
1

Joint Scheduling and Instantaneously Decodable Network
Coding

Danail Traskov∗, Muriel Médard‡, Parastoo Sadeghi§, and Ralf Koetter
∗ Institute for Communications Engineering, Technical University Munich, GERMANY

‡ Research Laboratory of Electronics, Massachusetts Institute of Technology, USA
§ Research School of Information Sciences and Engineering, The Australian National University, AUSTRALIA

Emails:danail.traskov@tum.de, medard@mit.edu, parastoo.sadeghi@anu.edu.au

Abstract— We consider a wireless multi-hop network and
design an algorithm for jointly optimal scheduling of packet
transmissions and network coding. We consider network coding
across different users, however with the restriction that packets
have to be decoded after one hop. We compute the stability region
of this scheme and propose an online algorithm that stabilizes
every arrival rate vector within the stability region. The online
algorithm requires computation of stable sets in an appropriately
defined conflict graph. We show by means of simulations that this
inherently hard problem is tractable for some instances andthat
network coding extends the stability region over routing and
leads, on average, to a smaller backlog.

I. I NTRODUCTION

Applying network coding to wireless, mobile ad-hoc net-
works has been shown to dramatically improve their perfor-
mance, e.g. to reduce energy consumption [1], improve band-
width efficiency [2] or increase throughput by enhancing the
Medium-Access (MAC) layer [3]. However, the vast majority
of applications assume so calledintra-session network coding,
i.e. only packets belonging to the same user are allowed to
mix. The reason is that allowing data of different users to
mix, leading to inter-session network coding is a difficult
problem [4], and in fact may even require complicated non-
linear processing [5].

On the other hand, approaches to inter-session network
coding that are not necessarily optimal, yet practical from
an engineering point of view have demonstrated large per-
formance gains; e.g. in [3], where the authors exploit the
beneficial effect of network coding to reduce MAC-layer
congestion. In a wireless network, due to broadcasting, nodes
overhear packets (that are not intended for them) frequently.
This additional “evidence” can be used to combine several
packets in one transmission.

This is also the approach that we take, more precisely
assume that a node decides to combineL packets with
binary XOR and broadcasts them to its neighbors. Then, we
require the transmission to beinstantaneously decodablefor
all neighbors, which is achieved when all neighbors have
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overheard alreadyL − 1 of the packets. Every receiver can
then cancel out all, but the one packet that is new to him.
As we show, the instantaneous decodability condition can
be formulated as aconflict graphmodel where valid packet
combinations correspond tostable sets1. This is, in general,
an NP-hard combinatorial problem which is inherent in the
instantaneous decodability condition. Our simulations indicate
that for moderate size networks the optimal solution can be
within reach.

In mobile wireless networks a large body of work suggests
[2], [7] that to capitalize on significant gains, routing and
network coding have to be optimized jointly with the MAC-
layer. This is also the approach we take, by formulating a
linear program that includes both scheduling and network
coding. With this problem formulation we are able to compute
the achievable rate region of our technique and to quantify
the gains over routing. On the other hand, in most practical
mobile networks a computationally lightweight, decentralized
and online algorithm is preferable. We formulate such an
algorithm based on ideas from [6], where authors derive
a widely applicable class of online scheduling algorithms
achieving optimal throughput. To include network coding, we
introduce a system ofvirtual queuesthat can be served jointly
subject to the constraints arising from the conflict graph model.

There are two lines of work that are related to our approach.
In [3] the authors introduce COPE, a 802.11-based protocol
that uses network coding to enhance the performance of the
MAC-layer. There, the idea of combining packets locally,
opportunistically and heuristically was developed and shown
to yield significant performance gains. However, the decision
which packets to combine is done by means of a sequential
(essentially greedy) search heuristic, while we optimize over
the set of network coding decisions and over the schedule.
In [8], the authors analyze theoretically the performance of
COPE-type network coding by means of formulating a linear
program capturing the network coding, routing and scheduling
constraints. Compared to their work, our approach optimizes
over a larger set of network coding decisions and furthermore
we present an online algorithm that stabilizes every point
within the rate region.

The other line of work starts with [9] (see also [10]),
where the authors consider a fixed network and relax the
instantaneous decodability assumption to allow the mixing

1Some authors, e.g. [6] prefer the terminology independent set.
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Fig. 1. The topology graphGt of a network withn = 3 nodes and a relay
node0. Each link stands for two directed links, going in opposite directions.

of packets only subject to being decodable eventually. This
comes, however, at the price of allowing at most two packets
to mix. The achievable region of this technique was later
shown in [11] to be stabilizable with an online backpressure
algorithm. These techniques, while optimizing over the entire
network instead of just locally, apply only a restricted setof
network coding operations, a strict subset of the operations we
allow in our present approach. In summary, we

• find the optimal network coding solution within the class
of instantaneously decodable codes,

• compute the rate region for jointly optimal network
coding and scheduling,

• derive an online algorithm that stabilizes every point
within the rate region,

• show the utility of our approach by means of simulations.

