(t)

ij }t∈T . With this assumption,

the algorithm is decentralized in the following sense:

• a node processor needs only to exchange information with the processors for arcs coming

in or out of the node; and

• an arc processor needs only to exchange information with the processors for nodes that it

is connected to.

This fact is evident from equations (11)–(13) by noting that

∂U(x)

∂x
(t)
ij

= −fij(z
′
ij)
(
x

(t)
ij /z′ij

)n−1

.

In implementing the primal-dual algorithm, we must bear the following points in mind.

• The primal-dual algorithm in (11)–(13) is a continuous time algorithm. To discretize the
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algorithm, we consider time steps m = 1, 2, . . . and replace the derivatives by differences:

x
(t)
ij [m + 1] = x

(t)
ij [m] + α

(t)
ij [m]

(
∂U(x[m])

∂x
(t)
ij [m]

− q
(t)
ij [m] + λ

(t)
ij [m]

)
,

p
(t)
i [m + 1] = p

(t)
i [m] + β

(t)
i [m](y

(t)
i [m] − σ

(t)
i ),

λ
(t)
ij [m + 1] = λ

(t)
ij [m] + γ

(t)
ij [m]

(
−x

(t)
ij [m]

)+

λ
(t)
ij [m]

,

where

q
(t)
ij [m] := p

(t)
i [m] − p

(t)
j [m],

y
(t)
i [m] :=

∑
{j|(i,j)∈A}

x
(t)
ij [m] −

∑
{j|(j,i)∈A}

x
(t)
ji [m],

and α
(t)
ij [m] > 0, β

(t)
i [m] > 0, and γ

(t)
ij [m] > 0 can be thought of as step sizes.

• While the algorithm is guaranteed to converge to the optimum solution, the value of the

variables at any time instant m is not necessarily a feasible solution. A start-up time is

required before a feasible solution is computed.

• Unfortunately, the above algorithm is a synchronous algorithm where the various processors

need to exchange information at regular intervals. It is an interesting problem to investigate

an asynchronous implementation of the primal-dual algorithm.

C. Elastic rate demand

We have thus far focused on the case of an inelastic rate demand, which is presumably provided

by a separate flow control algorithm. But this flow control does not necessarily need to be done

separately. Thus, we now suppose that the rate demand is elastic and that it is represented by

a utility function that has the same units as the cost function, and we seek to maximize utility

minus cost. We continue to assume strictly convex, separable cost and separable constraints.

We associate with the source a utility function Ur such that Ur(R) is the utility derived by

the source when R is the data rate. The function Ur is assumed to be a strictly concave and
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increasing. Hence, in this setup, the problem we address is as follows:

maximize U(x, R)

subject to
∑

{j|(i,j)∈A}
x

(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i , ∀ i ∈ N \ {t}, t ∈ T ,

R ≥ 0,

x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,

(14)

where U(x, R) := Ur(R) −
∑

(i,j)∈A fij(
∑

t∈T (x
(t)
ij )n)1/n). In problem (14), some of the flow

constraints have been dropped by making the observation that the equality constraints at a sink

t, namely ∑
{j|(t,j)∈A}

x
(t)
tj −

∑
{j|(j,t)∈A}

x
(t)
jt = σ

(t)
t = −R,

follow from the constraints at the source and at the other nodes. The dropping of these constraints

is crucial to the proof that the algorithm presented in the sequel is decentralized.

This problem can be solved by the following primal-dual algorithm.

ẋ
(t)
ij = k

(t)
ij (x

(t)
ij )

(
∂U(x, R)

∂x
(t)
ij

− q
(t)
ij + λ

(t)
ij

)
,

Ṙ = kR(R)

(
∂U(x, R)

∂R
− qR + λR

)
,

ṗ
(t)
i = h

(t)
i (p

(t)
i )y

(t)
i ,

λ̇
(t)
ij = m

(t)
ij (λ

(t)
ij )
(
−x

(t)
ij

)+

λ
(t)
ij

,

λ̇R = mR(λR) (−R)+
λR

,

where

q
(t)
ij := p

(t)
i − p

(t)
j ,

qR := −
∑
t∈T

p(t)
s ,

y
(t)
i :=

∑
{j|(i,j)∈A}

x̂
(t)
ij −

∑
{j|(j,i)∈A}

x̂
(t)
ji − σ

(t)
i .

It can be shown using similar arguments as those for Proposition 1 that this algorithm is globally,

asymptotically stable.
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In addition, by letting the source s keep track of the rate R, it can be seen that the algorithm

is decentralized.

III. WIRELESS PACKET NETWORKS

To model wireless packet networks, we take the model for wireline packet networks and

include the effect of two new factors: link lossiness and link broadcast. Link lossiness refers to

the dropping or loss of packets as they are transmitted over a link; and link broadcast refers to

how links, rather than necessarily being point-to-point, may originate from a single node and

reach more than one other node. Our model includes networks consisting of lossy point-to-point

links and networks consisting of lossless broadcast links as special cases.

We represent the network with a directed hypergraph H = (N ,A), where N is the set of

nodes and A is the set of hyperarcs. A hypergraph is a generalization of a graph, where, rather

than arcs, we have hyperarcs. A hyperarc is a pair (i, J), where i, the start node, is an element

of N and J , the set of end nodes, is a non-empty subset of N . Each hyperarc (i, J) represents

a lossy broadcast link from node i to nodes in the non-empty set J . We denote by ziJ the rate at

which coded packets are injected into hyperarc (i, J), and we denote by ziJK the rate at which

packets, injected into hyperarc (i, J), are received by exactly the set of nodes K ⊂ J . Hence

ziJ :=
∑

K⊂J ziJK . Let

biJK :=

∑
{L⊂J |L∩K �=∅} ziJL

ziJ

.

