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Abstract
In packetized wireless systems, coding allows correct reception of multiple pack-

ets colliding at a receiver. Thus data may not need to incur delays such as those
due to backoff schemes in traditional ALOHA systems. However, there is a trade-
off between delay and power consumption. Recent work in this area has considered
the case where multiple users are aware of the states of other users’ queues. We
consider a time-slotted multiple user system with random packet arrivals. The
size of the packets and probability of arrival together represent the burstiness of
the system. The time slots are considered to be long enough that capacity can
be achieved over a single slot in a sense we define. We consider the difference in
average power consumption when average delay is minimized, with and without
knowledge of other users’ queues. We also consider the case where average power is
minimized without regard for delay. We present and analyze a simple scheme with
limited information sharing about queues’ states. Our scheme uses a broadcast-
type code for the case of low queue lengths and a multiple-acces scheme in the case
of large queue lengths. We show how this scheme allows trade-offs between power
and delay.

1 Introduction

The performance of wireless nomadic data transfer systems can be characterized by
a number of system qualities, including aggregate data rates, average bit transmission
delay, and power consumption. Information theoretic considerations attempt to establish
ultimate limits on reliable communication. Shannon capacity assumes that a steady
stream of bits is to be transmitted at all times. Many data transfer systems, however,
exhibit random packet arrivals. The size of the packets and probability of arrival together
represent the burstiness of the system. This violates the assumption that bits are always
available for transmission.

The time-slotted ALOHA system models systems with bursty arrivals. Its use is mo-
tivated by its simplicity: users attempt to transmit data as it arrives in their transmission
buffers. If two or more users transmit at the same time, a collision occurs at the receiver.
Traditional ALOHA systems require users to transmit packets without explicit coordina-
tion among users. In the event of a collision, packets are discarded and users retransmit
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the collided packets. The capacity of such systems has generally been analyzed in terms
of packet throughput.

The stability of classical ALOHA systems has been studied extensively. For an infinite
number of users, it has been found in [1] that the system is unstable. Stability regions
have been found for systems with a finite number of users. To combat the instability,
decentralized control schemes [2] and conflict resolution schemes [3] have been established.
In general, such schemes attempt to avoid successive collisions by retransmitting with
some backoff policy.

Modeling a collision as leading to loss of all packets at receivers is not always practical.
The capture phenomenon, for instance, may yield correct reception of some portion of the
data, for instance the data from coded slots. Moreover, users may be reliably received
if, when transmitting, they take into account the worst case multiple access scenario
that may arise. If coding can be implemented over sufficiently many bits, then users,
when they transmit, may use the types of codes that achieve rates on the Cover-Wyner
multiple access rate region.

Stability analysis of systems with multiple-packet reception capability in the presence
of channel noise has been performed in [4]. The capacity region of such systems, in a
sense we qualify later, that allows coding of packets and variable reliably received rates
has recently been introduced [5]. It has been found that such a system’s capacity region
is the same as the capacity region of a multiple-access system where users continuously
transmit. Furthermore, transmission policies that make use of detailed knowledge of
users’ queus, whether in a decentralized fashion or through centralized control such as
a scheduler, do not improve capacity. Hence, capacity of such systems is in general
independent of burstiness and queue information availability. Many coding schemes
were shown to be optimal, ensuring long-term stability while achieving rates inside the
Cover-Wyner region. The impact of burstiness and queue information, however, when
considering delay and power consumption, was not illustrated in [5]. Clearly, queue
information is not altogether useless. While it does not affect the type of capacity we
consider, we would expect it to influence other performance parameters, such as delay.

An investigation of the trade-offs between minimum average power required to meet
some quality of service cost (stringent delay or probability of buffer overflow) [6] has
been performed. This analysis addressed bursty multi-user channels in the presence of
fading. The investigation used centralized control to combat both fading and burstiness
to deliver a stringent delay constraint.

