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Abstract—Many of the multimedia applications such as video
broadcasting and teleconferencing require the network to support
dynamic multicast sessions when the membership of the multicast
group changes over time. In this paper, we study this problem in
the context of coded networks. While trying to minimize the cost
of the multicast, we also want to minimize the disturbances to
existing users when the multicast graph changes. To characterize
disturbances to users, we define two types of rearrangements,
link rearrangements and code rearrangements. We present four
algorithms to solve the non-rearrangeable and rearrangeable
versions of the dynamic multicast problem. Simulation results
show that the α-scaled algorithm we proposed can keep the cost
of the multicast close to that of the optimal solution when the
multicast subgraph evolves, and, at the same time, causes very
few rearrangements during the process.

I. INTRODUCTION

Network coding has been shown to be able to improve the
throughput of multicast connections in a network [1], [2]. Ho
et. al. [3] have shown that once a subgraph that satisfies the
Min-Cut Max-Flow bound for each source destination pair
is found, random coding can be used to multicast on this
subgraph. In addition, the problem of establishing the optimal
multicast subgraph has been studied by several researchers [4],
[5]. While finding min-cost multicast tree in traditional routing
networks requires solving the Steiner tree problem, which is
NP-complete, min-cost multicast subgraphs in coded networks
can be found by solving a linear programming (LP) problem,
and this can be done in a distributed manner [6].
The works mentioned above focus on the problem of static

multicast, where a connection is setup for the use of a
multicast group, whose membership stays constant throughout
the connection duration. On the other hand, in applications
such as real-time video distribution and teleconferencing, users
can join or leave the multicast group at any time during
the session. In such cases, we need to adjust the multicast
subgraph to cater for the needs of this dynamic group. Lun et.
al. gave a dynamic programming formulation of this problem
in [7], which aims to deliver continuous service to the users.
However, link and code rearrangements, which are defined
later, can still occur under their formulation.
In the context of traditional routing networks, this problem

corresponds to the the dynamic Steiner tree (DST) prob-
lem [8]. In DST, it is important to limit the number of
rearrangements as a connection evolves, because rearranging a
large multipoint connection may be time consuming and may
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Fig. 1. (a) Example of an online step that causes link rearrangements to
existing users; (b) Example of an online step that causes code rearrangements
to existing users. The multicast rate from source node s to terminal nodes
{t1, t2, t3} is 1. The thick lines indicate links used in the multicast, and the
numbers against them indicate the rate of flow on them.

require significant use of network resources in the form of
CPU time. In addition, rearrangement of a connection may
result in the blocking of some parts of the connection as
rearrangement proceeds. Therefore, the DST problem comes
in two flavors [8], [9]. One is the nonrearrangeable version,
in which rearrangement of existing routes is not allowed. In
the other version, rearrangement is allowed, but the cost of
rearrangements is taken into consideration.
The situation is similar in networks with coding. When

the membership of the multicast group changes, we want
to minimize the disturbance to existing users by limiting
both link rearrangements and code rearrangements. A link
rearrangement occurs when some links in the current multicast
subgraph is removed causing alternate paths to be used to
serve existing users (see Fig. 1(a) for an example). Like in
the routing networks, owing to the change in the physical
connection, this kind of rearrangement causes disruptions to
the continuous service to the multicast group. The second kind
of rearrangement, which we call code rearrangement, is more
subtle. Code rearrangement occurs when new incoming links
are added to existing nodes in the multicast subgraph (see
Fig. 1(b) for an example). Since random coding is used by
the intermediate nodes in the subgraph to perform network
coding, when a node has an additional incoming link, it will



have to generate a new set of random parameters to mix the
incoming streams. All receivers downstream, therefore, have to
use these new parameters and recompute the inversion matrix
to decode the data streams. This scenario does not involve any
physical switching of paths for the existing terminals, but it
still causes a minor disruption to the continuous service due
to this reprocessing of network coding parameters. Note that
the disruptions caused by code rearrangements are generally
smaller than that caused by link rearrangements.
For the dynamic multicast problem, there are two extreme