The rate vector z, consisting of ziJ , (i, J) ∈ A, is called a subgraph, and we assume that it

must lie within a constraint set Z for, if not, the packet queues associated with one or more

hyperarcs becomes unstable (for examples of constraint sets Z that pertain specifically to multi-

hop wireless networks, see [43], [44], [45], [46], [47], [48]). We reasonably assume that Z is

a convex subset of the positive orthant containing the origin. We associate with the network a

cost function f (reflecting, for example, the average latency or energy consumption) that maps

valid rate vectors to real numbers and that we seek to minimize.

Suppose we have a source node s wishing to transmit packets at a positive, real rate R to a
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non-empty set of sink nodes T . Consider the following optimization problem:

minimize f(z)

subject to z ∈ Z,

ziJbiJK ≥
∑
j∈K

x
(t)
iJj, ∀ (i, J) ∈ A, K ⊂ J , t ∈ T ,

∑
{J |(i,J)∈A}

∑
j∈J

x
(t)
iJj −

∑
{j|(j,I)∈A,i∈I}

x
(t)
jIi = σ

(t)
i , ∀ i ∈ N , t ∈ T ,

x
(t)
iJj ≥ 0, ∀ (i, J) ∈ A, j ∈ J , t ∈ T .

(15)

Theorem 2: The vector z is part of a feasible solution for the optimization problem (15) if and

only if there exists a network code that sets up a multicast connection in the wireless network

represented by hypergraph H at rate arbitrarily close to R from source s to sinks in the set T

and that injects packets at rate arbitrarily close to ziJ on each hyperarc (i, J).

Proof: The proof is much the same as that for Theorem 1. But, instead of Theorem 1 of

[1], we use Theorem 2 of [6].

In the lossless case, we have biJK = 1 for all non-empty K ⊂ J and biJ∅ = 0. Hence, problem

(15) simplifies to the following optimization problem.

minimize f(z)

subject to z ∈ Z,

ziJ ≥
∑
j∈J

x
(t)
iJj , ∀ (i, J) ∈ A, t ∈ T ,

∑
{J |(i,J)∈A}

∑
j∈J

x
(t)
iJj −

∑
{j|(j,I)∈A,i∈I}

x
(t)
jIi = σ

(t)
i , ∀ i ∈ N , t ∈ T ,

x
(t)
iJj ≥ 0, ∀ (i, J) ∈ A, j ∈ J , t ∈ T .

(16)

A simplification of problem (16) can be made if we assume that, when nodes transmit in

a lossless network, they reach all nodes in a certain area, with cost increasing as this area is

increased. More precisely, suppose that we have separable cost, so f(z) =
∑

(i,J)∈A fiJ(ziJ).

Suppose further that each node i has Mi outgoing hyperarcs (i, J
(i)
1 ), (i, J

(i)
2 ), . . . , (i, J

(i)
Mi

) with

J
(i)
1 � J

(i)
2 � · · · � J

(i)
Mi

. (We assume that there are no identical links, as duplicate links can

effectively be treated as a single link.) Then, we assume that f
iJ

(i)
1

(ζ) < f
iJ

(i)
2

(ζ) < · · · < f
iJ

(i)
Mi

(ζ)
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for all ζ ≥ 0 and nodes i. For (i, j) ∈ A′ := {(i, j)|(i, J) ∈ A, J 
 j}, we introduce the variables

x̂
(t)
ij :=

Mi∑
m=m(i,j)

x
(t)

iJ
(i)
m j

,

where m(i, j) is the unique m such that j ∈ J
(i)
m \ J

(i)
m−1 (we define J

(i)
0 := ∅ for all i ∈ N for

convenience). Now, problem (16) can be reformulated as the following optimization problem,

which has substantially fewer variables.

minimize
∑

(i,J)∈A
fiJ(ziJ)

subject to z ∈ Z,

Mi∑
n=m

z
iJ

(i)
n

≥
∑

k∈J
(i)
Mi

\J(i)
m−1

x̂
(t)
ik , ∀ i ∈ N , m = 1, . . . , Mi, t ∈ T ,

∑
{j|(i,j)∈A′}

x̂
(t)
ij −

∑
{j|(j,i)∈A′}

x̂
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T ,

x̂
(t)
ij ≥ 0, ∀ (i, j) ∈ A′, t ∈ T .

(17)

Proposition 2: Suppose that f(z) =
∑

(i,J)∈A fiJ(zij) and that f
iJ

(i)
1

(ζ) < f
iJ

(i)
2

(ζ) < · · · <

f
iJ

(i)
Mi

(ζ) for all ζ ≥ 0 and nodes i. Then problem (16) and problem (17) are equivalent in the

sense that they have the same optimal cost and z is part of an optimal solution for (16) if and

only if it is part of an optimal solution for (17).

Proof: See Appendix III.

We see that, provided that {biJK} are constant, problems (15) and (16) are of essentially the

same form as problem (1), albeit with possibly more linear constraints relating z and x, and,

if we drop the constraint set Z and consider linear, separable cost or convex, separable cost,

then the decentralized algorithms discussed in Sections II-A and II-B can be applied with little

modification. In the case of problem (17), the subgradient method of Section II-A can be applied

once we note that its Lagrangian dual,

maximize
∑
t∈T

q̂(t)(p(t))

subject to
∑
t∈T

p
(t)

iJ
(i)
m

= s
iJ

(i)
m

, ∀ i ∈ N , m = 1, . . . , Mi,

p
(t)
iJ ≥ 0, ∀ (i, J) ∈ A, t ∈ T ,
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where

s
iJ

(i)
m

:= a
iJ

(i)
m

− a
iJ

(i)
m−1

,

and

q̂(t)(p(t)) := min
x̂(t)∈F̂ (t)

∑
(i,j)∈A′

⎛
⎝m(i,j)∑

m=1

p
(t)

iJ
(i)
m

⎞
⎠ x̂

(t)
ij ,

is of the same form as (4).

IV. COMPARISON WITH TECHNIQUES IN ROUTED PACKET NETWORKS

In this section, we report on the results of several simulations that we conducted to assess the

performance of the proposed techniques. We begin with wireline networks.

