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Abstract— Here we discuss the universal block decoding prob-
lem for memoryless systems and focus on figures of merit
and linear code constructions that facilitate the analysis and
construction of low-complexity decoding algorithms. We discuss
the properties of ‘universally good codes’ and how such codes lie
on the Gilbert-Varshamov bound. We next speak to analogues
of the minimum-distance criterion and develop conditions for
universal decoding success. We illustrate that universal decoding
over linear codes is NP-complete. From here we consider bipartite
graph code constructions and illustrate that with large enough
fixed degree, linear codes based on graphs and inner codes that
are universally good become universally good aggregately.

I. I NTRODUCTION

In the information theory literature there has been discus-
sion on universal coding, where encoders and decoders are
constructed that operatewithout knowledge of the underlying
probability distribution. From an ontological perspective, there
has been much success - it has been shown that for numerous
settings [Gop75], [Csi82], [LZ97], [FL98], there exist block
encoders and decoders that can attain the same error exponent
(exponential rate of decay in probability of error) as that
of the random coding exponent corresponding to maximum-
likelihood decoding. Such universal decoding algorithms have
also served as subcomponents of other multiterminal com-
munication systems - for instance statistical inference prob-
lems under data compression constraints [AH89], [HA95],
[HA98], [Jor01], [JY02]. As in the typical channel coding
case, the encoding situation is not nearly as difficult as the
decoding situation. Indeed, the proposed universal decoding
algorithms’ nonlinearities and difficulty of implementation
have obfuscated the desire for people to constructpractical
code constructions and decoding algorithms. This apparent
intrinsic difficulty in universal decoding manifests itself in
the consideration of other decoding algorithms [MKLSS94,
Sec. I]: “Theoretically, one can employ universal decoding;
however, in many applications, it is ruled out by complexity
considerations.”

However, we take a fresh perspective by looking back at
how key advances manifested themselves in the traditional
coding literature:

• Linear codes have been known to be sufficient for many
channel coding problems to attain all achievable rates and
the random coding exponent. However, ML decoding for

general linear codes has been shown [BMvT78] to be an
intrinsically complex (NP-complete) problem.

• A ‘divide-and-conquer’ approach has been employed
by coding theorists since the beginnings of information
theory to construct large linear codes from smaller good
components with polynomial complexity decoding algo-
rithms whose performance is empirically good [Gal62]
as well as provably good [For65], [For66].

and try to walk an analogous path to address practical code
constructions and decoding algorithms for the universal set-
ting:

• Linear codes have already been known touniversallyat-
tain all achievable rates with exponential error probability
decay. In this chapter we show that universal decoding
general linear codes is also a provably complex (NP-
complete) problem.

• We employ a ‘divide-and-conquer’ graph-based approach
to show that large linear codes constructed from smaller
‘universally good’ component codes are aggregately prov-
ably good under optimal universal decoding.

Although not discussed here, these approaches can be directly
extended to multiterminal settings, including Slepian-Wolf
near-lossless distributed data compression and certain types
of multiple-access channel coding. Hopefully these results will
contribute to forming a basis for efficient, practical code and
decoding designs for the universal setting.

II. T HE GENERAL UNIVERSAL DECODING PROBLEM FOR

A SINGLE SOURCE

A. Model and Definitions

Throughout this discussion we will consider a discrete
memoryless source (DMS)U over U = {0, 1, . . . , Q − 1}.
The set of all probability distributions onU is given byP (U).
For a length-N sequenceu = (u1, u2, . . . , uN ) ∈ UN , the
type Pu ∈ P (U) is the probability distribution defined by
Pu(a) = 1

N

∑N
i=1 1{ui=a}, for all a ∈ U . We denote byWN

the pmf induced onUN by N independent drawings according
to W . We denote byPN (U) the subset ofP (U) consisting
of the possible types of sequencesu ∈ UN . For any type
P ∈ PN (U), the type classT (P) is the set of allu ∈ UN



such thatPu = P. To summarize, we have that

P (U) =

{

P =
(

{Pa}a∈U

)

: P ≥ 0,
∑

a∈U

Pa = 1

}

Pu =

({

1

N

N
∑

i=1

1ui=a

}

a∈U

)

for u ∈ UN (1)

PN (U) =
{

P ∈ P (U) : P = Pu for someu ∈ UN
}

T (P) =
{

u ∈ UN | Pu = P
}

.

