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Abstract—In this paper, we study the multiple unicast
network communication problem on undirected graphs.
It has been conjectured by Li and Li [CISS 2004] that,
for the problem at hand, the use of network coding does
not allow any advantage over standard routing. Loosely
speaking, we show that under certain (strong) connectivity
requirements the advantage of network coding is indeed
bounded by 3.

I. INTRODUCTION

In the network coding paradigm, internal nodes of the
network may mix the information content of the received
packets before forwarding them. This mixing (or encod-
ing) of information has been extensively studied over
the last decade, e.g., [2], [11], [9], [7], [6]. While the
advantages of network coding in the multicast setting are
currently well understood, this is far from being the case
in the context of general network coding. In particular,
determining the capacity of a general network coding
instance is a long standing open problem, e.g., [3], [14].

In the general network coding problem, a set of source
nodes {si} ⊆ V , wishes to transmit information to a
set of terminal nodes {tj} ⊆ V , according to a set
of source/terminal requirements {(si, tj)} (implying that
terminal tj is interested in the information available at
source si). For directed networks it was shown in [4] that
any general network coding problem can be reduced to a
multiple-unicast network coding instance in which there
are k source/terminal pairs (si, ti) and the objective is to
design a coding scheme which allows ti to recover the
information present at si. Unlike the multicast scenario,
determining the capacity of a k-unicast network coding
instance is a long standing open problem. Specifically, it
is currently not known whether this problem is solvable
in polynomial time, is NP-hard, or maybe it is even unde-
cidable [10] (the undecidability assumes that the alphabet
size can be arbitrary and unbounded). Nevertheless, it
is known that there is an unbounded gap between the

capacity of the k-unicast problem in the directed network
coding setting as opposed to the traditional setting of
routing (were no encoding at internal nodes is allowed),
e.g., [1]. This gap even holds for the simpler multicast
scenario. The advantage of using network coding over
traditional routing is the central theme discussed in this
paper and is denoted throughout as the coding advantage.

Network coding in undirected networks has received
considerably less attention from the research community.
In such settings, the network is modeled by an undirected
graph G = (V,E). Each link (v, u) ∈ E can transmit the
information in both directions, i.e., from v to u and from
u to v, subject to the restriction that the total amount of
information transmitted over link (v, u) does not exceed
its capacity.

The problems of unicast, broadcast, and multicast in
undirected networks were studied by Li and Li in [12].
It was shown that for unicast and broadcast there is no
advantage in the use of network coding over traditional
routing. For the case of multicast, the coding advantage
was shown to be at most 2, which complements the
result of [1] stating that this advantage may be at least
8/7. Little is known regarding the coding advantage
for the more general k-unicast setting. To this day,
the possibility that the advantage be unbounded (i.e., a
function of the size of the network) has not been ruled
out in the literature. In [12], [13] it is conjectured that
for undirected graphs there is no coding advantage at all.
This fact was verified on several special cases such as
bipartite graphs [8], [5] and planar graphs [13] however
is still open in general.

Loosely speaking, the Li and Li conjecture states that
an undirected graph allowing a k-unicast connection
using network coding also allows the same connection
using routing. In this work we address a relaxed version
of this conjecture. Our relaxation has the following
flavor. We show that an undirected graph allowing more



than a k-unicast connection using network coding will
almost allow a k-unicast connection using routing. The
question here is how exactly do we define “more” and
“almost”.

Recall that in the k-unicast problem, there are k
sources {s1, . . . , sk}, k terminals {ti, . . . , tk}, and one
is required to design an information flow allowing each
source si to transmit information to its corresponding
terminal ti. In the k-multicast problem, one is required
to design an information flow allowing each source si
to transmit information to all the terminals {t1, . . . , tk}.
Clearly, requiring that a network allows a k-multicast
connection implies the corresponding k-unicast connec-
tion. In this work we show that an undirected graph
allowing a k-multicast connection at rate r using network
coding will allow the corresponding k-unicast connection
at rate close to r, namely at rate r/3. The proof of our
result is very simple in nature, and is based on a certain
flow decomposition of the graph at hand.

We would like to stress that in our comparison of cod-
ing verses routing we are considering multiple-multicast
coding rate on one hand and multiple unicast routing rate
on the other. Considering the multiple unicast problem
on both ends (as in the k-unicast conjecture) remains
an intriguing open problem. In addition, we note that
(although strongly related) the term of “k-multicast” and
the standard notion of “multicast” (in which there is a
single source) have subtle differences that seem central
to the work at hand. We elaborate on these differences
in Section I-C.