We consider the difference in average power consumption when average bit delay is
minimized to 0 under two different scenarios. We investigate a control scheme where
the transmission policy of each user relies on detailed information about the amount
of data in all users’ queues. We also investigate a control scheme where each user’s
policy relies only on the amount of data in that particular user’s queue. Hence, the
impact of queue information sharing in the presence of burstiness is characterized. We
also consider minimizing power consumption without regard for delay, which turns out
to be infinite. Finally, we present and analyze a simple scheme that has some optimal
long-term stability properties, combats burstiness and collisions by superimposing codes
anticipating different levels of interference, and is sensitive to average bit delay. The
system uses a multiple access channel [7] type code when all users’ queue lengths are
long. Otherwise, it uses a broadcast [8] type code. Instead of combating burstiness by
performing probabilistic backoff policies after collisions, the system uses rate-splitting to
achieve variable reliably received rates as a function of the uncertainty of other users’
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Figure 1: The M -user ALOHA model.

presence. As user queue lengths become long, the system switches to coding in multiple-
access mode, where users code for each others’ presence at optimal aggregate rates (as
provided by the dominant face of the Cover-Wyner region for multiple access channels).

2 Model and Background

The multiple-access system we consider is illustrated in Figure 1. Our system differs
from traditional time-slotted ALOHA systems in a number of ways:

• Wemodel a multiple access where users share a single channel with no multiplicative
attenuation but with additive white Gaussian noise (AWGN).

• Time slots are very long in terms of bits to be transmitted. Consequently, transmis-
sion data may be coded to achieve rates near information-theoretic bounds. We may
also consider coding over several time slots, but note that this may complicate the
discussion without providing much insight. This long time slot model may be par-
ticularly appropriate when dealing with channels with small signal-to-noise ratios,
where turbo codes have been found to achieve rates near capacity with sustainable
probability of error. Coding also allows bits to be reliably received depending on
the presence/absence of other users. Hence, collisions are not catastrophic and
stability analysis is very different from that of traditional ALOHA.

2.1 Channel Model

The channel model we propose is a multiple access system where M users transmit to
one receiver in the presence of additive white Gaussian noise (AWGN). The transmitters
all share bandwidth of size W . The signal Xi of user i, along with the output, are
bandlimited to W as well. User i is constrained to use an average of up to Pi units
of power per transmission. Signals are sampled and synchronized. After sampling, the
output and input are related at sample time t as

y[t] =
M∑

k=1

x[t] +N [t]

where N [t] is a sequence of N (0, σ2
N) i.i.d. random variables. Fading is not present in

this model.
A user’s queue contains all of its traffic which has not yet been successfully transmit-

ted. Immediately before time slot n, 
�(n) = (�1(n),�2(n), ...,�M(n)) bits enter the
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users’ queues. During time slot n, 
u(n) = (u1(n), u2(n), ..., uM(n)) bits are reliably trans-
mitted and removed from the users’ queues. If we denote the number of bits in the users’
queues at the beginning of time slot n (after the new bits enter and before transmission

begins) as 
Q(n) = (Q1(n), Q2(n), ..., QM (n)), then user i’s buffer state evolves according
to

Qi(n+ 1) = �i(n+ 1) +Qi(n)− ui(n).

Once a user receives a packet for transmission, the data in that packet enters the trans-
mission queue and a portion of the data from the queue is transmitted according to a
certain policy. Note that some bits may undergo unreliable transmission and need to be
retransmitted. Thus the queue holds all bits that need reliable transmission.

Packets arrive to each user’s transmission buffers according to independent Bernoulli
processes. At each time slot, user i has a probability pi of new packet arrival. Packets
are fixed to be Li. Hence, for each user, the pair (pi, Li) characterizes the burstiness of
the packet arrivals for user i. In the nth time slot:

�i(n) =

{
Li with probability pi

0 with probability 1− pi.

We assume each user has a buffer of infinite size. Time slots are of length T transmissions.
The vector of arrival rates is 
λ = (λ1, λ2, ..., λM ) where λi =

piLi

T
is the arrival rate (in

bits per transmission) to the buffer of user i.