In routed wireline networks, the standard approach to establishing minimum-cost multicast

connections is to find the shortest tree rooted at the source that reaches all the sinks, which

equates to solving the Steiner tree problem on directed graphs [10]. For coded networks, the

analogous problem to finding the shortest tree is solving the linear optimization problem (3) in

the case where cij = +∞, which, being a linear optimization problem, admits a polynomial-

time solution. By contrast, the Steiner tree problem on directed graphs is well-known to be

NP-complete. Although tractable approximation algorithms exist for the Steiner tree problem on

directed graphs (for example, [10], [11], [12]), the solutions thus obtained are suboptimal relative

to minimum-cost multicast without coding, which in turn is suboptimal relative to when coding

is used, since coding subsumes forwarding and replicating (for example, the optimal cost for a

Steiner tree in the network in Figure 1(a) is 10, as opposed to 19/2). Thus, coding promises

potentially significant cost improvements.

We conducted simulations where we took graphs representing various Internet Service Provider

(ISP) networks and assessed the average total weight of random multicast connections using,

first, our proposed network-coding based solution and, second, routing over the tree given by

the Directed Steiner Tree (DST) approximation algorithm described in [11]. The graphs, and

their associated link weights, were obtained from the Rocketfuel project of the University of

Washington [28]. The approximation algorithm in [11] was chosen for comparison as it achieves

a poly-logarithmic approximation ratio (it achieves an approximation ratio of O(log2 |T |), where

|T | is the number of sink nodes), which is roughly as good as can be expected from any practical

algorithm, since it has been shown that it is highly unlikely that there exists a polynomial-time
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algorithm that can achieve an approximation factor smaller than logarithmic [10]. The results of

the simulations are tabulated in Table I. We see that, depending on the network and the size of the

multicast group, the average cost reduction ranges from 10% to 33%. Though these reductions

are modest, it is important to keep in mind that our proposed solution easily accommodates

decentralized operation.

For wireless networks, one specific problem of interest is that of minimum-energy multicast

(see, for example, [13], [49]). In this problem, we wish to achieve minimum-energy multicast in

a lossless wireless network without explicit regard for throughput or bandwidth, so the constraint

set Z can be dropped altogether. The cost function is linear and separable, namely, it is f(z) =∑
(i,J)∈A aiJziJ , where aiJ represents the energy required to transmit a packet to nodes in J

from node i. Hence problem (17) becomes a linear optimization problem with a polynomial

number of constraints, which can therefore be solved in polynomial time. By contrast, the same

problem using traditional routing-based approaches is NP-complete—in fact, the special case of

broadcast in itself is NP-complete, a result shown in [49], [50]. The problem must therefore be

addressed using polynomial-time heuristics such as the MIP algorithm proposed in [13].

We conducted simulations where we placed nodes randomly in a 10×10 square with a radius

of connectivity of 3 and assessed the average total energy of random multicast connections using

first, our proposed network-coding based solution and, second, the routing solution given by the

MIP algorithm. The energy required to transmit at rate z to a distance d was taken to be d2z.

The results of the simulations are tabulated in Table II. We see that, depending on the size of the

network and the size of the multicast group, the average energy reduction ranges from 13% to

49%. These reductions are more substantial than those for the wireline simulations, but are still

modest. Again, it is important to keep in mind that the proposed solution easily accommodates

decentralized operation.

We conducted simulations on our decentralized algorithms under the same set up, for a network

of 30 nodes and a multicast group of 4 terminals. In Figure 2, we show the average behavior of

the subgradient method of Section II-A applied to problem (17). The algorithm was run under

two choices of step sizes and convex combination weights. The curve labeled “original primal

recovery” refers to the case where the step sizes are given by θ[n] = n−0.8 and the convex

combination weights by µl[n] = 1/n. The curve labeled “modified primal recovery” refers to

the case where the step sizes are given by θ[n] = n−0.8 and the convex combination weights by
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Network Approach Average multicast cost

2 sinks 4 sinks 8 sinks 16 sinks

Telstra (au) DST approximation 17.0 28.9 41.7 62.8

Network coding 13.5 21.5 32.8 48.0

Sprint (us) DST approximation 30.2 46.5 71.6 127.4

Network coding 22.3 35.5 56.4 103.6

Ebone (eu) DST approximation 28.2 43.0 69.7 115.3

Network coding 20.7 32.4 50.4 77.8

Tiscali (eu) DST approximation 32.6 49.9 78.4 121.7

Network coding 24.5 37.7 57.7 81.7

Exodus (us) DST approximation 43.8 62.7 91.2 116.0

Network coding 33.4 49.1 68.0 92.9

Abovenet (us) DST approximation 27.2 42.8 67.3 75.0

Network coding 21.8 33.8 60.0 67.3

TABLE I

AVERAGE COST OF RANDOM MULTICAST CONNECTIONS OF UNIT RATE FOR VARIOUS APPROACHES IN GRAPHS

REPRESENTING VARIOUS ISP NETWORKS. THE COST PER UNIT RATE ON EACH ARC IS THE LINK WEIGHT AS ASSESSED BY

THE ROCKETFUEL PROJECT OF THE UNIVERSITY OF WASHINGTON [28]. SOURCE AND SINK NODES WERE SELECTED

ACCORDING TO A UNIFORM DISTRIBUTION OVER ALL POSSIBLE SELECTIONS.