We further observe that our result implies an appeal-
ing qualitative statement regarding the use of network
coding. Let G = (V,E) be a directed graph. We denote
by Ḡ = (V, Ē) the undirected graph obtained from G in
which each directed edge e = (u, v) in E appears as an
undirected edge (u, v) in Ē. Our result outlined above
now implies the following statement. Given a directed
graph G which allows k-multicast communication at rate
r on k source/terminal pairs (si, ti), by undirecting the
edges of G (to obtain Ḡ) one can obtain a feasible k-
unicast routing solution of rate at least r/3. Namely, this
implies the following informal statement:

Statement 1: In the setting in which one is guaranteed
k-multicast communication, but requires only k-unicast:
undirecting the edges of G is as strong as allowing
network coding (up to a factor of 3).

A. Preliminaries

Let G = (V,E) be a directed graph. We denote by
Ḡ = (V, Ē) the undirected graph obtained from G in

which each directed edge e = (u, v) of capacity ce in
E appears as an undirected edge (u, v) of capacity ce
in Ē. For simplicity we will consider ce = 1 throughout
this work. Our results extend naturally to arbitrary edge
capacities.

We consider the k-unicast problem on directed and
undirected networks. For directed networks, an instance
of the problem is a graph G and k source terminal pairs
(si, ti) in G. The objective is to trasmitt information
generated at source si to terminal ti at maximal rate. The
information generated at different sources is assumed to
be independent. For a rigorous and detailed definition
of the transmission rate and capacity of network coding
instances see for example [14].

We define the multiple unicast routing rate of G, de-
noted as URR(G), as the maximum value r such that there
exists a routing scheme which enables communication
between every source si and its corresponding terminal
ti at rate r. Equivalently, URR(G) equals the value of
the multicommodity flow on the instance at hand. We
define the multiple unicast coding rate of G, denoted as
UCR(G), as the maximum value r such that there exists
a network coding scheme which enables communication
between every source si and its corresponding terminal
ti at rate r.

The k-unicast problem on undirected graphs Ḡ is
defined similarly. Roughly speaking, a routing scheme
(network coding scheme) on Ḡ is said to satisfy the
capacity requirements of Ḡ if one can direct the edges of
Ḡ to obtain a directed graph H for which the scheme still
satisfies the capacity requirements of H . In this process,
an undirected edge (u, v) of capacity c can be turned
into two directed edges (u, v) and (v, u) of capacities c1
and c2 respectively, for any c1 + c2 = c. More formally,
we seek a directed graph H = (V,EH) for which
H̄ = Ḡ and the scheme at hand satisfies the capacity
requirements of H . Here, we consider H̄ = Ḡ iff the
graphs have the same edge set and edge capacitites. H
is sometimes referred to as an orientation of Ḡ. We
define the routing rate URR(Ḡ) and coding rate UCR(Ḡ)
accordingly.

Multiple unicast conjecture [12], [13]: In [12], [13],
Li and Li conjectured that in an undirected network Ḡ
with multiple unicast sessions, network coding does not
lead to any coding advantage. Namely, that

Conjecture 1 ([12], [13]): For an undirected graph Ḡ
it holds that UCR(Ḡ) = URR(Ḡ).

An equivalent way to phrase this conjecture is:
Conjecture 2: For any directed graph G it holds that
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Fig. 1. (a) The flow F2 equals the (disjoint) union of the flows fi,2 for i = 1, . . . , k (here k = 5). Notice that each flow of type fi,2 may
consist of multiple paths connecting si and t2. For example, in the figure, the flow f1,2 consists of 2 disjoint paths (each of half the capacity)
and the flow f2,2 consists of a single path. (b) The flows corresponding to f∗2 in the proof of Lemma 1. Some of the flows connect s2 and
t2 “directly”, while others are routed via relay nodes tα and sβ . Notice, that in both (a) and (b), we represent our graph G schematically
by drawing the source and terminal nodes only.