The rest of our work is organized as follows. In Section
II, we introduce the network model and discuss the network
coding framework. In Section III, we compute the stability
region of the network and derive the online algorithm in the
following Section IV. In Section V, we present simulation
results. Section VI concludes the paper and gives an outlook
on possible extensions and further work.

II. N ETWORK MODEL

A. General model and assumptions

Consider a wireless network, thetopology of which is
represented as a directed graphGt = (Nt,At) with node set
Nt = {0, 1, . . . , n} and arc setAt = {(i, j) : 0 ≤ i, j ≤
n, i 6= j}. The case wheren = 3 is depicted in Fig. 1. From the
definition, the network is fully symmetric, however, we assume
that node 0 is a specialrelay node with extended capabilities.
This model can arise, for example, when the network consists
of a number of ground nodes1, . . . , n and one unmanned
aerial vehicle (UAV), node0, with extended range, power and
a larger set of coding and modulation schemes. The network
operates with constant-length packets and in slotted time,
where the slot indext is an integer corresponding to the time
interval [t, t + 1).

We assume, for simplicity, that the relay serves solely the
purpose of enhancing communication between the other nodes
and does not inject individual packets. Exogenous packet ar-
rivals at nodei with destinationj (resulting from processes at
the application layer of nodei) occur according toadmissible
stochastic processesA(t) = (Aj

i (t)), for 1 ≤ i, j ≤ n, i 6= j,

with average ratesλj
i = E[Aj

i ]. We use the same definition of
admissible as the authors in [12, Definition 3.4]

Definition 1 A processA(t) is admissible with rateλ if

• The time average expected arrival rate satisfies:

lim
t→∞

1

t

t−1
∑

τ=0

E {A(τ)} = λ. (1)

• For all time slots t, we haveE{A(t)2|H(t)} ≤ A2
max,

whereAmax is a positive constant andH(t) represents
the history up to timet, i.e. all events in slotsτ ∈
{0, . . . , t − 1}.

• For any δ > 0, there exists an interval sizeT such that
for any initial time t0 the following condition holds:

E

{

1

T

T−1
∑

k=0

A(t0 + k)|H(t0)

}

≤ λ + δ. (2)

Assume that transmissions from and to the relay are always
successful. On the other hand, any other link can be either ON,
in which case it can support the transmission of one packet
per slot or OFF, in which case no packet can be transmitted
over this link. The topology state at timet is thus given by
a binary vectorS(t) = (Sij(t)), for i, j ∈ {1, . . . , n}, i 6=
j, with Sij(t) = 1 indicating that the corresponding link is
ON. Assume that the stateS(t) evolves according to a finite
state, irreducible Markov chain with state spaceS and letπs

denote the average fraction of time that the process spends in
stateS(t) = s. For such chains the time averagesπs are well
defined and with probability 1 we have

πs = lim
t→∞

1

t

t−1
∑

τ=0

1[S(τ)=s], for all s ∈ S, (3)

where1[·] is the indicator function. Due to interference at most
one node in the network can transmit per slot.

If node i transmits a packet designated for nodej, and
j receives it successfully, it is removed from the system.
Otherwise, the following sequence of actions is carried out

• nodei removes it from its queue,
• the relay (that by assumption receives every packet suc-

cessfully) assumes responsibility for the packet and stores
it for further transmission,

• all nodes that have overheard the packet store it until it
has reached its destination (for the purpose of using it at
a later stage for network coding).

This scheme requires a certain amount of perfect feedback
in the following form. After any packet transmission from
a non-relay node, every other node has to acknowledge (or
negatively acknowledge) the reception to the relay. Note that
feedback between non-relay nodes is not required, which is
consistent with our assumption that these nodes have more
limited capabilities than the relay. For our analysis we will
use three different graphs, each of them describing a different
aspect of the system. In addition to the topology graphGt, we
will introduce the queuing network (directed) graphGq and
the network coding conflict (undirected) graphGc, both to be
precisely defined later.
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B. Queuing model

Consider the two-stagequeuing networkGq in Fig. 2 con-
sisting of the queues(Rj

i ) and the virtual queues at the relay
(Xj

Q). In contrast to the topologyGt, here we explicitly model
the dynamic behavior in a queuing theoretic framework that
allows us to accommodate scheduling and network coding.
Packets that leave the system (the arrows with solid tips)
are directed to an artificial nodeE, the system exit. This
queuing network, in particular its stability region and an online
stabilizing algorithm, is the focus of our analysis.

