
Sharing Information in Time-Division Duplexing
Channels: A Network Coding Approach

Daniel E. Lucani, Muriel Médard
RLE, MIT

Cambridge, Massachusetts, 02139
Email: {dlucani,medard}@mit.edu

Milica Stojanovic
Northeastern University

Boston, Massachusetts, 02115
Email: millitsa@mit.edu

David R. Karger
CSAIL, MIT

Cambridge, Massachusetts, 02139
Email: karger@mit.edu

Abstract—We study random linear network coding for time-
division duplexing channels for sharing information between
nodes. We assume a packet erasure channel with nodes that
cannot transmit and receive information simultaneously. Each
node will act as both a sender of its own information and a
receiver for the information of the other nodes. When a node
acts as the sender, it transmits coded data packets back-to-
back before stopping to wait for the receivers to acknowledge
the number of degrees of freedom, if any, that are required to
decode correctly the information. This acknowledgment comes
in the header of the coded packets that are sent by the other
nodes. We study the mean time to complete the sharing process
between the nodes. We provide a simple algorithm to compute
the number of coded packets to be sent back-to-back depending
on the state of the system. We present numerical results for
the case of two nodes sharing data and show that the mean
completion time of our scheme is close to the performance of
a full duplex network coding scheme and can outperform full
duplex schemes with no coding.

I. INTRODUCTION

The use of network coding in channels in which time
division duplexing is necessary, i.e. when a node can only
transmit or receive, but not both at the same time was
considered in Reference [2]. This type of channel is typically
called half-duplex. However, Reference [2] used the more
general term time division duplexing (TDD) to emphasize
that the nodes do not use the channel in any pre-determined
fashion, but instead may vary the amount of time allocated
to transmit and receive. Some examples of time division
duplexing channels are infrared devices (IrDA), and under-
water acoustic modems. Other applications may be found
in very high latency channels, e.g. in satellite, and deep
space communications, because of the considerable delay
experienced by feedback.

Reference [2] studied the case of transmitting a block of
M data packets through a link using random linear network
coding. The objective was to minimize the mean time to
complete transmission of the block of packets. Reference [3]
extended this analysis for the problem of energy consumption
of the scheme, showing that there exists, under the minimum
energy criterion, an optimal number of coded data packets
to be transmitted back-to-back before stopping to wait for
an acknowledgment (ACK). This reference also showed that
choosing the number of coded data packets to optimize mean

completion time, as in [2], provides a very good trade-off
between energy consumption and completion time.

Reference [4] further extended this work for the case
of broadcast. In this setting, a transmitter with M data
packets has the objective to broadcast those packets reliably
to N receivers. This reference assumes that the receivers
are not allowed to cooperate to share their received coded
packets in order to decode, i.e. each receiver must decode
the information from the coded packets sent directly from
the transmitter.

Previous references have considered the case in which only
one node has information to transmit, i.e. without considering
that more than one node might need to transmit or share
its information with others. We now analyze the problem of
two nodes that want to share disjoint information under the
TDD constrain. We present a random linear network coding
scheme that operates in a similar fashion to that in [2]. In fact,
the problem studied in [2] is a subset of the work presented
in this paper. In particular, we study the mean completion
time of the two-node sharing scheme for TDD and compare
it to a full duplex network coding scheme and a scheduling
policy. Finally, we provide a simple algorithm to determine
the number of coded data packets to be transmitted back-to-
back before stopping. We show that this algorithm converges
in a small number of iterations.

The paper is organized as follows. In Section II, we outline
the problem, we study the mean completion time of our
scheme, and we introduce a search algorithm to minimize the
mean completion time. Section III presents some comparison
schemes and provides expressions for their mean completion
time for the case of two nodes sharing disjoint information.
Section IV provides numerical results for different scenarios,
comparing the different schemes. Section V extends the
analysis and algorithm to the case of N nodes in the network.
Conclusions are summarized in Section VI.

II. RANDOM NETWORK CODING FOR SHARING
INFORMATION IN TDD CHANNELS: TWO NODES

Two nodes want to share information through a TDD chan-
nel, i.e. a channel in which nodes can transmit and receive,
but not both at the same time. Each node i has Mi data
packets or disjoint random linear combinations that he wants
to share with the other node, as in Figure 1. A node i can

 1 2

M2 M1

Fig. 1. Nodes with disjoint information. Node i has Mi disjoint data packets
(or independent random linear combinations of packets). Both nodes want
to have all the information at the end of the exchange.

Header Data

h bits

Cod.
Coeff. 1

n bits

Cod.
Coeff. M

g bits

Fig. 2. [2] Structure of coded data packet: a header of size h bits, n data
bits, M coding coefficients (Cod. Coeff.) of size g bits each.

transmit information at a given data rate Ri [bps] to the other
node. We assume an independent packet erasure channel.
Each node will act as both sender and receiver of information.
When a node operates as the sender, it uses random linear
network coding [1] to generate coded data packets. Each
coded data packet contains a linear combination of the M
data packets of n bits each, as well as the random coding
coefficients used in the linear combination. Each coefficient
is represented by g bits. For encoding over a field size q, we
have that g = log2 q bits. A coded packet is preceded by an
information header of size h. Thus, the total number of bits
per packet is h + n + gM . Figure 2 shows the structure of
each coded packet considered in our scheme.