UCR(G) ≤ URR(Ḡ).
This can be interpreted as follows. Given a directed

graph G which allows coding rate UCR(G), by undirect-
ing the edges of G one can obtain a feasible routing
solution of rate at least UCR(G). Namely, this implies the
following informal statement: “Undirecting the edges
of G is as strong as allowing network coding”. For
completeness, we prove the equivalence between the two
conjectures.

Proof: Assume that Conjecture 1 holds. Namely
that UCR(Ḡ) = URR(Ḡ). As UCR(G) ≤ UCR(Ḡ), we
conclude that UCR(G) ≤ UCR(Ḡ) = URR(Ḡ). Assume now
that Conjecture 2 holds. Let H be the directed graph
for which H̄ = Ḡ and UCR(H) = UCR(Ḡ). Namely,
H is the directed graph that realizes UCR(Ḡ). Now by
Conjecture 2, UCR(Ḡ) = UCR(H) ≤ URR(H̄) = URR(Ḡ).
As it always holds that UCR(Ḡ) ≥ URR(Ḡ), we conclude
Conjecture 1.

B. Our result

In this work we prove a relaxed version of Con-
jecture 1 and 2. We start by some definitions. Let G
be a directed graph and {(si, ti)}ki=1 be a set of k
source/terminal pairs. We say that G allows k-multicast
communication of rate r (or that MCR(G) = r) between
the sources {s1, . . . , sk} and the terminals {t1, . . . , tk}
if there is a network coding scheme which allows each
terminal tj to recover the information (of entropy r)
present at each one of the sources. Again, for a rigorous
and detailed definition of the transmission rate and
capacity of network coding instances see for example
[14].

It is not hard to verify that MCR(G) > 0 only if G
contains a path between each source si and terminal
tj . We refer to such graphs G as strongly connected.
We say that a directed graph G has strong connectivity
SC(G) = r if for every terminal tj , j = 1, . . . , k,

there exists a valid multicommodity flow Fj consisting
of k disjoint flows {fi,j}ki=1 where each fi,j connects
si and tj with capacity r. See Figure 1(a). Here and
throughout, a multicommodity flow F is valid if in taking
all (disjoint) flows f ∈ F together, one does not exceed
the given edge capacities. It is easy to verify that the
strong connectivity of G equals the capacity MCR(G). For
completeness, the proof is given below.

Claim 1: MCR(G) = SC(G).
Proof: In what follows, we assume that SC(G) = 1

or MCR(G) = 1 (the proof extends naturally to the general
case of r > 1 as well). Assume that SC(G) = 1. The first
direction of our assertion now follows since G satisfies
the so-called multicast requirements. Namely, enhance G
by adding a new node s connected by an edge of unit
capacity to all sources si. Denote the enhanced graph
by Gs. Consider the multicast of k units of information
over Gs from s to all terminals tj . As SC(G) = 1, the
minimum cut between s and each tj in Gs is at least
k. This implies the existence of a network code over
Gs which allows the required multicast, e.g., [11]. As s
has exactly k outgoing edges of unit capacity, we may
assume w.l.o.g. that in this network coding scheme no
encoding is performed on the edges leaving s. It is now
not hard to verify that the exact same coding scheme
when applied on the original graph G will allow each
terminal tj to recover the information of all sources si,
implying that MCR(G) ≥ 1.

Now assume that MCR(G) = 1. As before consider the
graph Gs. The coding scheme of G directly implies a
multicast coding scheme for Gs, which in turn imply
for each terminal j a flow from s to tj of capacity k,
e.g., [14]. As the edges leaving s are all unit capacity,
that latter implies a set of disjoint flows {fi,j}i, where
fi,j connects si and tj with unit capacity. This in turn
implies that SC(G) ≥ 1.

The result of this work can be summarized in the



Communication task Notation with coding Notation without coding Coding advantage

Multiple multicast MCR(Ḡ) = SC(Ḡ) Not referred to in this work At least 8/7 [1]

Multiple unicast UCR(Ḡ) URR(Ḡ) Unknown, see conjecture of [12], [13]

TABLE I
A SUMMARY OF THE NOTATION USED THROUGHOUT THIS WORK. LET Ḡ BE AN UNDIRECTED GRAPH. FOR THE MULTIPLE MULTICAST

SCENARIO, IT HOLDS THAT MCR(Ḡ) = SC(Ḡ) (A SLIGHT VARIANT OF CLAIM 1). THE GAP BETWEEN ROUTING AND CODING IN THIS
CASE IS AT LEAST THAT OF THE (SINGLE SOURCE) MULTICAST CASE, WHICH IS AT LEAST 8/7 [1]. FOR THE MULTIPLE-UNICAST