In the original network of Fig. 1, a packet broadcasted from
nodei can, depending on the states, either reach its destination
or it is overheard by the relay and possibly a subset of its
neighbors. In the queuing model, correspondingly, it is either
transfered to the system exit or to one of the virtual queues at
the relay. That means that for a given topology states, each
queueRj

i will have exactly one state-dependent outgoing link
denoted by(Rj

i , d(s)), where we define

d(s) =

{

E if sij = 1,

Xj

Q
′ if sij = 0,

(4)

whereQ
′

= {k|k 6= j, sik = 1} ∪ i.
A queue with backlogX(t) evolves according to the

discrete-time dynamicsX(t + 1) = max(X(t) − µ(t), 0) +
A(t), whereA(t) is the arrival process, andµ(t) the service
process. For queue stability, we use the following definition
[12, Definition 3.1]

Definition 2 A queue is called (strongly) stable if

lim
t→∞

sup
1

t

t−1
∑

τ=0

E{X(τ)} < ∞. (5)

A network of queues is strongly stable if all queues comprising
the network are strongly stable. In our model, each node
i ∈ {1, . . . , n} has queuesRj

i , j ∈ {1, . . . , n} \ i, one for
each possible packet destination. The relay, on the other hand,
has a system ofvirtual queuesin which it stores received
packets (that failed to reach their designated destination) for
the purpose of performing network coding. More precisely,
the relay partitions all overheard packets inn · (2n−1 − 1)
equivalence classes, according to their next-hopj and the set
of nodesQ ⊂ {1, ..., n} \ j, Q 6= ∅ that have knowledge of
them. The setQ is never empty as there is always one node,
the original senderi, that has the packet. The relay keeps
track of a virtual queue for each such class of packets. Let
X(t) = (Xj

Q(t)) denote the queue length vector of all packet
classes at timet.

C. Network coding

The relay node has network coding capabilities, in that
it can combine several of its queued packets with binary
XOR, subject to the constraint that the combination can be
instantaneously decoded at all neighboring nodes [3]. This
means that if the relay XORsL packets together, each of the
intended receivers must have overheard alreadyL−1 of them.

Every receiver can then cancel out all but the one packet that
is new to him.

We can represent valid network coding combinations re-
sulting from this condition by a graphical model. In this
conflict graph approach, we construct an undirected graph
with vertices corresponding to the queues. Two queues are
connected with a link if theycannot be served jointly, i.e.
packets from the two queues cannot be XORed together,
because they violate the instantaneous decodability condition.
This is made precise in the following definition.

Definition 3 For the system of queues(Xj
Q), the conflict

graph Gc = (V , E) is an undirected graph with a one-to-one
correspondence between verticesV and queues. Two vertices
X i

Q1
and Xj

Q2
are not connected if

• i 6= j,
• i ∈ Q2, and j ∈ Q1,

otherwise they are connected with an undirected link.

The first condition guarantees that the packets in the two
queues have different destinations and the second condition
means that each destination has overheard the packet meant
for the other destination node. We define a valid configuration
of queues as a set of nodes in the conflict graph without any
conflicting pair, i.e. a valid configuration is a stable set.

Definition 4 A stable setC of an undirected graphG =
(V , E) is a set of nodes such that for any pair of nodes in
C, there is no edge connecting them. Its incidence vector is a
column vector of length|V|, defined as

χC
v =

{

1 if v ∈ C,

0 otherwise.
(6)

The collection of all stable sets is denoted by STAB(G).

A maximalstable set is one that is not contained in any other
stable set. Amaximumstable set is a stable set of largest
cardinality; finding such a stable set is in general NP-hard.
The stable set polytopePSTAB(Gc) is the convex hull of the
incidence vectors of all stable sets ofGc.

For the network in Fig. 1, the corresponding conflict graph
is depicted in Fig. 3.

