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Abstract— Here we discuss the universal block decoding prob- general linear codes has been shown [BMvT78] to be an
lem for memoryless systems and focus on figures of merit intrinsically complex (NP-complete) problem.

and linear code constructions that facilitate the analysis and « A ‘divide-and-conquer approach has been employed

construction of low-complexity decoding algorithms. We discuss b ding theorists si the beginni £ inf i
the properties of ‘universally good codes’ and how such codes lie y coding theorists since the beginnings ot information

on the Gilbert-Varshamov bound. We next speak to analogues theory to construct large linear codes from smaller good
of the minimum-distance criterion and develop conditions for components with polynomial complexity decoding algo-
universal decoding success. We illustrate that universal decowy rithms whose performance is empirically good [Gal62]
over linear codes is NP-complete. From here we consider bipartite as well as provably good [For65], [For66].

graph code constructions and illustrate that with large enough
fixed degree, linear codes based on graphs and inner codes thatand try to walk an analogous path to address practical code
are universally good become universally good aggregately. constructions and decoding algorithms for the universtl se
ting:
I. INTRODUCTION . .
« Linear codes have already been knowrutdversallyat-

In the information theory literature there has been discus- tain all achievable rates with exponential error probapbili
sion onuniversal coding, where encoders and decoders are decay. In this chapter we show that universal decoding
constructed that operateithout knowledge of the underlying general linear codes is also a provably complex (NP-
probability distribution From an ontological perspective, there  complete) problem.
has been much success - it has been shown that for numerous We employ a ‘divide-and-conquer’ graph-based approach
settings [Gop75], [Csi82], [LZ97], [FL98], there exist llo to show that large linear codes constructed from smaller
encoders and decoders that can attain the same error exponen ‘universally good’ component codes are aggregately prov-
(exponential rate of decay in probability of error) as that ably good under optimal universal decoding.
of the random coding exponent corresponding to maximu
likelihood decoding. Such universal decoding algorithrageh
also served as subcomponents of other multiterminal co
munication systems - for instance statistical inferenagbpr
lems under data compression constraints [AH89], [HA95
[HA98], [Jor01], [JYO02]. As in the typical channel codingde
case, the encoding situation is not nearly as difficult as the
decoding situation. Indeed, the proposed universal dagodi
algorithms’ nonlinearities and difficulty of implementi !l. THE GENERAL UNIVERSAL DECODING PROBLEM FOR
have obfuscated the desire for people to constpuattical A SINGLE SOURCE
code constructions and decoding algorithms. This apparent L
intrinsic difficulty in universal decoding manifests itseh /- Model and Definitions

the consideration of other decoding algorithms [MKLSS94, Throughout this discussion we will consider a discrete

r]&Ithough not discussed here, these approaches can beydirect
extended to multiterminal settings, including SlepianHWo
Mear-lossless distributed data compression and certapiesty

f multiple-access channel coding. Hopefully these reswil
ntribute to forming a basis for efficient, practical codwl a
coding designs for the universal setting.

Sec. I]: “Theoretically, one can employ universal decodingnemoryless source (DMSY over i/ = {0,1,...,Q — 1}.
howeyer, In many applications, it is ruled out by complexityhe set of all probability distributions di is given byP (11).
considerations. For a length’V sequenceu = (u1,us,...,ux) € UN, the

However, we take a fresh perspective by looking back gfpe P, € P (/) is the probability distribution defined by
how key advances manifested themselves in the traditior}qj(a) — L SN 1{u,—ay. for all a € U. We denote by~
coding literature: the pmf induced od/™ by N independent drawings according