For a random variableU with probability distributionW we
will denote its entropy asH (U) which is a function ofW .
When we instead want to explicitly speak of the entropy
as a function of someP ∈ PN (U), then we will denote
this ash (P ). For two random variables with conditional and
marginal distributions given byPU |V andPV , we will denote
the conditional entropyH (U |V ) explicitly interms ofPU |V

andPV ash
(

PU |V |PV

)

.
From [Csi98] we note the following:

|PN (U)| ≤ (N + 1)
|U| (2)

|T (P)| ≤ 2Nh(P) (3)

Wn (u) = 2−N[h(Pu)+D(Pu‖W)] ∀ u ∈ UN (4)

Thus the number of types is polynomial in N .

B. The General Problem

In this discussion we consider code constructions for fixed
block length universal coding for the two dual settings of data
compression and channel coding. The compression scenario
mentioned could be relevant, for instance, in a wireless sensor
network where the following two points apply:

1) Time-varying nature of field makes knowledge of field
being sensed, the probability distribution on the data is
not completely accurately modeled,

2) Complexity, memory, and energy constraints make a
universal fixed-to-fixed length algebraic compression ap-
proach more viable than a universal fixed-to-variable
length compression approach (such as Lempel-Ziv
[LZ77], [LZ78] or Burrows-Wheeler [EVKV02]) that
requires dictionaries and table-lookups.

Similarly, due to the time-varying and multipath effects ofthe
wireless channel, the universal channel coding scenario could
be relevant where phase information cannot be accurately
tracked.

More specifically, we take interest in universal decoding for
discrete memoryless settings, where the decoder does not have
knowledge of the probability distribution to aid in decoding.
Consider a DMSU with probability distributionW ∈ P (U).
Without loss of generality, we assume thatU = {0, 1, . . . , Q−
1} whereQ = 2t for some integert ≥ 1. Thus we may assume
that U takes on values inF2t . Our goal is to design a fixed-
rate universal code that permits a decoding algorithm that is
blind to W to have provably good performance. We consider

the case where a linear mapping

H =











−H ′
1−

−H ′
2−

...
−H ′

M−











: UN → UM

is used to mapu ∈ UN to s ∈ UM via

s = Hu (5)

where M < N and U is memoryless with probability
distributionW ∈ P (U). We will denote the rateR as

R = t
M

N
(6)

and note that this corresponds to rate in a data compression
sense andnot in a channel coding sense (which would corre-
spond tot − R). Throughout the rest of this chapter we will
speak of rate in a data compression sense. The decoder knows
that u must be consistent withs, in other words it must lie in
the coset

Co(H, s) = {u
∣

∣ Hu = s}, (7)

and selectŝu as the ‘best’ coset member (in a universal sense).
This encompasses two settings:

a) Fixed-to-fixed length near-lossless data compression,
where u is identified as the sourceword ands is the
syndrome, the output of the compression operation.

b) An additive noise channely = x ⊕ u. By using a linear
codeC for x, and identifying the parity check matrixH
with C as

C = {x : Hx = 0} , (8)

then we have that a sufficient statistic for decoding is

Hy = Hu = s.

Successfully decoding for the noise vectoru is equivalent
to successfully decoding for the transmitted codewordx:

x̂ = û ⊕ y.

We assume that the rateR is achievable (i.e.tM
N

> H (U)). It
has been known in the information theory literature for quite
a while [Gop75], [Csi82] that in theuniversalsetting, linear
codesstill suffice to attain all achievable rates and can the
same error exponent as the random coding exponent. Note
that for anyu ∈ UN , we have that

P (u) = 2−N[D(Pu‖W)+h(Pu)].

Thus an ML decoder with knowledge ofW operates by
selecting

û ∈ arg min
u∈Co(H,s)

D
(

Pu‖W
)

+ h
(

Pu

)

Csisźar’s ‘minimum-entropy’ decoder selects as the source
reconstruction the coset’s entropy minimizer

û ∈ arg min
u∈Co(H,s)

h
(

Pu

)

. (9)



In [Csi82], Csisźar shows that not only do there exist linear
codes such whose rates can be arbitrarily close toH(U) when
such a decoder is applied, but also that minimum entropy
decoding achieves the same error exponent as the optimal
maximum-likelihood (ML) decoder. Another interpretationof
the universal decoding paradigm is that it is a manifestation
of Occam’s razor: “Find the explanation most easy to accept.”
Since the entropy function measures the inherent uncertainty
or difficulty in explaining something, selecting the lowest
entropy candidate consistent with observations is the same
as selecting the easiest to accept candidate consistent with
observations.