2.2 Data Transmission Policies and State Information

At each time slot, user i must either transmit or not transmit over the time slot using
codes of length T . A collision occurs if two or more receivers transmit during the same
time slot. We assume that the receiver and transmitter have perfect synchronization.
The receiver knows for each user, at each time slot, whether or not that user is transmit-
ting. This may done by using coded tags on transmissions to identify users. The code on
the tags is sufficient to withstand multiple access interference from all users at once. We
assume that by the end of each time slot, each user knows which portion of its transmis-
sion data has been reliably received, and which portion needs to be retransmitted. We
constrain the set of transmission policies of interest at time n to be a function of 
Q(n).
We may view this as a discrete time controlled stochastic system.

2.3 Markovity and Average Bit Delay

We note that since the buffer arrival process is Bernoulli and our transmission policy at
time n is a function of 
Q(n), the system of buffer state evolution satisfies the Markov
condition:

P [ 
Q(n+ 1) = 
q | 
Q(n), 
Q(n− 1), ..., 
Q(0)] = P [ 
Q(n+ 1) = 
q | 
Q(n)].

Q is the state variable of the homogeneous Markov chain. The transition probabilities
of the state evolution are governed by the arrival processes burstiness pairs and the
transmission policy.
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2.4 Coding Time Slots and Collisions

As in traditional time-slotted ALOHA systems, if two or more users attempt to transmit
during the same time slot, a collision occurs. However, because of our use of coding, a
collision is not necessarily catastrophic: data may still be reliably received in the event
of other users transmitting. Time slots are of length T transmissions, where T is long
enough in terms of bits so that data may be transmitted with acceptable probability
of error even in the event of a collision. For a large but finite T , error exponents [9]
for multiple access channels [7] quantify at what rate the probability of error decays
exponentially with T . Let n be the number of time slots during which we transmit. Each
user has K sets of codewords Mi,k

j , k = 1, ..., K. During time slot j user i has a codebook

Ci
j of length T to encode at most one codeword from each Mi,k

j . We denote the codebook
Ci

j as (T, ξ, λi
j) time-slot capacity-achieving if there exists a decoding policy such that

∀k ∈ K′i
j ⊂ {1, ..., Ki

j}: a codeword from Mi,k
j was encoded, that codeword was decoded

with probability of error ξ or less, and
∑

k∈K′i
j

log(|Mi,k
j |)

T
≥ λi

j. Over the long term, for a

given T we say that a coding and decoding policy is (T, ξ, 
λ) capacity-achieving if

lim
n→∞

1

Tn

n∑
j=1

E
[ ∑

k∈K′i
j

log(|Mi,k
j |)

]
= λi , 1 ≤ i ≤M ,

and the probability of error for the transmission of each user on each time-slot is up-
per bounded by ξ. The notion of capacity described above is related to other delay-
constrained and probability-of-failure notions of capacity, such as delay-limited capcity
[10], ε-capacity [11], capacity versus outage [12, 13], and expected capacity [14]. We con-
sider delay constraints because of finite time slot length. We use expected rates because
of uncertainty regarding collisions. The capacity region of our above definition for users
with power constraints and certain transmission policy constraints has been found in [5]
to be the same as the Cover-Wyner region for multiple access channels.

3 Minimizing Delay and Minizing Power Consump-

tion

Before we proceed to introduce an optimal coding strategy, we attempt to understand
how delay and power minimization are affected by knowledge of queue information. We
restrict our attention to a two-user scenario, but the results may easily be extended for
many users. At the beginning of time slot n,


�(n) =




(L1, L2) with probability p1p2

(L1, 0) with probability p1(1− p2)
(0, L2) with probability (1− p1)p2

(0, 0) with probability (1− p1)(1− p2)

3.1 Delay Minimization

We now would like to understand what the minimum amount of power is required to
minize delay. Consider the situation where the set of (pi, Li), burstiness pairs, for i = 1, 2,
is known to both users. We consider the case where users have full knowledge of each
other’s queues and when they only have local queue information.
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Let us denote Cσ2
N
(x) = 1

2
log(1 + x

σ2
N
) as the capacity (in bits per transmission) of

a discrete-time memoryless Gaussian channel with noise variance σ2
N and average power

per transmission constraint x. It is the maximum rate at which information may be
transmitted with arbitrarily vanishing error probability. Similarly, C−1

σ2
N
(x) = σ2

N(22x − 1)

is the minimum amount of average power required to transmit rate x and noise variance
σ2

N with arbitrarily vanishing error probability.
We now comment on the capacity region for the discrete-time two-user AWGN mul-

tiple access channel with power constraints 
P = (P1, P2) and noise variance σ2
N . It is

defined to be the subset of R
2
+ with rate pairs (R1, R2) satisfying∑

i∈S
Ri ≤ Cσ2

N

( ∑
i∈S
Pi

)
, S ⊆ {1, 2}.