Network size Approach Average multicast energy

2 sinks 4 sinks 8 sinks 16 sinks

20 nodes MIP algorithm 30.6 33.8 41.6 47.4

Network coding 15.5 23.3 29.9 38.1

30 nodes MIP algorithm 26.8 31.9 37.7 43.3

Network coding 15.4 21.7 28.3 37.8

40 nodes MIP algorithm 24.4 29.3 35.1 42.3

Network coding 14.5 20.6 25.6 30.5

50 nodes MIP algorithm 22.6 27.3 32.8 37.3

Network coding 12.8 17.7 25.3 30.3

TABLE II

AVERAGE ENERGY OF RANDOM MULTICAST CONNECTIONS OF UNIT RATE FOR VARIOUS APPROACHES IN RANDOM

WIRELESS NETWORKS OF VARYING SIZE. NODES WERE PLACED RANDOMLY WITHIN A 10 × 10 SQUARE WITH A RADIUS OF

CONNECTIVITY OF 3. THE ENERGY REQUIRED TO TRANSMIT AT RATE z TO A DISTANCE d WAS TAKEN TO BE d2z. SOURCE

AND SINK NODES WERE SELECTED ACCORDING TO A UNIFORM DISTRIBUTION OVER ALL POSSIBLE SELECTIONS.
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Fig. 2. Average energy of a random 4-terminal multicast of unit rate in a 30-node wireless network using the subgradient

method of Section II-A. Nodes were placed randomly within a 10 × 10 square with a radius of connectivity of 3. The energy

required to transmit at rate z to a distance d was taken to be d2z. Source and sink nodes were selected according to a uniform

distribution over all possible selections.
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Fig. 3. Average energy of a random 4-terminal multicast of unit rate in a 30-node wireless network using the primal-dual

method of Section II-B. Nodes were placed randomly within a 10 × 10 square with a radius of connectivity of 3. The energy

required to transmit at rate z to a distance d was taken to be d2ez . Source and sink nodes were selected according to a uniform

distribution over all possible selections.
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µl[n] = 1/n, if n < 30, and µl[n] = 1/30, if n ≥ 30. The modified primal recovery rule was

chosen as a heuristic to lessen the effect of poor primal solutions obtained in early iterations.

For reference, the optimal cost of problem (17) is shown, as is the cost obtained by the MIP

algorithm. We see that, for both choices of step sizes and convex combination weights, the cost

after the first iteration is already lower than that from the MIP algorithm. Moreover, in fewer

than 50 iterations, the cost using modified primal recovery is within 5% of the optimal value.

Thus, in a small number of iterations, the subgradient method yields significantly lower energy

consumption than that obtained by the MIP algorithm, which is centralized.

In Figure 3, we show the average behavior of the primal-dual method of Section II-B applied

to problem (16). To make the cost strictly convex, the energy required to transmit at rate z to

a distance d was taken to be d2ez. Recall that we do not necessarily have a feasible solution

at each iteration. Thus, to compare the cost at the end of each iteration, we recover a feasible

solution from the vector z ′[m] as follows: We take the subgraph defined by z ′[m] and compute

the maximum flow from source s to sinks in the set T . We then find any subgraph of z ′[m] that

provides this maximum flow and scale the subgraph so obtained to provide the desired flow. The

cost of the scaled subgraph is assumed to be the cost of the solution at the end of each iteration.

We chose the step sizes as follows: α
(t)
ij [m] = α, β

(t)
i [m] = 20α, and γ

(t)
ij [m] was chosen to be

large. The algorithm was run under two choices of α. We see, from our results, that the value

of α has to be carefully chosen. Larger values of α generally lead to more oscillatory behavior

but faster convergence.

V. DYNAMIC MULTICAST

In many applications, membership of the multicast group changes in time, with nodes joining

and leaving the group, rather than remaining constant for the duration of the connection, as we

have thus far assumed. Under these dynamic conditions, we often cannot simply re-establish

the connection with every membership change because doing so would cause an unacceptable

disruption in the service being delivered to those nodes remaining in the group. A good example

of an application where such issues arise is real-time media distribution. Thus, we desire to find

minimum-cost time-varying subgraphs that can deliver continuous service to dynamic multicast

groups.

Although our objective is clear, our description of the problem is currently vague. Indeed,



24

one of the principal hurdles to tackling the problem of dynamic multicast lies in formulating

the problem in such a way that it is suitable for analysis and addresses our objective. For

routed networks, the problem is generally formulated as the dynamic Steiner tree problem,

which was first proposed in [14]. Under this formulation, the focus is on worst-case behavior

and modifications of the multicast tree are allowed only when nodes join or leave the multicast

group. The formulation is adequate, but not compelling; indeed, there is no compelling reason

for the restriction on when the multicast tree can be modified.

In our formulation for coded networks, we draw some inspiration from [14], but we focus on

expected behavior rather than worst-case behavior, and we do not restrict modifications of the

multicast subgraph to when nodes join or leave the multicast tree. We focus on wireline networks

for simplicity, though our considerations apply equally to wireless networks. We formulate the

problem as follows.

We employ a basic unit of time that is related to the time that it takes for changes in the

multicast subgraph to settle. In particular, suppose that at a given time the multicast subgraph is

z and that it is capable of supporting a multicast connection to sink nodes T . Then, in one unit

time, we can change the multicast subgraph to z ′, which is capable of supporting a multicast

connection to sink nodes T ′, without disrupting the service being delivered to T ∩ T ′ provided

that (componentwise) z ≥ z′ or z ≤ z′. The interpretation of this assumption is that we allow,

in one time unit, only for the subgraph to increase, meaning that any sink node receiving a

particular stream will continue to receive it (albeit with possible changes in the code, depending

on how the coding is implemented) and therefore facing no significant disruption to service;

or for the subgraph to decrease, meaning that any sink node receiving a particular stream will

be forced to reduce to a subset of that stream, but one that is sufficient to recover the source’s

transmission provided that the sink node is in T ′, and therefore again facing no significant

disruption to service. We do not allow for both operations to take place in a single unit of time

(which would allow for arbitrary changes) because, in that case, sink nodes may face temporary

disruptions to service when decreases to the multicast subgraph follow too closely to increases.