cases. On the one hand, we can simply use the new optimal
subgraph whenever there is an update to the multicast group.
In this case, users in the group will experience a lot of
disruptions, but the cost of the multicast is always kept
minimal. On the other hand, we can enforce that no link or
code rearrangement is allowed for all existing users throughout
the multicast session. In this case, users enjoy uninterrupted
services, but in general, the subgraph used will deviate further
and further away from the optimal one. In this paper, we
present one algorithm to solve the nonrearrangeable version
of the dynamic multicast problem, and three algorithms for
the rearrangeable version. Simulation results show that one
of the rearrangeable algorithms, the α-scaled algorithm, can
be used to strike a balance between cost and frequency of
user disturbances in a distributed manner. Although we present
our algorithms based on wireline networks, they can be easily
extended to wireless networks as in [4].
The rest of this paper is organized as follows. In Section II,

we present the LP formulation of the static multicast problem,
and extend it to solve the nonrearrangeable version of the
dynamic problem. In Section III, we introduce three algorithms
that allow some rearrangements but are simpler and more
practical. Simulation results for the algorithms proposed are
presented in Section IV, and finally, the paper is concluded in
Section V.

II. NONREARRANGEABLE ALGORITHM
In this paper, we focus on the problem of dynamic multicast

in wireline coded networks, where a source node s transmits to
a group of terminal nodes T , and this group changes over time.
We refer to each change of the membership of T (either an
addition or a removal of a terminal node) as an online step. We
model the network by the directed graph G = (N,A), where
N is the set of nodes and A is the set of communication links.
Let the cost of transmitting on link (i, j) be aijzij , where zij

is the rate of flow on this link. For the static multicast problem,
Lun et. al. [6] has given an LP formulation as follows.

minimize
∑

(i,j)∈A

aijzij

subject to zij ≥ x(t)
ij , ∀(i, j) ∈ A, t ∈ T,

∑

{j|(i,j)∈A}

x(t)
ij −

∑

{j|(j,i)∈A}

x(t)
ji = σ(t)

i

∀i ∈ N, t ∈ T,

0 ≤ x(t)
ij ≤ cij , ∀(i, j) ∈ A, t ∈ T,

(1)

where σ(t)
i is R if i = s, −R if i = t, and 0 otherwise,

and cij is the capacity of link (i, j). This LP problem can
be solved by a number of methods. For example, Simplex
method can be used to solve it centrally, and subgradient
method can be used to solve it distributedly when there are
no link capacity constraints. When capacity constraints are
present, we can approximate the cost function by a strictly
convex function that grows sharply when approaching the link
capacity, then use the distributed algorithm proposed in [6] to
solve it. For simplicity, in this paper, we assume that the rate
of the multicast is lower than the capacity of the links, which
is generally the case in wireline networks. From here on, we
denote any centralized/distributed algorithm that solves the LP
problem as LPcent/LPdist respectively.
For the dynamic multicast problem, the initial multicast

subgraph is setup by solving the above LP problem. To solve
the nonrearrangeable version of this problem, we have to
prevent link and code rearrangements from happening. To meet
the no link rearrangement requirement, we basically need to
make sure that the existing users still use the same path(s) for
the multicast when the set T changes. This can be achieved
by setting the cost of the links in the current subgraph, Gc,
to zero. If the capacity of a link is larger than the rate used
for the multicast, then the link is split into two virtual links,
one with capacity equal to the rate used for the multicast and
cost zero, and the other with the remaining capacity and cost
unchanged. For example, if link (i, j) has capacity cij = 2 and
rate of flow zij = 1 for the multicast, then nodes i and j treat
link (i, j) as two parallel links with capacities 1 each, and one
of them has cost of 0, and the other one has cost of aij . After
doing this, the current multicast subgraph becomes “free”, and
doing optimization on this new cost assignment will always
lead to using the same path(s) to serve the existing users in
the new subgraph. Therefore, link rearrangements are avoided.
One problem with the above method is that some links not