D. Joint scheduling and network coding

We return to the queuing model (see Fig. 2) and give a
precise definition

Definition 5 The queuing networkGq = (Nq,Aq) is a di-
rected graph, with node set

Nq =
{

(Rj
i ) ∪ (Xj

Q) ∪ E
}

(7)

and arc set

Aq =
{

(Rj
i , E)

}

∀Rj
i ∈ Nq (8)

∪
{

(Rj
i , X

j
Q)

}

if i ∈ Q (9)

∪
{

(Xj
Q, E)

}

∀Xj
Q ∈ Nq. (10)
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Fig. 2. The corresponding queuing network graphGq for the network in
Fig. 1. Directed links indicate possible packet transitions; packets that leave
the system (the arrows with solid tips) are directed to an artificial node E,
the system exit. A subset of the virtual queuesXj

Q
can be served jointly in

one time slot if they correspond to a stable set in the conflictgraphGc
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Fig. 3. The conflict graphGc corresponding to the virtual queues at the relay
in Fig. 2.

Due to the interference constraints the control action in each
time slot is to either serve one of the links(Rj

i , d(s)) or a
valid configuration of the(Xj

Q, E) links subject to the network
coding constraints. Acontrol input I(t) = (Iab(t)) for the
queuing network is a binary vector withIab(t) = 1 if link
(a, b) ∈ Aq is activated in slott

The control spaceIs for a states thus consists of

Is = I ′
s ∪ I (11)

=
{(

Rj
i , d(s)

)

: i, j ∈ {1, . . . , n}, i 6= j
}

∪
{(

Xjl

Ql
, E

)

:
(

Xjl

Ql

)

is a stable set inGc

}

,

whereI ′
s denotes the state-dependent part, andI the state-

independent part of the control.
Let c(I(t), S(t)) = (cab(I(t), S(t))) denote the link capac-

ity vector under controlI(t) ∈ IS(t) and stateS(t) ∈ S.
Based on the previous discussion, the capacity of link(a, b),
measured in packets/slot is

cab(I(t), S(t)) =

{

1 if Iab(t) = 1,

0 otherwise.
(12)

Consider the region defined by

Γ =
∑

s∈S

πsCH{c(I, s) : I ∈ Is} , (13)

where CH(·) denotes the convex hull and the different convex
hulls are added using the usual set summation. Using the
decomposition from Eqn. (11), we can rewrite the regionΓ as
follows, isolating the contribution of the stable set polytope of
the conflict graph

Γ =
∑

s∈S

πsµsCH{c(I, s) : I ∈ I ′
s} (14)

+

[

∑

s∈S

πs(1 − µs)

]

PSTAB(Gc),

whereµs ∈ [0, 1], ∀s ∈ S. The significance of this region is
that every vector(gab) of long-term link transmission rates
that can be supported by the network has to lie inΓ [12].
For the introduced constrained queuing system, two questions
naturally arise and we will address them next: the optimal
service policy and its associated stability region.

III. STABILITY REGION

We begin by studying the stability region (or network layer
capacity region, as opposed to the information theoretic notion
of capacity) which is defined as follows [12]

Definition 6 The stability regionΛ is the closure of the set
of all arrival rate matrices

(

λj
i

)

that can be stably supported
by the network considering all possible policies for routing,
scheduling and restricted network coding (i.e. instantaneous
decodability and network coding only at the relay).

The characterization of the stability region is given in the
following theorem.

Theorem 1 The stability region for the constrained queuing
system in Fig. 2 is the set of all arrival rate vectors

(

λj
i

)

such

that for all links (a, b) ∈ Aq there exists a non-negative flow
vector (f(a, b)) and a transmission rate vector(g(a, b)) ∈
Cl(Γ) satisfying2 the flow conservation constraints

λj
i ≤ f(Rj

i , E) +
∑

Q

f(Rj
i , X

j
Q), ∀λj

i , (15)

∑

i

f(Rj
i , X

j
Q) ≤ f(Xj

Q, E), ∀Xj
Q, (16)

and the capacity constraints

f(a, b) ≤ g(a, b), ∀(a, b) ∈ Aq. (17)

Proof: This is a straightforward application of [12,
Theorem 3.8] to the queuing networkGq.

2Cl(·) denotes the closure of a set.
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IV. ONLINE ALGORITHM

The stability region tells us that if the average arrival rates
were fixed and known a priori, there exists a policy that
stabilizes the network. However, it might not be causal, i.e.
the decision at timet might depend on events occurring after
time t. An online algorithm on the other hand, decides at
time t solely based on the history up to this time and the
current state of the network. As the authors in [6], [12] have
shown, there exists a class of online algorithms, so called
differential backpressurealgorithms that stabilize every point
in the interior of the stability region.

Consider the following three-step algorithm.
1. Computation of backpressure weights:In each time slot

t, first observe the topology state variableS(t). Then compute
for all links (Rj

i , d(s)) the differential backlogswj
i (t) as

follows

wj
i (t) =

{

Rj
i (t) if d(s) = E,

Rj
i (t) − Xj

Q
′ (t) if d(s) = Xj

Q
′ .