As an example, consider the four node network shown in Figure 4. Suppose that s = 1 and

that, at a given time, we have T = {2, 4}. We support a multicast of unit rate with the subgraph

(z12, z13, z24, z34) = (1, 0, 1, 0).
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Now suppose that the group membership changes, and node 2 leaves while node 3 joins, so

T ′ = {3, 4}. As a result, we decide that we wish to change to the subgraph

(z12, z13, z24, z34) = (0, 1, 0, 1).

If we simply make the change naı̈vely in a single time unit, then node 4 may face a temporary

disruption to its service as packets on (2, 4) stop arriving and before packets on (3, 4) start

arriving. The assumption that we have made on allowed operations ensures that we must first

increase the subgraph to

(z12, z13, z24, z34) = (1, 1, 1, 1),

allow for the change to settle by waiting for one time unit, then decrease the subgraph to

(z12, z13, z24, z34) = (0, 1, 0, 1).

With this series of operations, node 4 maintains continuous service throughout the subgraph

change.

We discretize the time axis into time intervals of a single time unit. We suppose that at the

beginning of each time interval, we receive zero or more requests from sink nodes that are not

currently part of the multicast group to join and zero or more requests from sink nodes that

are currently part of the multicast group to leave. We model these join and leave requests as a

discrete stochastic process and make the assumption that, once all the members of the multicast

group leave, the connection is over and remains in that state forever. Let Tm denote the sink

nodes in the multicast group at the end of time interval m. Then, we assume that

lim
m→∞

Pr(Tm 
= ∅|T0 = T ) = 0 (18)

for any initial multicast group T . A possible, simple model of join and leave requests is to

model |Tm| as a birth-death process with a single absorbing state at state 0, and to choose a

node uniformly from N ′ \ Tm, where N ′ := N \ {s}, at each birth and from Tm at each death.

Let z(m) be the multicast subgraph at the beginning of time interval m, which, by the

assumptions made thus far, means that it supports a multicast connection to sink nodes Tm−1.

Let Vm−1 and Wm−1 be the join and leave requests that arrive at the end of time interval m− 1,

respectively. Hence, Vm−1 ⊂ N ′ \ Tm−1, Wm−1 ⊂ Tm−1, and Tm = (Tm−1 \ Wm−1) ∪ Vm−1.

We choose z(m+1) from z(m) and Tm using the function µm, so z(m+1) = µm(z(m), Tm), where

z(m+1) must lie in a particular constraint set U(z(m), Tm).
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To characterize the constraint set U(z, T ), recall the optimization problem for minimum-cost

multicast in wireline packet networks developed in Section II:

minimize f(z)

subject to z ∈ Z,

zij ≥ x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,∑

{j|(i,j)∈A}
x

(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T ,

(19)

Therefore, it follows that we can write U(z, T ) = U+(z, T ) ∪ U−(z, T ), where

U+(z, T ) = {z′ ∈ Z(T )|z′ ≥ z},

U−(z, T ) = {z′ ∈ Z(T )|z′ ≤ z},

and Z(T ) is the feasible set of problem (19) for a given T ; i.e. if we have the subgraph z at

the beginning of a time interval, and we must go to a subgraph that supports multicast to T ,

then the allowable subgraphs are those that support multicast to T and either increase z (those

in U+(z, T )) or decrease z (those in U−(z, T )).

Note that, if we have separable constraints, then U(z(m), Tm) 
= ∅ for all z(m) ∈ Z provided

that Z(Tm) 
= ∅; that is, from any feasible subgraph at stage m, it is possible to go to a feasible

subgraph at stage m + 1 provided that one exists for the multicast group Tm. But while this is

the case for coded networks, it is not always the case for routed networks. Indeed, if multiple

multicast trees are being used (as discussed in [51], for example), then it is definitely possible

to find ourselves in a state where we cannot achieve multicast at stage m+1 even though static

multicast to Tm is possible using multiple multicast trees.

As an example of this phenomenon, consider the network depicted in Figure 5. Suppose that

each arc is of unit capacity, that s = 1, and that, at a given time, we have T = {6, 8}. We

support a multicast of rate 2 with the two trees {(1, 3), (3, 4), (4, 5), (5, 6), (5, 7), (7, 8)} and

{(1, 2), (2, 6), (6, 8)}, each carrying unit rate. Now suppose that the group membership changes,

and node 6 leaves while node 7 joins, so T ′ = {7, 8}. It is clear that static multicast to T ′ is

possible using multiple multicast trees (we simply reflect the solution for T ), but we cannot

achieve multicast to T ′ by only adding edges to the two existing trees. Our only recourse at this

stage is to abandon the existing trees and establish new ones, which causes a disruption to the
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service of node 8, or to slowly reconfigure the existing trees, which causes a delay before node

7 is actually joined to the group.

Returning to the problem at hand, we see that our objective is to find a policy π = {µ0, µ1, . . . , }
that minimizes the cost function

Jπ(z(0), T0) = lim
M→∞

E

[
M−1∑
m=0

f(z(m+1))χ2N′\{∅}(Tm)

]
,

where χ2N′\{∅} is the characteristic function for 2N ′ \ {∅} (i.e. χ2N′\{∅}(T ) = 1 if T 
= ∅, and

χ2N′\{∅}(T ) = 0 if T = ∅).

We impose the assumption that we have separable constraints and that Z(N ′) 
= ∅; that is,

we assume that there exists a subgraph that supports broadcast. This assumption ensures that

the constraint set U(z, T ) is non-empty for all z ∈ Z and T ⊂ N ′. Thus, from condition (18),

it follows that there exists at least one policy π (namely, one that uses some fixed z ∈ Z(N ′)

until the multicast group is empty) such that Jπ(z(0), T0) < ∞.