III. U NIVERSALLY GOOD L INEAR CODES

Csisźar’s lemma specifying good encoders [Csi82, Sec. III]
illustrates the existence of linear mappingsH : UN → UM

such for any joint typeP ∈ PN

(

U2
)

with the definitions

NH (P) ,

∣

∣

∣

∣

{

(u ∈ U
∣

∣

∣

Hu = Hũ

Pu,ũ = P
for someũ 6= u

}∣

∣

∣

∣

(10)

every joint type P ∈ PN

(

U2
)

satisfies:

a) NH (P) ≤ 2−N(R−h(P)−δN ) (11)

b) if h
(

PU−Ũ

)

≤ R − δN thenNH (P) = 0 (12)

where δN → 0 as N → ∞. We will denote such codes as
universally good. Note that the bound (11) can be strengthened
to:

NH (P) ≤ 2−N(R−h(P)−δN )

= 2N(h(PU )−(R−h(PŨ|U |PU)−δN))

⇒ NH (P) ≤ 2
N
�

h(PU )−|R−h(PŨ|U |PU)−δN |
+
�

(13)

≤ 2
N
�

h(PU )−|R−h(PŨ)−δN |
+
�

where (13) follows because by the definition ofNH (P),
NH (P) ≤ |T (PU )| ≤ 2Nh(PU ).

A. The Gilbert-Varshamov Distance

One important property of any linear codeC with associated
parity-check matrixH is its minimum distance

dmin(H) = min
u∈Co(H,0)\0

wh (u) (14)

wherewh (·) is the Hamming distance. It is well known that
the larger the minimum distance of a code, the larger the
number of errors it can guarantee to correct:

wh (u) <
1

2
dmin(H) ⇒ wh (u) < wh (u + ũ)∀ũ ∈ C \ 0.

(15)
Here we briefly note how condition (12) of universally good
codes relates to a standard bound on good linear codes. It has
been well known that random linear codes with parity-check
matrix H have minimum distance lying on theQ-ary Gilbert-
Varshamov distance bound with high probability [WK03, p.
42-43]:

dmin(H) ≥ N
(

h−1
Q (R) − ǫ

)

wherehQ(α) for 0 < α ≤ Q−1
Q

is given by

hQ(x) = x log(Q − 1) − x log x − (1 − x) log(1 − x).

Lemma 3.1:Universally Good Linear Codes lie on the
Gilbert-Varshamov bound.

Proof: Setting ũ = 0 we have from condition (12) of
universally good codes that anyu ∈ Co(H, 0) \ 0 satisfies
h
(

Pu

)

≥ R − ǫN , whereǫN → 0 as N → ∞. Now if we
see what this means in terms of hamming distance, we can
perform the following minimization:

min wh (u)

s.t. h
(

Pu

)

≥ R − ǫN .

From the concavity of the entropy functionh (·), u∗ will in
(1−δ)N positions be0 and in δ

Q−1N positions bea, for each
a ∈ U \ 0. Thus we have that

R − ǫN = h
(

Pu∗

)

= −(1 − δ) log(1 − δ) − (Q − 1)
δ

Q − 1
log

(

δ

Q − 1

)

= −(1 − δ) log(1 − δ) − δ log

(

δ

Q − 1

)

= −(1 − δ) log(1 − δ) − δ log δ + δ log(Q − 1)

= hQ(δ).

B. Guarantees on Universal Decoding Success

Here we discuss some conditions for guarantees on universal
decoding success. We present these to fall in analogy with
previously well-established conditions for minimum-distance
decoding. Analogous to the use of (14) for ML decoding
on general linear codes, we will speak to condition (12)
for universal decoding on general linear codes. Define the
universal rateRuniv associated with matrixH to be the largest
R such that condition (12) holds forH with δN = 0.

Lemma 3.2:Consider any linear matrixH, that is used
to map u to s according to (5), and its associatedRuniv. If
h
(

Pu

)

< 1
2Runiv thenu is the unique solution to

min
û∈Co(H,s)

h
(

Pû

)

.