Let us denote the dominant face of the capacity region as the subset of all rate pairs in the
capacity region that satisfy R1 +R2 = Cσ2

N
(P1 +P2). For all rate pairs (R1, R2) that are

not dominant, there exists a (Rdom1, Rdom2) that satisfies Rdom1 ≥ R1 and Rdom2 ≥ R2.
We note that any dominant rate pair delivers the maximum aggregate rate of reliable
transmission for a given power constraint 
P . Or alternatively, the power vector 
P delivers
the minimum aggregate power for two users to transmit reliably at rates on the dominant
face of the capacity region.

3.1.1 Full Knowledge of Other Users’ Queues

Immediately before time slot n, users have full knowledge of the number of bits that have
just entered everyone’s queue: 
�(n). To minimize delay to 0, each user must empty the
total contents of everyone’s queues each time slot of length T transmissions. Every user
has access to two codebooks: a multiple-access codebook that may achieve the rate pair
(L1

T
, L2

T
) reliably, and a single-user codebook that may achieve the rate Li

T
reliably for user

i when no multiple access interference is present. We note that the minimum amount of
aggregate power per transmission required is i.i.d. over each time slot n, and is a function
of 
�(n). The minimum amount of aggregate power per transmission required to empty
the buffers in one time slot is given by:

P
(1)
min(n) =




C−1
σ2

N

(
L1+L2

T

)
with probability p1p2

C−1
σ2

N

(
L1

T

)
with probability p1(1− p2)

C−1
σ2

N

(
L2

T

)
with probability (1− p1)p2

0 with probability (1− p1)(1− p2)

Since the arrival processes are independent and Bernoulli, ergodicity holds and we
have:

lim
m→∞

1

m

m∑
n=1

P
(1)
min(n) −−→

a.s.
p1p2C

−1
σ2

N

(L1 + L2

T

)
+ p1(1− p2)C

−1
σ2

N

(L1

T

)
+ (1− p1)p2C

−1
σ2

N

(L2

T

)
.

We note that similar results hold for any set of ergodic arrival processes 
�.

3.1.2 No Knowledge of Other Users’ Queues

If we now assume that each user still has access to the (pi, Li) burstiness pairs of everyone,
but does not have access to the amount of data entering the other’s queue, then to
minimize delay, all users must coordinate to transmit at the worst case scenario: when
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(L1, L2) enters each others’ queues. So user each only has access to a multiple-access
codebook. Each user always anticipates the other user’s presence and uses the amount
of power required to empty both queues. Note that many power constraints for users
may result in the rate pair lying on the dominant face of the multiple access region.
Depending on the burstiness probabilities, however, some of these power constraints may
provide smaller average power consumption than others. So these power constraints may
be chosen as a function of the burstiness pairs, (pi, Li) for i = 1, 2, so long as they may
reliably achieve the rate pair (L1

T
, L2

T
). So if the power constraints lie in the region P

denoted as:

P1 ≥ C−1
σ2

N

(
L1

T

)
P2 ≥ C−1

σ2
N

(
L2

T

)
P1 + P2 = C−1

σ2
N

(
L1+L2

T

)

then for block coding multiple access schemes used over a slot, there exists a time-sharing
ratio γ such that

γCσ2
N
(P1) + (1− γ)Cσ2

N+P2

(
P1

)
= L1

T

γCσ2
N
(P2) + (1− γ)Cσ2

N+P1

(
P2

)
= L2

T

The choice of power constraints is made to minimize the long term average aggregate
power consumption

J(P1, P2) = p1(1− p2)P1 + p2(1− p1)P2 + p1p2(P1 + P2)
= p1(1− p2)P1 + p2(1− p1)

(
C−1

σ2
N

(
L1+L2

T

) − P1

)
+ p1p2C

−1
σ2

N

(
L1+L2

T

)
.