necessary for the new terminal set might be included in the
new subgraph after a removal of a terminal. This is because
all link in the old subgraph are free, and some of these links
might still be included in the solution to the LP problem even
though they are not necessary in performing the multicast to
the new terminal set. To solve this problem, instead of setting
their costs to 0, we can set the cost of the used links to a small
value ε, so that no extra link would be included in the optimal
solution, and, at the same time, the used links are still almost
free as compared to the other links.
As for code rearrangements, we want to prevent the usage

of new links that go into existing nodes of the subgraph. To
do that, each node in the subgraph scans through its incoming
links, and sets the cost of those unused ones to a very large
value, M . Again, if the capacity of a link is not fully used in
the current subgraph, we can split it into two parallel virtual
links as above. These nodes then send the new costs of its
incoming links to their corresponding tail nodes, and the new
high costs can prevent these links from being used.
After making these changes to the link costs, when an online

step occurs, we can simply run LPdist again with the new



node i

nodeUsed = 0
for all (j, i) ∈ A

if (j, i) ∈ Gc

aji = ε
nodeUsed = 1

end
end
if nodeUsed = 1

for all (j, i) ∈ A
if (j, i) ∈ Gc aji = M

end
end
call LPdist

Fig. 2. Nonrearrangeable algorithm.

node i

for all (j, i) ∈ A
if (j, i) ∈ Gc aji = ε

end
call LPdist

Fig. 3. MLR algorithm.

costs, and obtain a feasible subgraph for the new multicast
group without any link or code rearrangements. This algorithm
is summarized in Fig. 2.
The above algorithm can be complicated due to the splitting

of physical links into parallel virtual links. This requires more
processing at the nodes and more coordination between the
end nodes of the links. In addition, in the non-rearrangeable
setting, it is inevitable that the subgraph used would deviate
further and further from the optimal subgraph. This is because
the no-rearrangement requirement forces the subgraph used to
be as close as possible to the initial subgraph. Thus, when the
multicast group moves away from the original group over time,
our multicast subgraph becomes more and more suboptimal.
To simplify this algorithm and keep the cost of the multicast

low, we may need to make some compromise and allow some
rearrangements. In the next section, we present three such
heuristic algorithms.

III. REARRANGEABLE ALGORITHMS
A. Algorithm for minimizing link rearrangement (MLR)
One way to simplify the nonrearrangeable algorithm is to

focus on eliminating link rearrangement only, and ignore code
rearrangement. This can be easily done by setting the used
links costs to a very small value ε after each online step as
in the nonrearrangeable algorithm, and call LPdist to solve
the new LP problem. This algorithm, which we call the MLR
(minimal link rearrangement) algorithm, is shown in Fig. 3.
The motivation for this algorithm comes from the obser-

vation that the need for each node to keep track of unused
incoming links arises when we have a non-tree subgraph,
and things would be much simpler if we only have to deal
with trees. This is because, in trees, each node only has one
incoming link, and it has full information of the multicast.
Thus, there is no worry about code rearrangement.
Notice that once the multicast subgraph becomes a tree,

it will remain as a tree through the rest of the online steps.

call LPcent to compute Copt and Gopt

for all (j, i) ∈ A
if (j, i) ∈ Gc aji = ε

end
call LPcent to compute Cnc and Gnc

if Cnc > Copt × (1 + β)
use Gopt for the multicast

else
use Gnc for the multicast

end

Fig. 4. LMC algorithm.

To see this, consider addition of a new node to the multicast
group. Since the original subgraph Gc is considered “free” and
each node in Gc has full information of the multicast, the new
terminal node only needs to find the shortest path from any
node in Gc to itself, and attach itself to the subgraph. As for
the removal of a terminal, a part of the tree may be removed,
and the remaining graph should still be a tree. Since at every
step, if Gc is not a tree, there is some positive probability that
it will become a tree, and once it evolves into a tree, it will
stay that way till the end of the multicast section. Therefore, if
we keep running the dynamic multicast session, the probability
that we are dealing with trees goes to 1.
In addition, simulations on practical networks show that in

more than 98% of the time, we do get the optimum Steiner
tree at startup. Therefore, we can focus on link rearrangements
only and use the MRL algorithm. This algorithms still works if
the initial subgraph is not a tree, the only difference is that we
cannot guarantee that there will not be any rearrangements in
such cases. Note that although network coding is not needed to
perform multicast when the subgraph is a tree, our formulation
of the problem allows us to find the optimal subgraph (be it
a tree or not) in a distributed manner, whereas in traditional
routing networks, find the Steiner tree is NP-complete.