It is now not difficult to see that we are dealing with an undiscounted, infinite-horizon dynamic

programming problem (see, for example, [52, Chapter 3]), and we can apply the theory developed

for such problems to our problem. So doing, we first note that the optimal cost function J ∗ :=

minπ Jπ satisfies Bellman’s equation; namely, we have

J∗(z, T ) = min
u∈U(z,T )

{f(u) + E[J∗(u, (T \ V ) ∪ W )]}

if T 
= ∅, and J∗(z, T ) = 0 if T = ∅. Moreover, the optimal cost is achieved by the stationary

policy π = {µ, µ, . . .}, where µ is given by

µ(z, T ) = arg min
u∈U(z,T )

{f(u) + E[J∗(u, (T \ V ) ∪ W )]} (20)

if T 
= ∅, and µ(z, T ) = 0 if T = ∅.

The fact that the optimal cost can be achieved by a stationary policy limits the space in which

we need to search for optimal policies significantly, but we are still left with the difficulty that

the state space is uncountably large; it is the space of all possible pairs (z, T ), which is Z×2N ′
.

The size of the state space more or less eliminates the possibility of using techniques such as

value iteration to obtain J ∗.

On the other hand, given J ∗, it does not seem at all implausible that we can compute the

optimal decision at the beginning of each time interval using (20). Indeed, the constraint set
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is the union of two polyhedra, which can be handled by optimizing over each separately, and,

although the objective function may not necessarily be convex even if f is convex owing to the

term E[J∗(u, (T \ V ) ∪ W )], we are, at any rate, unable to obtain J∗ precisely on account of

the large state space, and can restrict our attention to approximations that make problem (20)

tractable.

For dynamic programming problems, there are many approximations that have been developed

to cope with large state spaces (see, for example, [52, Section 2.3.3]). In particular, we can

approximate J∗(z, T ) by J̃(z, T, r), where J̃(z, T, r) is of some fixed form, and r is a parameter

vector that is determined by some form of optimization, which can be performed offline if the

graph G is static. Depending upon the approximation that is used, we may even be able to solve

problem (20) using the decentralized algorithms described in Section II (or simple modifications

thereof). The specific approximations J̃(z, T, r) that we can use and their performance are beyond

the scope of this paper.

VI. CONCLUSION

Routing is certainly a satisfactory way to operate packet networks. It clearly works, but it is

not clear that it should be used for all types of networks. As we have mentioned, application-

layer overlay networks and multi-hop wireless networks are two types of networks where coding

is a definite alternative.

To actually use coding, however, we must apply to coding the same considerations that we

normally apply to routing. This paper did exactly that: We took the cost consideration from routed

packet networks and applied it to coded packet networks. More specifically, we considered the

problem of finding minimum-cost subgraphs to support multicast connections over coded packet

networks—both wireline and wireless. As we saw, this problem is effectively decoupled from

the coding problem: To establish minimum-cost multicast connections, we can first determine

the rate to inject coded packets on each arc, then determine the contents of those packets.

Our work therefore brings coded packet networks one step closer to realization. But, to actually

see that happen, much work remains to be done. For example, designing protocols around our

algorithms is a clear task, as is designing protocols to implement coding schemes. In addition,

there are some important issues coming directly from this paper that require further exploration.

Some of these relate to the decentralized algorithms, e.g., their stability under changing conditions
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(e.g., changing arc costs, changing graph topology), their speeds of convergence, their demands

on computation and message-exchange, and their behavior under asynchronism. Another topic

to explore is specific approximation methods for use in our formulation of dynamic multicast.

On a broader level, we could design other algorithms for the general problem formulation

given in this paper (steps in this direction have already been taken in [53]). And we could give

more thought to the cost functions themselves. Where do they come from? Do cost functions for

routed packet networks make sense for coded ones? If a coded packet network is priced, how

should the pricing be done? And how should the resultant cost be shared among the members

of the multicast group?

In short, we believe that realizing coded packet networks is a worthwhile goal, and we see

our work as an integral step toward this goal. Much promising work, requiring various expertise,

remains.
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APPENDIX I

We wish to solve the following problem.

minimize
∑
t∈T

(v(t) − u(t))2

subject to v ∈ Pij ,

where Pij is the |T |-dimensional simplex

Pij =

{
v

∣∣∣∣∣
∑
t∈T

v(t) = aij , v ≥ 0

}
.

First, since the objective function and the constraint set Pij are both convex, it is straightforward

to establish that a necessary and sufficient condition for global optimality of v̂ (t) in Pij is

v̂(t) > 0 ⇒ (u(t) − v̂(t)) ≥ (u(r) − v̂(r)), ∀ r ∈ T (21)

(see, for example, [33, Section 2.1]). Suppose we index the elements of T such that u(t1) ≥
u(t2) ≥ . . . ≥ u(t|T |). We then note that there must be an index k in the set {1, . . . , |T |} such that
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v(tl) > 0 for l = 1, . . . , k and v(tl) = 0 for l > k + 1, for, if not, then a feasible solution with

lower cost can be obtained by swapping around components of the vector. Therefore, condition

(21) implies that there must exist some d such that v̂ (t) = u(t) + d for all t ∈ {t1, . . . , tk} and

that d ≤ −u(t) for all t ∈ {tk+1, . . . , t|T |}, which is equivalent to d ≤ −u(tk+1). Since v̂(t) is in

the simplex Pij, it follows that

kd +

tk∑
t=1

u(t) = aij ,

which gives

d =
1

k

(
aij −

tk∑
t=1

u(t)

)
.

By taking k = k̂, where k̂ is the smallest k such that

1

k

(
aij −

tk∑
r=1

u(r)

)
≤ −u(tk+1),

(or, if no such k exists, then k̂ = |T |), we see that we have

1

k̂ − 1

(
aij −

tk−1∑
t=1

u(t)

)
> −u(tk),

which can be rearranged to give

d =
1

k̂

(
aij −

tk∑
t=1

u(t)

)
> −u(tk).