SCENARIO IT HOLDS THAT UCR(Ḡ) ≥ URR(Ḡ), HOWEVER NO GAP IS KNOWN TO EXIST. IN A SENSE, IN THIS WORK WE COMPARE apples
and oranges. NAMELY, WE COMPARE MCR(Ḡ) AND URR(Ḡ). WE NOTE THAT THE TABLE ABOVE REFERS TO UNDIRECTED GRAPHS Ḡ. THE

RATE OBTAINABLE FOR ANY DIRECTED ORIENTATION G OF Ḡ IS AT MOST THAT OF Ḡ (IN ALL THE SETTINGS ABOVE).

following theorem. Before we state our theorem, we refer
the reader to a summary of our notation in Table I.

Theorem 1: Let G be a directed graph and
{(si, ti)}ki=1 be a set of k source terminal pairs.
Then 3URR(Ḡ) ≥ MCR(G).

We note that one may phrase Theorem 1 in the
following equivalent manner: Let Ḡ be an undirected
graph and {(si, ti)}ki=1 be a set of k source terminal
pairs. Then 3URR(Ḡ) ≥ MCR(Ḡ). To put our result in
perspective, we further elaborate on the results and proof
techniques appearing in [12].

C. Comparison to techniques of [12]

Let G be a directed graph. In the network coding
multicast scenario, there is a single source s which
wants to transmit the exact same information to a subset
T of terminals in G. In the work of [12] the task
of multicasting over undirected graphs Ḡ was studied.
Using our notation, it was shown in [12] that 2π(Ḡ) ≥
SC(Ḡ) ≥ SC(G) = MCR(G). Here π(Ḡ) is the multicast
routing rate, and SC(Ḡ) is the (minimum over the) Min-
Cut between s and terminals tj ∈ T denoted by λ in
[12]. The result of [12] is similar in nature to our main
result. In fact, the constant of 2 in the work of [12]
beats the constant 3 appearing in our result. However,
the multicast scenario differs from that of k-multicast
studied in this work in the sense that there is no single
source node s but rather k source nodes s1, . . . , sk.

In a nutshell, the crux of the proof of [12] includes a
reduction in which the multicast instance Ḡ undergoes
several splitting modifications, until it is turned into an
instance Ḡ′ to the broadcast problem (in which the
terminal set includes the entire vertex set of Ḡ′). Roughly
speaking, this reduction preserves the (relationship be-
tween the) values of π(Ḡ′) and SC(Ḡ′) when compared
to that of π(Ḡ) and SC(Ḡ). Once turned into a broadcast

instance, it is proven that 2π(Ḡ′) ≥ SC(Ḡ′). This implies
that 2π(Ḡ) ≥ SC(Ḡ) ≥ SC(G) = MCR(G).

To the best of our judgment, the reduction used in [12]
does not adapt to the k-multicast scenario addressed in
this work. The main reason being the lack of a single
source s governing the multicast connection. One may
attempt to use the reduction of [12] combined with
the ideas of Claim 1 in which we transform a multi-
source instance into a single source instance. However,
in such attempts, the reduced graph will have diverse
connectivity and will no longer match the broadcast
scenario of [12] and its analysis.

II. PROOF OF THEOREM 1

As before we assume that MCR(G) = 1, and use
the fact that this implies SC(G) = 1 (Claim 1). The
proof extends naturally to the general case as well (in
which MCR(G) = r). Consider the graph Ḡ. Clearly, as
SC(G) = 1 it holds that SC(Ḡ) = 1 also. We now prove
the following Lemma which implies that URR(Ḡ) ≥ 1/3.
This will conclude our proof.

Lemma 1: Let k ≥ 2. If for every j = 1, . . . , k
there exists a valid multicommodity flow Fj consisting
of k disjoint flows {fi,j}ki=1 where each fi,j connects
si and tj with unit capacity; then there exists a valid
multicommodity flow F ∗ consisting of k disjoint flows
f∗i connecting si to ti, each of capacity 1/3.