« Linear codes have been known to be sufficient for marig W. We denote byPy (/) the subset ofP (/) consisting

channel coding problems to attain all achievable rates aafl the possible types of sequencesc UY. For any type
the random coding exponent. However, ML decoding fd € Py (i), the type class (P) is the set of allu € YN



such thatP, = P. To summarize, we have that the case where a linear mapping

—H|-
PU) = {Pz({Pa}aeu)rPEO»ZPﬁl} e ,
= H= : Ut —uM
1 & L
P, = NZlui:a forucuUy (1) M
i=1 acll is used to map, € UV to s € UM via
PyU) = {PePU):P=P, for someuc U
N( ) { N( ) u u } s=Hu (5)
TP = {weu"|P,=P}.

where M < N and U is memoryless with probability
For a random variabl& with probability distributiont¥ we distribution W € P (U). We will denote the ratek as
will denote its entropy ad? (U) which is a function oflV. M
When we instead want to explicitly speak of the entropy R=t— (6)
as a function of some” € Py (U), then we will denote _ N _ .
this ash (P). For two random variables with conditional and@nd note that this corresponds to rate in a data compression
marginal distributions given by’ and Py, we will denote sense anahot in a channel coding sense (wh|ch would corre-
the conditional entropy (U|V) explicitly interms of Py spond tot — R). Throughout the rest of this chapter we will

and Py ash (Pyy|Py). speak of rate in a dqta compre;sion sense. The decoder_ knows
From [Csi98] we note the following: thatuw must be consistent with, in other words it must lie in
the coset
Py )] < (N+1)M o) Co(H,s) = {u| Hu = s}, @)
(@) < 2M® (3)  and selects, as the ‘best’ coset member (in a universal sense).
W (u) = 9= N[h(Pu)+D(PulW)] YuecuN (4) This encompasses two settings:
a) Fixed-to-fixed length near-lossless data compression,
Thusthe number of types is polynomial in N. where u is identified as the sourceword andis the
syndrome, the output of the compression operation.
B. The General Problem b) An additive noise channel = z & u. By using a linear

In this discussion we consider code constructions for fixed codeC for z, and identifying the parity check matril
block length universal coding for the two dual settings afada with C as
compression and channel coding. The compression scenario C={z:Hz =0}, (8)
mentioned could be relevant, for instance, in a wireless@en
network where the following two points apply:
Hy=Hu=s.

1) Time-varying nature of field makes knowledge of field 4y
being sensed, the probability distribution on the data is Successfully decoding for the noise vectgis equivalent

then we have that a sufficient statistic for decoding is

not completely accurately modeled, _ to successfully decoding for the transmitted codeward
2) Complexity, memory, and energy constraints make a
universal fixed-to-fixed length algebraic compression ap- T=udy.

proach more viable than a universal fixed-to-variab . . LM
length compression approach (such as LempeI—Zl\lzve assume that the rafeéis achievable (i.et3 > H (U)). It

\/ . . . g .
as been known in the information theory literature for guit
Elééz;]és [I&izig]n;?es:ﬁgﬁ;ﬁﬂgif&pglzv}(voz]) that a while [Gop75], [Csi82] that in theniversalsetting,linear

o _ _ _ codesstill suffice to attain all achievable rates and can the
Similarly, due to the time-varying and multipath effectstioé  same error exponent as the random coding exponent. Note
wireless channel, the universal channel coding scenatiticothat for anyu € ¢4V, we have that

be relevant where phase information cannot be accurately
tracked. P(u) = 9= N[D(PulW)+h(Py)]|

More specifically, we take interest in universal decoding forhus an ML decoder with knowledge df operates by
discrete memoryless settings, where the decoder does vt r?el ecting

knowledge of the probability distribution to aid in decoglin

Consider a DMSJ with probability distributionW € P (). d€arg min D (P||W)+h(Py,)

Without loss of generality, we assume that {0,1,...,Q— u€Co(H,s)

1} where@ = 2! for some integet > 1. Thus we may assume Csisar's ‘minimum-entropy’ decoder selects as the source
that U takes on values ifif,:. Our goal is to design a fixed- reconstruction the coset’s entropy minimizer

rate universal code that permits a decoding algorithm that i . .