Proof: We proceed with a proof by contradiction. Sup-
poseHũ = Hu andh

(

Pũ

)

≤ h
(

Pu

)

. Note that

h
(

Pu−ũ,u,ũ

)

= h
(

Pu,ũ

)

+ h
(

Pu−ũ|u,ũ|Pu,ũ

)

= h
(

Pu,ũ

)

h
(

Pu−ũ,u,ũ

)

= h
(

Pu−ũ

)

+ h
(

Pu,ũ|u−ũ|Pu−ũ

)

⇒ h
(

Pu−ũ

)

= h
(

Pu,ũ

)

− h
(

Pu,ũ|u−ũ|Pu−ũ

)

≤ h
(

Pu,ũ

)

≤ h
(

Pu

)

+ h
(

Pũ

)

≤ 2h
(

Pu

)

< Runiv.

But by (12) there can be no such̃u 6= u with Hũ = Hu and
thus we have a contradiction.



IV. T HE COMPLEXITY OF UNIVERSAL DECODING WITH

L INEAR CODES

Now we discuss the computational complexity of universal
‘minimum-entropy’ decoding for general linear codes. We
restrict ourselves to the binary case here, although these results
can be extended to any alphabet size that is a power of2.
Consider a binary linear codeC specified by its parity check
matrix H ∈ {0, 1}M × {0, 1}N , given by (8). Thn we have
that H maps au ∈ {0, 1}N to s ∈ {0, 1}M via (5), where
M < N and U is memoryless withP (Ui = 1) = p. Taking
s as its input along with knowledge ofH, the decoder knows
that u must lie in the coset Co(H, s) given by (7). In the
case of ML decoding, if the decoder knew thatp < 1

2 , then
it selectsû as the coset’s smallest hamming weight member -
termedcoset leader:

û = arg min
u∈Co(H,s)

wh (u) . (16)

In a universal setting, the decoder is unaware of the sign of
p− 1

2 , and selectŝu as the coset’s empirical entropy minimizer,
given by (9).

It has been shown in [BMvT78] that ML decoding for
general linear codes - performing (16) for a general matrix
H - is NP-complete. Thus it is not overwhelmingly surprising
the following theorem holds, but we state it here for the sake
of completeness, a solid foundation, and motivation for future
code-on-graph based decoding techniques:

Theorem 4.1:The algorithm MINIMUM-
ENTROPY[H, s] for general binary linear codes is NP-
complete.

Proof: We prove this by means of a reduction, a
common technique for proving theorems in complexity theory.
Suppose we are given an instance of the NP-complete problem
COSET-LEADER [H, s], which performs (16). We would like
to reduce this to minimum-entropy decoding by showing that
if there exists a polynomial-time algorithm forMINIMUM-
ENTROPY[H, s], which performs (9), then it can be used to
solve any instance ofCOSET-LEADER [H, s]. Consider the

coset Co
(

H̃, s̃
)

where

H̃ =

[

H 0
0 IN

]

, s̃ =

[

s

0

]

,

where IN is the N × N identity matrix. Consider anỹu =
[

u

u′

]

∈ Co
(

H̃, s̃
)

and note that̃u must satisfy

u′ = 0, u ∈ Co(H, s) . (17)

Furthermore, note that anỹu ∈ Co
(

H̃, s̃
)

satisfies

1

2N
wh (ũ) ≤

1

2
⇔ Pũ(0) ≤

1

2
. (18)

Since the binary entropy function is monotonically increasing

sj

sj′

ue

Hj

Hj′

Fig. 1. Graphical representation of a linear system representing Co(H, s)

on [0, 1
2 ), we have that the two optimization problems

MINIMUM-ENTROPY
[

H̃, s̃
]

: min
ũ∈Co(H̃,s̃)

h
(

Pũ

)

,

COSET-LEADER
[

H̃, s̃
]

: min
ũ∈Co(H̃,s̃)

wh (ũ)

have the same optimal solution(s). Letũ∗ =

[

u∗

u′∗

]

be an

optimal solution from above. Then from (17) and we have that
u∗ is an optimal solution toCOSET-LEADER [H, s].

V. CODES ONGRAPHS

Considering how we found in the previous section that
minimum-entropy decoding is NP-complete, we now discuss
code constructions based upon bipartite graphs. In particular,
we concern ourselves with graphical realizations of linearsys-
tems to represent the coset Co(H, s). We adhere to Forney’s
“normal graph” [For01, Sec VIII.B] realizations:

• A graphG = (V,E ∪ Ē) with |E| = N two-sided edges
and

∣

∣Ē
∣

∣ one-sided edges. For a vertexj ∈ V we denote
Γ (j) as the set of edgese ∈ E adjacent toj and Γ̃ (j)
as the set of edges̄e ∈ Ē adjacent toj.