Proof: Consider the family F of unit capacity
flows ∪jFj = {fij |i, j ∈ [k]}. Here, and throughout,
[k] = {1, 2, . . . , k}. The family F is not necessarily
a valid multicommodity flow in Ḡ, in the sense that
taking all flows in F one may exceed certain edge
capacities. We first start by defining a variant of F that
is indeed a multicommodity flow in Ḡ. Recall, that each
Fj = {fij |i ∈ [k]} is a valid multicommodity flow in Ḡ.
Moreover, ∪jFj = F . Thus, it holds that reducing the
capacity of flows in F from unit value to a value of 1

k



will result in a valid multicommodity flow. Let F 1
k

be
the set of flows appearing in F after their capacity has
been reduced to 1

k .
We now, refine the family F 1

k
as follows: for each

flow fij ∈ F 1
k

of capacity 1
k we define 3k − 4 identical

flows {f `ij}
3k−4
`=1 , each of capacity 1

k(3k−4) . Denote the
new collection of flows by F 1

k(3k−4)
= {f `ij |i, j ∈ [k], ` ∈

[3k− 4]}. It is not hard to verify that F 1
k(3k−4)

is a valid
multicommodity flow.

Finally, we turn the valid multicommodity flow
F 1

k(3k−4)
into a flow F ∗ = {f∗i |i ∈ [k]} as asserted. It

suffices to define f∗i for each i ∈ [k]. The flow f∗i will
consist of two types of flows. The first type of flows will
connect si and ti directly. Namely, we add to f∗i , 2k−3
flows f `ii from the set F 1

k(3k−4)
. The second flow type will

connect si and ti via two “relays” tα and sβ . Namely,
for each α, β ∈ [k] \ {i} we will add to f∗i a flow f `i,α
from si to tα; the reverse of a flow f `β,α from tα to sβ;
and a flow f `β,i from sβ to ti. See Figure 1(b). These
three flows together will connect si and ti. All in all, to
construct f∗i we use the following flows of F 1

k(3k−4)
:

• 2k − 3 copies of fii.
• For each α ∈ [k] \ {i}: k − 1 copies of fiα.
• For each β ∈ [k] \ {i}: k − 1 copies of fβi.
• For each α, β ∈ [k] \ {i}: 1 copy of fβα.

The total amount of flow from si to ti will be

(2k − 3) + (k − 1)2

k(3k − 4)
=

k2 − 2
k(3k − 4)

>
1
3

It remains to show that F ∗ = {f∗i |i ∈ [k]} is indeed a
valid multicommodity flow. Namely, that it uses exactly
the flows of F 1

k(3k−4)
as its building blocks. Let i 6= j.

In the process of constructing the flows in F ∗ we use
flows of type f `ij exactly 3k−4 times: (k−1) times when
constructing f∗i ; (k−1) times when constructing f∗j ; and
once for each f∗α when α 6= i and α 6= j. The same goes
for the flow f `ii: (2k − 3) times when constructing f∗i ;
and once for each f∗α when α 6= i.

III. CONCLUSIONS

We have shown that, in undirected graphs that are r-
strongly connected, the use of network coding for k-
multicast is comparable (within a factor of 3) to the
routing rate of an arbitrary set of k unicast connections.
Our results address a relaxed version of the Li and
Li conjecture, using a different approach to that used
by Li and Li, which does not extend gracefully to our
setting. We would like to stress that in our comparison
of coding verses routing we are considering k-multicast

coding rate on one hand and k-unicast routing rate on
the other. Considering the multiple unicast problem on
both ends (as in the k-unicast conjecture) remains an
intriguing open problem. An interesting consequence of
our result is that the bulk of the advantage (in our setting)
of coding versus not coding in directed graphs may be
obtained through considering an undirected version of
the graph. This may have interesting consequences for
wireless networks, since they are generally undirected.
While it may at first blush seem that our results imply a
bound of a factor of 3 for the advantage of k-multicast
coding versus k-unicast non-coding in wireless networks,
such a conclusion would misinterpret our results. Indeed,
broadcast and half-duplex constraints do not in general
allow us to operate a wireless network as an arbitrary
undirected network.

There are several interesting directions for future
work. We choose to mention the one that motivated
this work: Can one prove the Li and Li conjecture
when restricted to graphs that are r-strongly connected?
Namely, given such graphs, can one show no (or a
limited) advantage for coding in the multiple unicast
setting, thus proving the Li and Li conjecture at least
for r-strongly connected networks.
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