blind to W to have provably good performance. We consider ue argﬂegcl,%%ﬁ) h (Pﬂ) ’ ©)



In [Csi82], Csisar shows that not only do there exist lineawherehg(a) for 0 < a < % is given by

codes such whose rates can be arbitrarily closg (&') when B

such a decoder is applied, but also that minimum entropy '@ (%) = 2108(@Q —1) —zloga — (1 —x)log(l — x).
decoding achieves the same error exponent as the optimalemma 3.1:Universally Good Linear Codes lie on the
maximum-likelihood (ML) decoder. Another interpretatioh Gilbert-Varshamov bound.

the universal decoding paradigm is that it is a manifestatio  Proof: Setting = 0 we have from condition (12) of

of Occam’s razor: “Find the explanation most easy to acteptiniversally good codes that any € Co(H,0) \ 0 satisfies
Since the entropy function measures the inherent uncéytain (Pg) > R — ey, Whereey — 0 as N — oco. Now if we

or difficulty in explaining something, selecting the lowesgee what this means in terms of hamming distance, we can
entropy candidate consistent with observations is the sapwform the following minimization:

as selecting the easiest to accept candidate consisteimt wit )
observations. min - w, ()

s.t. h(Pu) >R —epn.
I1l. UNIVERSALLY GOOD LINEAR CODES -
|:r0m the concavity of the entropy functidn(-), «* will in

(1—-4)N positions be) and in 525 N positions bex, for each
a €U\ 0. Thus we have that

R—EN = h(PB*)

Csisar's lemma specifying good encoders [Csi82, Sec. I
illustrates the existence of linear mappings: U~ — Y™
such for any joint typeP € Py (&) with the definitions

= Hu
N ]P’é{ueu for somed u} 10
w2 fueu] By 7ug) 0 = (15)1og(15)(Ql)Qillog(QiJ
everyjoint type P € Py (Z/{Q) satisfies: 5
= —(1-14)log(l—0)—dlog ()
a) NH (]P)) < 9—N(R—h(P)—6n) (11) Q 1
b) if h(Py_ ) <R—6ythenNy (P)=0  (12) = —(1-0)log(l~0)~3logd +dlog(Q —1)
= hg(9).
wheredéy — 0 as N — oo. We will denote such codes as <)
universally goodNote that the bound (11) can be strengthened u

to: B. Guarantees on Universal Decoding Success

Nu (@) < 27 NE-AE=w Here we discuss some conditions for guarantees on universal

)
—  oN(nPv)~(R=h(Pgy|Py)—on)) decoding success. We present these to fall in analogy with
oV ()~ | R=(Pgys ) =5 previously well-established conditions for minimum-diste
= Nu (P) < ( | (FarlPu) o] ) (13) decoding. Analogous to the use of (14) for ML decoding
< N(h(Pu) |R—h(Pg)—on|") on general linear codes, we will speak to condition (12)

for universal decoding on general linear codes. Define the
where (13) follows because by the definition &fy (P), universal rateR,,y, associated with matri¥ to be the largest
Ny (P) < |T (Py)| < 2NhE0), R such that condition (12) holds fdd with 65 = 0.
Lemma 3.2:Consider any linear matrix{, that is used

to mapu to s according to (5), and its associatétiy. If
One important property of any linear co@evith associated j, (P.) < %Runv thenu is the unique solution to

parity-check matrixH is its minimum distance

A. The Gilbert-Varshamov Distance

ICH%II}[ )h (Pﬁ) .
. — i a€Co(H,s -
nin (H) weColH oo (u) (14) Proof: We proceed with a proof by contradiction. Sup-

wherewy, (-) is the Hamming distance. It is well known thalposeHﬂ = Hu andh (Py) < h (Py). Note that