So this is in fact a linear objective function in one variable, and must be minimized
subject to a constraint on the value P1:

C−1
σ2

N

(L1

T

) ≤ P1 ≤ C−1
σ2

N

(L1 + L2

T

) − C−1
σ2

N

(L2

T

)
.

The minimum is attained at either of the two boundary points, depending on the sign of
p1 − p2:

(P ∗
1 , P

∗
2 ) =




(
C−1

σ2
N

(
L1

T

)
, C−1

σ2
N

(
L1+L2

T

) − C−1
σ2

N

(
L1

σ2
N

))
if p1 > p2

any (P1, P2) ∈ P if p1 = p2(
C−1

σ2
N

(
L1+L2

T

) − C−1
σ2

N

(
L2

T

)
, C−1

σ2
N

(
L2

T

))
if p1 < p2

So to minimize long-term average power consumption, the rate pair to be achieved lies
on either of the two boundary points of the dominant face of the multiple access region
for unequal burstiness probabilities. The long term average minimum amount of power
per transmission required for this scheme is given by

lim
m→∞

1

m

m∑
n=1

P
(2)
min(n) −−→

a.s.
p1(1− p2)P

∗
1 + p2(1− p1)P

∗
2 + p1p2(P

∗
1 + P ∗

2 ),

where P ∗
1 and P ∗

2 have been given above.

3.2 Minimizing Power Consumption

We now address the minimum amount of average power consumption needed to stabilize
the bursty system. Concavity of the function log(1 + x) provides the inequality
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1
2
log(1 + P

σ2
N
) ≥ 2 ∗ 1

2
log

(
1 +

P
2

σ2
N

)
. So it is more favorable in terms of aggregate power

consumption to spread the same amount of power into multiple time slot uses rather than
in just one use. Note that we may generalize this to more than two slots, so long as the
system is stable. For multiple users to reliably transmit at a prescribed rate-tuple, using
a coding scheme where that rate-tuple lies on the dominant face of the multiple access
capacity region minimizes the amount of aggregate power required. Note that in terms of
long-term power consumption, for certain types of ergodic arrival processes, user queue
information is not necessary to perform this strategy. If each user artificially backs up its
queue by not transmitting, then after a while each user will have very large queue lengths.
At that point, each user will have data to transmit. Afterwards, users transmit achieving
the rate pair (p1L1

T
, p2L2

T
) lying on the dominant face of the Cover-Wyner region. As the

vector of output rates tends toward the vector of input rates from above, the amount
of power consumption required decreases, but average delay increses. Since the system
must provide stability, the minimum amount of power required will correspond to when
the vector of output rates matches the vector of input rates with equality. For ergodic
processes, the proportion of time users spent artificially backing up queues tends to 0. We
note, that since each of the server utilizations is exactly 1, the average delay is infinite.
The average aggregate amount of power required is given by

lim
m→∞

1

m

m∑
n=1

P
(3)
min(n) −−→

a.s.
C−1

σ2
N

(p1L1

T
+
p2L2

T

)
= C−1

σ2
N
(λ1 + λ2).

4 Power and Delay Tradeoffs for a System with Lim-

ited Queue Information

We now present a coding scheme that addresses the burstiness of packet arrivals and
analyze how it performs. The system utilizes a very small amount of queue information
among users to operate in two modes: a multiple-access mode when all queue lengths
are large, and a broadcast mode otherwise. This scheme tries to address both delay
and aggregate power consumption parameters by affording a compromise between the
schemes mentioned in the previous section.

4.1 System Design

We assume a limited information sharing scheme where, at time slot n, each user does
not know the contents of the newly arrived packets in other users queues. By the end of
the time slot, perhaps through feedback from the receiver, each user knows which portion
of the data it attempted to transmit was received reliably, and which portion needs to
be retransmitted.