Hence, if v(t) is given by

v(t) =

⎧⎪⎨
⎪⎩

u(t) +
aij−

Pt
k̂

r=1 u(r)

k̂
if t ∈ {t1, . . . , tk̂},

0 otherwise,
(22)

then v(t) is feasible and we see that the optimality condition (21) is satisfied. Note that, since

d ≤ −u(tk+1), equation (22) can also be written as

v(t) = max

⎛
⎝0, u(t) +

1

k̂

⎛
⎝aij −

t
k̂∑

r=1

u(r)

⎞
⎠
⎞
⎠ . (23)

We now turn to showing that any accumulation point of the sequence of primal iterates {x[n]}
given by (7) is an optimal solution the primal problem (3). Suppose that the dual feasible solution

that the subgradient method converges to is p̄. Then there exists some m such that for n ≥ m

p
(t)
ij [n + 1] = p

(t)
ij [n] + θ[n]x

(t)
ij [n] + cij [n]
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for all (i, j) ∈ A and t ∈ T such that p̄
(t)
ij > 0. Therefore, if p̄

(t)
ij > 0, then for n > m we have

x̃
(t)
ij [n] =

m∑
l=1

µl[n]x
(t)
ij [l] +

n∑
l=m+1

µl[n]x
(t)
ij [l]

=

m∑
l=1

µl[n]x
(t)
ij [l] +

n∑
l=m+1

µl[n]

θ[n]
(p

(t)
ij [n + 1] − p

(t)
ij [n] − cij [n])

=

m∑
l=1

µl[n]x
(t)
ij [l] +

n∑
l=m+1

γln(p
(t)
ij [n + 1] − p

(t)
ij [n]) −

n∑
l=m+1

γlncij[n].

(24)

Otherwise, if p̄
(t)
ij = 0, then from equation (23), we have

p
(t)
ij [n + 1] ≥ p

(t)
ij [n] + θ[n]x

(t)
ij [n] + cij [n],

so

x̃
(t)
ij [n] ≤

m∑
l=1

µl[n]x
(t)
ij [l] +

n∑
l=m+1

γln(p
(t)
ij [n + 1] − p

(t)
ij [n])

−
n∑

l=m+1

γlncij[n].

(25)

It is straightforward to see that the sequence of iterates {x̃[n]} is primal feasible, and that we

obtain a primal feasible sequence {z[n]} by setting zij [n] := maxt∈T x̃
(t)
ij [n]. Sherali and Choi

[35] showed that, if the required conditions on the step sizes {θ[n]} and convex combination

weights {µl[n]} are satisfied, then
m∑

l=1

µl[n]x
(t)
ij [l] +

n∑
l=m+1

γln(p
(t)
ij [n + 1] − p

(t)
ij [n]) → 0

as k → ∞; hence we see from equations (24) and (25) that, for k sufficiently large,

zij [n] = −
n∑

l=m+1

γlncij [n]

and, therefore, that complementary slackness with p̄ holds in the limit of any convergent subse-

quence of {x̃[n]}.

APPENDIX II

PROOF OF PROPOSITION 1

We prove the stability of the primal-dual algorithm by using the theory of Lyapunov stability

(see, for example, [42, Section 3.10]). This proof is based on the proof of Theorem 3.7 of [42].
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The Lagrangian for problem (10) is as follows:

L(x, p, λ) = U(x) −
∑
t∈T

⎧⎨
⎩
∑
i∈N

p
(t)
i

⎛
⎝ ∑

{j|(i,j)∈A}
x

(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji − σ

(t)
i

⎞
⎠−

∑
(i,j)∈A

λ
(t)
ij x

(t)
ij

⎫⎬
⎭ .

(26)

The function U is strictly concave since fij is a monotonically increasing, strictly convex function

and z′ij is a strictly convex function of xij , so there exists a unique minimizing solution for

problem (10), say x̂, and Lagrange multipliers, say p̂ and λ̂, which satisfy the following Karush-

Kuhn-Tucker conditions.

∂L(x̂, p̂, λ̂)

∂x
(t)
ij

=

(
∂U(x̂)

∂x
(t)
ij

−
(
p̂

(t)
i − p̂

(t)
j

)
+ λ̂

(t)
ij

)
= 0, ∀ (i, j) ∈ A, t ∈ T , (27)

∑
{j|(i,j)∈A}

x̂
(t)
ij −

∑
{j|(j,i)∈A}

x̂
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T , (28)

x̂
(t)
ij ≥ 0 ∀ (i, j) ∈ A, t ∈ T , (29)

λ̂
(t)
ij ≥ 0 ∀ (i, j) ∈ A, t ∈ T , (30)

λ̂
(t)
ij x̂ij = 0 ∀ (i, j) ∈ A, t ∈ T . (31)

From Equation (26), it can be verified that (x̂, p̂, λ̂) is an equilibrium point of the primal-dual

algorithm. We now prove that this point is globally, asymptotically stable.

Consider the following function as a candidate for the Lyapunov function:

V (x, p, λ) =
∑
t∈T

⎧⎨
⎩
∑

(i,j)∈A

(∫ x
(t)
ij

x̂
(t)
ij

1

k
(t)
ij (σ)

(σ − x̂
(t)
ij )dσ +

∫ λ
(t)
ij

λ̂
(t)
ij

1

m
(t)
ij (γ)

(γ − λ̂
(t)
ij )dγ

)

+
∑
i∈N

∫ p
(t)
i

p̂
(t)
i

1

h
(t)
i (β)

(β − p̂
(t)
i )dβ

}
.

Note that V (x̂, p̂, λ̂) = 0. Since, k
(t)
ij (σ) > 0, if x

(t)
ij 
= x̂

(t)
ij , we have

∫ x
(t)
ij

ˆ
x
(t)
ij

1

k
(t)
ij (σ)

(σ − x̂
(t)
ij )dσ > 0.