Compute the maximum weighted stable set ofGc with weights
Xj

Q(t)

c
∗ = arg max

c∈STAB(Gc)

{

X
T (t)c

}

,

and denote the corresponding weightw∗(t) = X
T (t)c∗.

2. Scheduling: Select the maximum weight among
{

w∗(t), wj
i (t)

}

, for i, j = 1, . . . , n. The queue scheduled for

service is the relay if the maximum isw∗(t), or otherwise
the queueRj

i corresponding to the maximum backpressure
weight wj

i (t).
3. Network coding:If the relay is scheduled for transmis-

sion, identify the queues which are members of the stable set
c
∗ computed in the previous step, and serve them jointly. To

that end, take the packets at the head of each queue, combine
them with binary XOR and transmit the resulting combination.

The described algorithm stabilizes every arrival rate vector
within the stability region. The following result, originally due
to [6], is cited from [12][Theorem 4.5].

Theorem 2 The backpressure algorithm stabilizes the net-
work for an arrival rate vectorλ if there exist a scalarǫ > 0
such thatλ + ǫ1 ∈ Λ, where1 denotes the vector with all
entries equal to 1.

A remarkable consequence is that the algorithm stabilizes the
system for all points in the interior of the stability region
without even requiring knowledge of the stability region.

V. PERFORMANCE EVALUATION

We illustrate the performance of our scheme in three ways.
Firstly, we illustrate the network coding gains by computing
the volume of the stable set polytopePSTAB(Gc) and com-
paring with the volume of the constraint polytope when no
network coding is allowed. This approach has been pursued
in [13] in the context of network coding for switches with
multicast capabilities. Secondly, we compute the stability
region for network coding and for routing, and thirdly, we
simulate the online scheduling and network coding algorithm.

A. Polytope volume computation

Consider the casen = 3 nodes and the 9 virtual queues
which can be scheduled for joint service according to the
conflict graph in Fig. 3. By inspection, the conflict graph
contains one maximum stable set of cardinality 3, namely
{X2

1,3, X
1
2,3, X

3
1,2}, similarly nine maximal stable sets of car-

dinality 2 and nine stable sets corresponding to the individual
vertices, so it can be written as the convex hull of these 19
points and the origin. Using the Multi-Parametric Toolbox for
MATLAB [14], we have used this representation to compute
its volume, which turns out to be2.8660 · 10−4. Without
network coding, only one virtual queue can be served at a
time, so the “conflict graph” when only routing is allowed is
the complete graphK9. The volume of the resulting stable
set polytope (which is a 9-dimensional standard simplex) is
(9!)−1 = 2.7557 · 10−6. The ratio of the two volumes is
V ol(PSTAB(Gc))/(9!)−1 = 104.

B. Stability region

We compute the stability region as characterized in Theorem
1 for the special case when all injection rates are equal.
Though this computation is not easier than the general case,
it has the nice property that the network throughput is pa-
rameterized by a scalarλ = λj

i . We considern = 3 and the
state process is assumed to be i.i.d. across time and across
links with each link being ON with probability0.2 and OFF
with probability0.8. Routing, i.e. serving one virtual queue at
a time, leads to a maximum symmetric rateλr and network
coding to a rateλn which, due to the fact that network coding
includes routing as a special case, is at least as large asλr.
The maximum symmetric rates,λr = 0.1448 for routing and
λn = 0.1521 for network coding, are shown in Fig. 4.

C. Online algorithm

To illustrate the performance of the online algorithm, we
simulate its behavior for symmetric input rates which are
close to the breaking points for routing and network coding,
respectively. Considerλ1, . . . , λ4 as indicated in Fig. 4 and
the corresponding sample paths in Fig. 5. Forλ1, which is
in the stability region of both policies, we see that routing
leads on average to significantly more packets in the system.
When we slightly increase the rate toλ2 routing breaks down,
while network coding is largely unaffected. Going further to
λ3 network coding is still stable, though at a higher average
backlog. Finally, atλ4 both systems operate beyond stability
but network coding “degrades” more gracefully.

VI. CONCLUSION AND FURTHER WORK

We investigated the stability region as well as online
stabilizing algorithms for instantaneously decodable network
coding. It was shown that network coding can extend the
stable operation regime of network and on average reduce
the backlog in the system. Possible extensions are to allow
every node, not just the relay, to perform network coding. Fur-
thermore, one can investigate relaxations of the instantaneous
decodability constraint and the associated trade-off between
higher throughput and computational complexity/ coordination
overhead.
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