4.1.1 Large Queue Lengths: Multiple Access Mode

The results in [5] show that the capacity region of the time-slotted ALOHA system
with power-constrained users is the same as the capacity region of the multiple-access
channel. For any vector of arrival rates lying inside the Cover-Wyner region, there exist
coding schemes that will provide system stability. As described in [5], as all users’ queues
become very backed up, they are able to transmit simultaneously at rate-tuples lying on
the dominant face of the multiple access region while sustaining a small upper bound
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on probability of error. Error exponents we discussed previously provide bounds to the
probability of error for a given slot length, T .

For our system Markov chain with state variable 
Q, we denote the vector-valued drift
of the state to be


D(
q) = E[ 
Q(n+ 1)− 
Q(n) | 
Q(n) = 
q].

In our case, based on our model of the data transmission policies state information in
Section 2.2, Di(
q) = λi − µi(
q), where µi(
q) is a function of 
q. If Di(
q) < 0 ∀i, then
via Pak’s Lemma [15], the chain is ergodic, and steady-state probabilities exist. Hence,
a sufficient condition for stability of our system model is to is to eventually transmit at
multiple access after the queue states cross a finite threshold 
η = (η1, η2, ..., ηM ). Thus,
given a set of burstiness pairs and per transmission power constraints, as all users’ queues
states become backed up (cross this threshold 
η), they transmit data out of the queues

at rates 
µma = (µma1, µma2, ..., µmaM) = E[
µ | 
Q ≥ 
η]. To transmit optimally aggregate
data subject to the power constraints, 
µma must lay on the dominant face of the multiple
access region: (

∑
j µmaj = Cσ2

N
(
∑

j Pj)). To ensure stability that operating point should
provides negative drift for all queues (λj − µmaj < 0 ∀j). We note that the particular
threshold is given by ηj = Tµmaj, where T is the time slot length in transmissions.

4.1.2 Small Queue Lengths: Broadcast Mode

When all users’ queues lengths are not above the threshold 
η, they switch to a broadcast
mode where they may combat burstiness by achieving variable reliably received rates.
Capacity on the degraded AWGN broadcast channel is achieved by rate-splitting (where a
user superimposes two independent virtual-user codes) at the transmitter and successive
decoding (signals are iteratively decoded and subtracted out for future decoding). One
(low-resolution) signal is coded to be received reliably by both users. The other (high-
resolution) signal is coded to be received reliably by the receiver with the stronger SNR.
The receiver decodes a virtual user, eliminates its contribution, and then decodes the
next.

In the small queue length regime of our system, we use this broadcast idea to combat
burstiness: each user splits into virtual users which code anticipating different users’
presence that time slot. Even in the event of a collision, data is reliably received from
all users. Each user has a simple deterministic transmission policy: if a user has data
in its queue to transmit, it attempts to do so. The only time a collision does not take
place is when one of the two users’ queues is empty. Each user codes to transmit over
two possibe channels: a channel with the other user present, and a channel without the
other user. A fraction α of user i’s power Pi, is allocated to a virtual low-resolution user
that codes anticipating not only the presence of the virtual user counterpart for user i,
but also the other physical user’s presence. The high-resolution virtual user for user i
does not anticipate the other physical users’ presence: it is only received reliably when
user j �= i does not transmit. The rates at which each virtual user attempts to transmit
reliably via successive decoding are as follows:

µLR1 = 1
2
log(1 + α1P1

σ2
N+P2+(1−α1)P1

)

µHR1 = 1
2
log(1 + (1−α1)P1

σ2
N

)

µLR2 = 1
2
log(1 + α2P2

σ2
N+P1+(1−α2)P2

)

µHR2 = 1
2
log(1 + (1−α2)P2

σ2
N

).
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In each time slot, a collision occurs when more than one user transmits. If a collision
occurs, only the low-resolution component of each user is reliably received. Otherwise,
the low and high-resolution components of the sole transmitting user are reliably received.
Hence, when the system is in this mode, the reliably received rate pair is as follows:


µBC =




(µLR1, µLR2) if a collision occurs
(µLR1 + µHR1, 0) if only user 1 transmits
(0, µLR2 + µHR2) if only user 2 transmits

4.2 Queue Information Sharing

We note that users have different sets of codebooks for which they transmit information,
a set of codebooks for when they transmit in multiple access mode, and a set of codebooks
for when they transmit in broadcast mode. Users notify each other when their queue
state crosses the threshold ηi. Hence, each user has total knowledge of a synchronized
finite-state automaton that denotes whether or not each user’s queue length has crossed
ηi. When the FSA is in the state where all users thresholds have are greater than ηi, each
user switches to multiple access mode. Otherwise, they operate in their broadcast channel
mode. We do not model the communication link between users for this communication,
but note that it is not a substantial amount of information that is shared.