the larger the minimum distance of a code, the larger the h (Py_aua) = h(Py

number of errors it can guarantee to correct: — ( P;@)
1 JR ~ o ~
wy, (u) < §dmin(H) = wp, (u) < wp (u+a)Va € C\ 0. h (Pkﬁ&&) h (P,fg) +h Pg,g\g—dp:g)
(15) = h(Py-z) = h(Pua)—h(Puglu-alPu-a)
Here we briefly note how condition (12) of universally good < h(Pua)
codes relates to a standard boqnd on good quear ches. It has < h(P) +h(Ps)
been well known that random linear codes with parity-check < 9 ~ B

matrix H have minimum distance lying on th@-ary Gilbert-
Varshamov distance bound with high probability [WKO03, p.

42-43]: . But by (12) there can be no suéh# u with Hi = Hu and
dmin(H) > N <hQ (R) — E) thus we have a contradiction. [
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IV. THE COMPLEXITY OF UNIVERSAL DECODING WITH
LINEAR CODES

Now we discuss the computational complexity of universal
‘minimum-entropy’ decoding for general linear codes. We
restrict ourselves to the binary case here, although tlessdts
can be extended to any alphabet size that is a poweZ. of
Consider a binary linear code specified by its parity check
matrix H € {0,1}* x {0,1}", given by (8). Thn we have
that H maps au € {0,1}" to s € {0,1} via (5), where
M < N andU is memoryless withP? (U; = 1) = p. Taking
s as its input along with knowledge df, the decoder knows
that « must lie in the coset C@H,s) given by (7). In the
case of ML decoding, if the decoder knew that % then
it selectsu as the coset’'s smallest hamming weight member -
termedcoset leader on [0, 1), we have that the two optimization problems

Fig. 1. Graphical representation of a linear system repiésp Cq H, s)

i=arg i wn (). (16)  MINIMUM-ENTROPY [/, : @eg)l(mﬁé)h(P@),

In a universal setting, the decoder is unaware of the sign of COSET-LEADER {H»Q} : eg)l(lg ~)wh ()
p—1, and selects as the coset's empirical entropy minimizer, * .
given by (9).

It has been shown in [BMvT78] that ML decoding for . ] u
general linear codes - performing (16) for a general matrBPt!mal solu_tlon from gbove. Then from (17) and we have that
H - is NP-complete. Thus it is not overwhelmingly surprising” IS @n optimal solution t€OSET-LEADER [/, s]. u
the following theorem holds, but we state it here for the sake V. CODES ONGRAPHS
of completeness, a solid four_1dation, qnd motivation founrfeit Considering how we found in the previous section that
code-on-graph based decoding techniques:

have the same optimal solution(s). L&t = Zf,* be an

minimum-entropy decoding is NP-complete, we now discuss

Theorem 4.1:The algorithm MINIMUM- " ¢code constructions based upon bipartite graphs. In péaticu
ENTROPY([H, s] for general binary linear codes is NP-ye concern ourselves with graphical realizations of lireye-
complete. tems to represent the coset @, s). We adhere to Forney’s

Proof: We prove this by means of a reduction, anormal graph” [For01, Sec VIII.B] realizations:
common technique for proving theorems in complexity theory , A graphG = (V, EU E) with |E| = N two-sided edges

Suppose we are given an instance of the NP-complete problem gng |E| one-sided edges. For a vertgx V we denote
COSET-LEADER|[H, s|, which performs (16). We would like I'(j) as the set of edgese E adjacent toj and T (5)

to reduce this to minimum-entropy decoding by showing that 55 the set of edgesc E adjacent toj.
if there exists a polypomial-time algorithm foMINIMUM- « Each local constrairg; is represented by a vertexc V/
ENTROPY [, s], which performs (9), then it can be used to , The state variable,, € Fo: corresponds to a two-sided