B. Algorithm for limiting multicast cost (LMC)
If we use the MLR algorithm, it is expected that as time

goes on, the subgraph used for multicast will move further
and further away from the actual optimal subgraph for the
current set of terminal nodes. As an alternative, we introduce
occasional rearrangements in order to keep the cost of the
multicast close to optimal. We use the LMC algorithm, shown
in Fig. 4, to do this. In this algorithm, the nodes run two
programs in parallel, one of which generates the subgraph with
no rearrangement using the algorithm presented above. We call
this subgraph the no-change subgraph Gnc, and the cost of this
subgraph Cnc. The other program keeps track of the optimal
subgraph, Gopt, for the current set of multicast terminals, and
the cost of Gopt is Copt. At each step, the cost of the two
subgraphs are compared, and if Cnc is higher than Copt by a
certain factor, β, we switch to the optimal subgraph. Using this
method, we can control the trade off between the frequency
of disturbances to the users and the cost of the subgraph used
for the multicast by changing the value of β. However, this
method requires the nodes to keep track of two subgraphs, and
centralized coordination is needed to compare the costs and
make the nodes switch between two subgraphs simultaneously.



node i

for all (j, i) ∈ A
if (j, i) ∈ Gc aji = α × aji

end
call LPdist

Fig. 5. α-scaled algorithm.

C. α-scaled algorithm
We now present a simple approximate algorithm that can

trigger “auto-switching” between Gnc and Gopt in a distrib-
uted manner. Instead of assigning a very small cost to the used
links as in the MLR algorithm, we can use a scaled value of
the original cost, i.e., for an existing link (i, j) in the subgraph,
we use αaij as its cost in the future computations as long as
it stays in the subgraph, where α is a scaling factor between
0 and 1. If α = 0, it is the same as the MLR algorithm; and
if α = 1, we will be using the optimal subgraph every time.
We refer to this algorithm as the α-scaled algorithm, and it is
shown in Fig. 5.
To see why this heuristic works and how the constants α

and β are related, consider the case of removal of a terminal
node. The LMC algorithm compares the values of Cnc and
(1 + β)Copt, and picks the lower of the two. Since Gopt may
overlap with the existing subgraph from before the online step,
we assume the cost of this overlapping part of the subgraph is
Col and the cost of the rest of the optimal subgraph is Cothers.
Thus, the comparison is equivalent to

1

1 + β
× Cnc ≷ Col + Cothers (2)

On the other hand, in the α-scaled algorithm, we are effec-
tively choosing the lower cost between these two.

α × Cnc ≷ α × Col + Cothers (3)

If we set α to 1/(1 + β), we can see that equations (2) and
(3) are very similar except the first term on the right hand
side. By scaling the existing link costs by α, we can satisfy
the requirement that the cost of the subgraph used never goes
over (1+β)Copt, but owing to the scaling factor α on Col, the
approximate algorithm switches to the optimal subgraph more
often than required by β. Using similar analysis, we have the
same results for the case of addition of a terminal.
Thus, using an appropriate α to scale the costs of the used

links, the optimization can trigger auto-switching between the
two subgraphs, thus keeping the cost of the multicast low. In
addition, we can make α a time-varying variable. In general,
when a link is first added into the subgraph, it is likely that
it will remain there for a while. However, the probability that
the link remains in the optimal subgraph decreases with the
online steps. To capture this characteristic, we can use a lower
value for α for the first few online steps after a new link is
added, and increase α gradually later on. Also, in a practical
network, it may not be desirable to make back-to-back changes
to the link connections, i.e., addition of a link to the multicast
subgraph followed by an immediately removal of it in the next
step. We can reduce the occurrence of such events by setting
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Fig. 6. Extra cost of the multicast subgraph generated by the MLR algorithm
in terms of percentage of Copt for the Exodus network. We are showing both
the individual data points for each trial and the average curve.

the α of new links to ε for a few steps before raising it to the
normal value of 1/(1 + β).