4.3 Performance

We note that for any set of burstiness pairs {(pi, Li)}2
i=1 with corresponding rate-tuples(

p1L1

T
, pML2

T

)
lying inside the Cover-Wyner region, proper coding of our scheme during

multiple access mode will result the Markov chain being ergodic. Let us consider the
two-user scenario and note how the analysis may easily extended for more users. The
steady-state probabilities π�q = limn→∞ P [ 
Q(n) = 
q] for the Markov chain are governed
by:

• The average per-transmission power constraints Pi for each user,

• The burstiness pairs (pi, Li) of each user, and

• The rate-splitting power ratio αi for each user

We note that the long-term average queue size N(
P , 
p, 
L, 
α) =
∑

�q∈R
M
+

∑
qiπ(
P , 
p, 
L, 
α)

may be used to calculate the long-term average bit delay T (
P , 
p, 
L, 
α) via Little’s Result:
T = N

λ1+λ2
. Since the chain is ergodic for all arrival rates inside the multiple access region,

we may truncate the state space and perform an approximation [16] using simulations
on a state space of a finite number of states.

Since we use a very limited amount of queue information sharing, and are willing
to accept a small but non-zero average bit delay, this proposed scheme affords a com-
promise between the delay minimizing scheme with no queue information and the power
consumption minimizing system of the previous section. We denote the reasonable power
constraint region as the set of power constraints for our system that satisfy:

C−1
σ2

N

(p1L1

T
+
p2L2

T

) ≤ P1 + P2 ≤ C−1
σ2

N

(L1 + L2

T

)
.

If the power constraints were to lie below the lower bound, the system would not be
stable (
λ > 
µ). On the other hand, if the power constraints were to lie above the upper
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Figure 2: average aggregate power consumption and average bit delay as a function of bursti-
ness for fixed packet length and varying probabilities with α1 = α1 = 0.5, σ2

N = 1

bound, then the corresponding power constraints of a delay-minimizing scheme would be
less, and so would the average delay (which is 0).

Figure 2 shows simulation results for the average power consumption and average bit
delay for our proposed scheme with power constraints at the midpoint of the boundaries of
the reasonable power constraint region for each value of p = p1 = p2. The average power
consumption of the systems mentioned in the previous section are superimposed in the
figure as well. In the regime of small yet nonzero burstiness probabilities (which is where
most bursty packetized systems operate), the impact of allowing a small yet nonzero
tolerable delay along with a small amount of queue information sharing is illustrated:
both average bit delay and average power consumption are near their respective minimal
boundaries. Our scheme uses less energy than that of a system with no queue information
and 0 delay because that system obtains no large benefit from one of the two users being
empty. In our scheme, however, most of the time the system is in broadcast mode and
if one of the two users is empty, that user consumes no power to transmit while other
user may reliably transmit the low-resolution and high-resolution data during that time
slot. Thus, the user’s queue length is decreased more rapidly and may tend to 0 faster,
where it will not consume power again. As the burstiness probability and henceforth

λ increases, the system spends a majority of time in broadcast mode, and user queue
lengths increase along with average delay and power consumption. Eventually, as the
arrival rate continues to increase, user queue lengths cross 
η more often and the system
spends more of its time in multiple access mode, where it transmits at optimal aggregate
rates (as given by the dominant face of the Cover-Wyner region). This is illustrated in
how the increase in delay slows down. At very high burstiness probabilities, the interval
of reasonable power constraints is quite narrow. Hence, the power constraint required
to deliver 0 delay is not much larger than the requirement for stably minimizing power
consumption, which yields infinite delay. Since the power constraints of our scheme lie
within this interval, and the system arrival process is in effect becoming deterministic,
the average delay in this high burstiness probability regime becomes arbitrarily large.
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