solve any instance 0€OSET-LEADER([H, s]. Consider the edgee € E and is involved in the two local constraints
coset C<<H ,é) where corresponding to the vertices adjacentetoThe set of
all state variables is represented as the vegtdfor any
[ { H 0 ] . { s } j €V we denote{u,}cer(j) asu;.
10 In|>Z 0| o The symbol variable; € F5: corresponds to a one-sided
‘leaf-edge’e € E and is involved in one local constraint
where Iy is the N x N identity matrix. Consider any. = corresponding to the vertex adjacenttdor anyj € V,
[ “ } € Co (H,g) and note that must satisfy we abbreviate{se}ocr ;) aSs;.
u e« Any j € V j and its associated cod€; imposes the

, constraint that
v =0, ueCo(H,s). a7
Hju; +5; =0 & Hju;=s; < u; € CO(Hj,s;) -

Furthermore, note that any € Co (ﬁ[,g) satisfies (19)
The coset C¢H, s) can be expressed as

(18) CO(H7§):{Q|gj GCO(Hj,gj), VjGV}‘ (20)

For a particular grapli7, we denote COGG, {H,},{s,}) as
Since the binary entropy function is monotonically incirgs the way in which we specify C@H, s) in terms of (20).

1
5 © Pu(0)<

N =



A. Universal Goodness of Bipartite Graph Codes

We now denote UCOGGA.,{H,},{s;}) as a
COG(G, {Hj},{gj}) system whereGa , is a A-regular

VI. DISCUSSION

The properties of universally good codes as well as the
graphical universal code constructions we discussed above

bipartite graph with vertices and each local; is universally allow for the development of polynomial complexity decaglin
good. We are interested in the universal goodness of si@forithms - analogous to linear programming relaxations
codes where wherex grows andA is a large but fixed [FelOS] and iterative symbol—flllpplng.expander graph based
constant. We first consider the following lemma that will b€coding [BZ02] for ML decoding- with provably good per-

useful for our analysis:
Lemma 5.1:Consider a sefl where|A| = n and suppose
that {P7 € Pa (U?)}._,, P € Paa (U?). Then:

Z H 2—A(Ra—h,(IF’j)—6A) < 2—nA(Ra—h(]P’)—e’A)

TlLZjeA]Pj:IPjEA

(1]
(2]

jeA

(3]
wheree)y, — 0 asA — oo.

Proof: [4]
S LA 5
7 XjeaPI=PIEA
- S Al aNean(®)s)  21) g
7 XjeaPI=P
< 3 9 nA(Ra=h(Z,ea 7P')=0a)  (22) [T
w2 jeaPI=P
_ Z 9—nA(Ra—h(P)~5a) (8l
7 XjeaPI=P (0]
< |Pa ()| 2 ARk =0)
< (A+ 1)n\U|2 9—nA(Rq—h(P)=8a) (23) [10]

Q—nA(Ra—h(P)—aA—Wﬁbﬂ%)

27nA(Ra7h(IP’)76'A) [11]

where (22) follows from the concavity of entropy, and (2312
follows from (2). [ ]
This allows us to state the following lemma.

Lemma 5.2:For large but fixedA, codes defined in terms [14]
of UCOG(Ga.n, {H,},{s;}) are universally good. [15]
Proof: Let N = nA andP € Py (U4?) correspond to the
joint type of any length¥ pair (u,@) satisfying Hu = Ha. 6]

DefineP? € P (4?) to correspond to the joint type of any
local lengthA pair (', @') satisfyingH;u’ = H;a'. Then we [17]
have:

(23]

[18]
Na® < > J]Nu, ()
%ZjeAPj:PjeA [19]
< X Mzemree) ey
%ZjGAIPj:PjeA
< 9N (Ra—h(P)—¢,) 25) [21]

whereey, — 0 as A — oo, (24) follows from (11), (25) [22]
follows from Lemma 5.1. Thus it follows that/ becomes
universally good for largeA, when thought of having rate [23]

R =R, — €. m

formance [Col05].
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