IV. SIMULATION RESULTS

We first present simulation results for the MLR algorithm.
The network topologies used in the simulations are obtained
from the Rocketfuel project [10]. In each simulation, we start
with a multicast from a random source to a set of 10 random
terminals. Subsequently, in each online step, we first randomly
decide whether there is an addition or removal of terminal,
and then randomly select a terminal to add/remove based on
that decision. Figs. 6 and 7 show the average increase of cost
from the MLR algorithm as compared to Copt in terms of
percentage of Copt. The network topology used for Figs. 6
and 7 are backbones for Exodus (US) and EBONE (Europe),
respectively. As expected, the extra cost of the no-change
subgraph grows approximately linearly with the online steps.
In addition to the average curve, we also show the data points
for each instance of the simulation in both Figs. 6 and 7. Note
that there are cases when the cost of the no-change subgraph
is as much as 60% higher than the optimal cost after 20 steps.
This undesirable phenomenon motivates the usage of the α-

scaled algorithm. Fig. 8 shows the simulation results for using
the α-scaled algorithm on the network used in Fig. 6. Here, we
aim to control the cost of the multicast subgraph to be within
β = 30% away from Copt, thus, we use α = 0.75. The average
curve in Fig. 6 for the MLR algorithm is also shown here
for comparison. The α-scaled algorithm provides lower cost
for the multicasts as compared to the MLR algorithm. More
importantly, the cost difference between the subgraph used
and Copt for the α-scaled algorithm is roughly constant after
a while, and it does not grow over time. Of course, there is a
price for this gain, which is the occasional switching from the
no-change graph to the optimal graph. In this case, the average
switching probability is 11.7%, which means, out of a hundred
online steps, there are about 12 times when the existing
users might experience distrubances to their transmissions.
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Fig. 7. Extra cost of the multicast subgraph generated by the MLR algorithm
for the EBONE network in terms of percentage of Copt.
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Fig. 8. Extra cost of the multicast subgraph generated by the α-scaled
algorithm with α = 0.75 and the MLR algorithm in terms of percentage of
Copt, on the Exodus network. We are also showing the individual data points
for each trial for the α-scaled algorithm.

Furthermore, if we look closely at the data points for individual
instances, we can see that, actually, none of the instance has
gone over 20% higher than the optimal one. This is consistent
with our discussion in Section III about the values of α and β.
Therefore, if we want to have β = 30%, we can use a lower
value for α.
Finally, Fig. 9 shows the simulation results for the same

network setup as Fig. 8 with different α values. As we can
see, the higher the α value, the lower the average cost of the
subgraph. At the same time, higher α values lead to higher
switching rate. We observed that when α is equal to 0.5, the
cost of the subgraph used is kept at around 9% higher than the
optimal cost, whereas the switching probability is only 2.05%.
Therefore, by selecting the α value properly, we can keep the
cost of the multicast close to optimal during the multicast
session while causing few disturbances to the existing users.

V. CONCLUSIONS
In this paper, we studied the problem of dynamic multicast

in coded networks. In order to characterize the disturbances
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Fig. 9. Extra cost of the multicast subgraph generated by the α-scaled
algorithm with various α values, on the Exodus network.

to users caused by the changes in the multicast subgraph,
we introduced the concepts of link rearrangement and code
rearrangement. We proposed both nonrearrangeable and re-
arrangeable algorithms for the dynamic multicast problem, and
used simulation results to show that the α-scaled algorithm
can effectively bound the growth of the multicast cost without
causing too many disturbances to existing users.
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