This argument can be extended to the other terms as well. Thus, whenever (x, p, λ) 
= (x̂, p̂, λ̂),

we have V (x, p, λ) > 0.
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Now,

V̇ =
∑
t∈T

⎧⎨
⎩
∑

(i,j)∈A

[(
−x

(t)
ij

)+

λ
(t)
ij

(λ
(t)
ij − λ̂

(t)
ij ) +

(
∂U(x)

∂x
(t)
ij

− q
(t)
ij + λ

(t)
ij

)
· (x(t)

ij − x̂
(t)
ij )

]

+
∑
i∈N

(y
(t)
i − σ

(t)
i )(p

(t)
i − p̂

(t)
i )

}
.

Note that (
−x

(t)
ij

)+

λ
(t)
ij

(λ
(t)
ij − λ̂

(t)
ij ) ≤ −x

(t)
ij (λ

(t)
ij − λ̂

(t)
ij ),

since the inequality is an equality if either x
(t)
ij ≤ 0 or λ

(t)
ij ≥ 0; and, in the case when x

(t)
ij > 0

and λ
(t)
ij < 0, we have (−x

(t)
ij )+

λ
(t)
ij

= 0 and, since λ̂
(t)
ij ≥ 0, −x

(t)
ij (λ

(t)
ij − λ̂

(t)
ij ) ≥ 0. Therefore,

V̇ ≤
∑
t∈T

⎧⎨
⎩
∑

(i,j)∈A

[
−x

(t)
ij (λ

(t)
ij − λ̂

(t)
ij ) +

(
∂U(x)

∂x
(t)
ij

− q
(t)
ij + λ

(t)
ij

)
· (x(t)

ij − x̂
(t)
ij )

]

+
∑
i∈N

(y
(t)
i − σ

(t)
i )(p

(t)
i − p̂

(t)
i )

}

= (q̂ − q)′(x − x̂) + (p̂ − p)′(y − ŷ)

+
∑
t∈T

⎧⎨
⎩
∑

(i,j)∈A

[
−x̂

(t)
ij (λ

(t)
ij − λ̂

(t)
ij ) +

(
∂U(x)

∂x
(t)
ij

− q̂
(t)
ij + λ̂

(t)
ij

)
· (x(t)

ij − x̂
(t)
ij )

]

+
∑
i∈N

(ŷ
(t)
i − σ

(t)
i )(p

(t)
i − p̂

(t)
i )

}

= (�U(x) −�U(x̂))′(x − x̂) − λ′x̂,

where the last line follows from Karush-Kuhn-Tucker conditions (27)–(31) and the fact that

p′y =
∑
t∈T

∑
i∈N

p
(t)
i

⎛
⎝ ∑

{j|(i,j)∈A}
x̂

(t)
ij −

∑
{j|(j,i)∈A}

x̂
(t)
ji

⎞
⎠

=
∑
t∈T

∑
(i,j)∈A

x
(t)
ij (p

(t)
i − p

(t)
j ) = q′x.

Thus, owing to the strict concavity of U(x), we have V̇ ≤ −λ′x̂, with equality if and only if

x = x̂. So it follows that V̇ ≤ 0 for all λ ≥ 0, since x̂ ≥ 0.

If the initial choice of λ is such that λ(0) ≥ 0, we see from the primal-dual algorithm that

λ(τ) ≥ 0. This is true since λ̇ ≥ 0 whenever λ ≤ 0. Thus, it follows by the theory of Lyapunov

stability that the algorithm is indeed globally, asymptotically stable.
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APPENDIX III

PROOF OF PROPOSITION 2

Suppose (x, z) is a feasible solution to problem (16). Then, for all (i, j) ∈ A′ and t ∈ T ,

Mi∑
m=m(i,j)

z
iJ

(i)
m

≥
Mi∑

m=m(i,j)

∑
k∈J

(i)
m

x
(t)

iJ
(i)
m k

=
∑

k∈J
(i)
Mi

Mi∑
m=max(m(i,j),m(i,k))

x
(t)

iJ
(i)
m k

≥
∑

k∈J
(i)
Mi

\J(i)
m(i,j)−1

Mi∑
m=max(m(i,j),m(i,k))

x
(t)

iJ
(i)
m k

=
∑

k∈J
(i)
Mi

\J(i)
m(i,j)−1

Mi∑
m=m(i,k)

x
(t)

iJ
(i)
m k

=
∑

k∈J
(i)
Mi

\J(i)
m(i,j)−1

x̂
(t)
ik .

Hence (x̂, z) is a feasible solution of problem (17) with the same cost.

Now suppose (x̂, z) is an optimal solution of problem (17). Since f
iJ

(i)
1

(ζ) < f
iJ

(i)
2

(ζ) < · · · <

f
iJ

(i)
Mi

(ζ) for all ζ ≥ 0 and i ∈ N by assumption, it follows that, for all i ∈ N , the sequence

z
iJ

(i)
1

, z
iJ

(i)
2

, . . . , z
iJ

(i)
Mi

is given recursively, starting from m = Mi, by

z
iJ

(i)
m

= max
t∈T

⎧⎪⎨
⎪⎩

∑
k∈J

(i)
Mi

\J(i)
m−1

x̂
(t)
ik −

Mi∑
l=m+1

z
iJ

(i)
l

⎫⎪⎬
⎪⎭ .

Hence z
iJ

(i)
m

≥ 0 for all i ∈ N and m = 1, 2, . . . , Mi. We then set, starting from m = Mi and

j ∈ J
(i)
Mi

,

x
(t)

iJ
(i)
m j

:= min

⎛
⎜⎝x̂

(t)
ij −

Mi∑
l=m+1

x
iJ

(i)
l j

, z
iJ

(i)
m

−
∑

k∈J
(i)
Mi

\J(i)
m(i,j)

x
(t)

iJ
(i)
m k

⎞
⎟⎠ .

It is now difficult to see that (x, z) is a feasible solution of problem (16) with the same cost.

Therefore, the optimal costs of problems (16) and (17) are the same and, since the objective

functions for the two problems are the same, z is part of an optimal solution for problem (16)

if and only if it is part of an optimal solution for problem (17).
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Fig. 5. A network used for dynamic multicast.