• Each local constraintCj is represented by a vertexj ∈ V

• The state variableue ∈ F2t corresponds to a two-sided
edgee ∈ E and is involved in the two local constraints
corresponding to the vertices adjacent toe. The set of
all state variables is represented as the vectoru. For any
j ∈ V we denote{ue}e∈Γ(j) asuj .

• The symbol variablesē ∈ F2t corresponds to a one-sided
‘leaf-edge’ ē ∈ Ē and is involved in one local constraint
corresponding to the vertex adjacent toē. For anyj ∈ V ,
we abbreviate{sē}ē∈Γ̃(j) assj .

• Any j ∈ V j and its associated codeCj imposes the
constraint that

Hjuj + sj = 0 ⇔ Hjuj = sj ⇔ uj ∈ Co
(

Hj , sj

)

.

(19)
The coset Co(H, s) can be expressed as

Co(H, s) =
{

u
∣

∣ uj ∈ Co
(

Hj , sj

)

, ∀ j ∈ V
}

. (20)

For a particular graphG, we denote COG
(

G, {Hj}, {sj}
)

as
the way in which we specify Co(H, s) in terms of (20).



A. Universal Goodness of Bipartite Graph Codes

We now denote UCOG
(

G∆,n, {Hj}, {sj}
)

as a
COG

(

G, {Hj}, {sj}
)

system whereG∆,n is a ∆-regular
bipartite graph withn vertices and each localHj is universally
good. We are interested in the universal goodness of such
codes where wheren grows and∆ is a large but fixed
constant. We first consider the following lemma that will be
useful for our analysis:

Lemma 5.1:Consider a setA where|A| = n and suppose
that

{

P
j ∈ P∆

(

U2
)}

j∈A
, P ∈ Pn∆

(

U2
)

. Then:

∑

1
n

P
j∈A Pj=P

∏

j∈A

2−∆(Ra−h(P
j)−δ∆) ≤ 2−n∆(Ra−h(P)−ǫ′∆)

whereǫ′∆ → 0 as∆ → ∞.
Proof:

∑

1
n

P
j∈A Pj=P

∏

j∈A

2−∆(Ra−h(P
j)−δ∆)

=
∑

1
n

P
j∈A Pj=P

2−n∆(Ra−
1
n

P
j∈A h(P

j)−δ∆) (21)

≤
∑

1
n

P
j∈A Pj=P

2−n∆(Ra−h(
P

j∈A
1
n

P
j)−δ∆) (22)

=
∑

1
n

P
j∈A Pj=P

2−n∆(Ra−h(P)−δ∆)

≤
∣

∣P∆

(

U2
)∣

∣

n
2−n∆(Ra−h(P)−δ∆)

≤ (∆ + 1)
n|U|2

2−n∆(Ra−h(P)−δ∆) (23)

= 2−n∆(Ra−h(P)−δ∆−|U|2
log(∆+1)

∆ )

= 2−n∆(Ra−h(P)−ǫ′∆)

where (22) follows from the concavity of entropy, and (23)
follows from (2).
This allows us to state the following lemma.

Lemma 5.2:For large but fixed∆, codes defined in terms
of UCOG

(

G∆,n, {Hj}, {sj}
)

are universally good.
Proof: Let N = n∆ andP ∈ PN

(

U2
)

correspond to the
joint type of any length-N pair (u, ũ) satisfyingHu = Hũ.
Define P

j ∈ P∆

(

U2
)

to correspond to the joint type of any
local length-∆ pair (u′, ũ′) satisfyingHju

′ = Hj ũ
′. Then we

have:

NH (P) ≤
∑

1
n

P
j∈A Pj=P

∏

j∈A

NHj

(

P
j
)

≤
∑

1
n

P
j∈A Pj=P

∏

j∈A

2−∆(Ra−h(P
j)−δ∆) (24)

≤ 2−N(Ra−h(P)−ǫ′∆) (25)

where ǫ′∆ → 0 as ∆ → ∞, (24) follows from (11), (25)
follows from Lemma 5.1. Thus it follows thatH becomes
universally good for large∆, when thought of having rate
R′ = Ra − ǫ′∆.

VI. D ISCUSSION

The properties of universally good codes as well as the
graphical universal code constructions we discussed above
allow for the development of polynomial complexity decoding
algorithms - analogous to linear programming relaxations
[Fel03] and iterative symbol-flipping expander graph based
decoding [BZ02] for ML decoding- with provably good per-
formance [Col05].
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