The node acting as a sender at some point can transmit
coded packets back-to-back before stopping to wait for the
other node to transmit its own packets and acknowledge how
many degrees of freedom (dof) it still requires to have all
the information. In general, there is no explicit ACK packet.
The acknowledgement to node i comes piggybacked in the
header of each coded packet sent from node j, unless no
coded packet has to be sent. As in [2], we assume that the
field size q is large enough so that the expected number
of successfully received packets at the receiver, in order to
decode the original data packets, is approximately Mi for
transmissions from node i.

Transmission begins at one of the nodes, say node
1 with M1 information packets, which are encoded into
N(M1,M2,0) ≥ M1 random linear coded packets, and trans-
mitted. After receiving the coded packets, node 2 which has
M2 information packets, generates N(i1,i2,1) ≥M2 random
linear coded packets and transmits them, where the state
(i1, i2, t) represents the i1 dofs required by node 2 to decode
the information of node 1, the i2 dofs required by node 1 to
decode the information of node 2, and the node that is acting
as transmitter t, with t = 0, 1 for nodes 1 and 2, respectively.
Node 2 includes in the header of each coded packet an ACK
of the dofs needed by 2 to decode the information that 1
is trying to send, i.e. i1. If all M1 packets are decoded
successfully by node 2, node 1 becomes a receiver and will
send only an explicit ACK packet in the following rounds
stating how many dofs it requires to decode, because node 1
does not need to send any more data. Otherwise, node 1 sends

CP (1,1) CP (Na,1)…

Tp-1 Tw

CP (1,2) CP (Nb,2)…

Tp-2

Fig. 3. Network coding TDD scheme for sharing packets between two
nodes. Note that the feedback comes piggybacked in the coded packets CP ,
and that CP (·, i) corresponds to a coded packet sent from node i.

2,2,0

1,2,0

0,2,0

2,1,0

1,1,0

0,1,0

2,0,0

1,0,0

0,0,0

2,2,1

1,2,1

0,2,1

2,1,1

1,1,1

0,1,1

2,0,1

1,0,1

0,0,1

Absorbing
States

Fig. 4. Example of the Markov chain for a block size of M1 = M2 = 2.

N(i1,i2,0) coded packets and piggybacks an ACK in each
header informing node 2 about how many dofs are missing at
node 1, i.e. i2. This process is repeated until all packets have
been shared successfully by both nodes. We assume that all
ACKs suffer no erasures. We also assume that if node i has
completed its transmission to another another j, and i gets
enough information to decode the data from j, then node i
can stop the transmission process, unless new information
is available for transmission. These is a consequence of the
ACKs suffering no erasures. We are interested in the optimal
number N(i1,i2,t) of coded packets to be transmitted back-
to-back.

Figure 3 illustrates the time window allocated to the system
to transmit N(i1,i2,1) coded packets. Each coded packet
CP (1, 1), CP (2, 1), etc. is of duration Tp−1 and each coded
packet CP (1, 2), CP (2, 2) is of duration Tp−2, for packets
sent from nodes 1 and 2, respectively. The waiting time Tw

is equivalent to the propagation time Tprop in this problem.
The process is modelled as a Markov chain. The states

(s1, s2, t) are defined by the number of dofs required, sk
at receiver k, to successfully decode all packets, and the
node t that acts as transmitter in this state. Thus, the
states range from (M1,M2, 1) to (0, 0, 0). This is a Markov
chain with (M1 + 1)(M2 + 1) − 2 transient states and two
recurrent states (state (0, 0, 0) and (0, 0, 1)). Finally, note that
a transition occurs every time that a batch of back-to-back
coded packets is received at one receiver.

Figure 4 provides an example for a block size of 2
packets at each node. We have highlighted in this figure
the absorbing states. Note that not all possible transitions
from one state to the others have been included in this
figure. However, any transient state (s1, s2, 0) can only have

transitions to a state (s′1, s
′
2, 1). Similarly, any transient state

(s1, s2, 1) can only have transitions to a state (s′1, s
′
2, 0). In

Figure 4, this translates into no transitions from transient
dashed states to other dashed states, or from transient solid-
line states to other solid-line states. This observation is crucial
in the development of an algorithm to compute the values of
N(s1,s2,t).

The transition probabilities from state (s1, s2, t) to state
(s′1, s

′
2, t

′) are

P(i,j,t)→(i′,j′,t′) =
P(X1(n)=i′,X2(n)=j′,T (n)=t′|X1(n−1)=i,X2(n−1)=j,T (n−1)=t)

where Xi(n) is the number of dof required at receiver i at the
end of transmission n, and T (n) is the designated transmitter
at time n.

Given the characteristics of the Markov chain, we have
that

P(s1,s2,t)→(s′1,s′2,t′) = (1)
P

(
s′1|s1,N(s1,s2,t)

)
if , s2 = s′2, t = 0, t′ = 1

P
(

s′2|s2,N(s1,s2,t)

)
if , s1 = s′1, t = 1, t′ = 0

0 otherwise

(2)

where N(s1,s2,t) represents the number of coded packets sent

to produce the transition. Note that P
(

s′j |sj ,N(si,sj ,t)

)
have

a similar structure to the transition probabilities studied in [2].
As in [4], the main difference is that the value of the number
of coded packets sent back-to-back is no longer associated
with the starting state of a particular node, but with a value
determined from the state of the system, i.e. N(si,sj ,t).

For 0 < s′j < sj , this can be translated into

P
(

s′j |sj ,N(s1,s2,t)

)
= (3)

f(sj , s
′
j)(1− Pej)

sj−s′jPej
N(s1,s2,t)−sj+s′j (4)

where

f(sj , s
′
j) =

(N(s1,s2,t)

sj−s′j

)
if N(s1,s2,t) ≥ sj ,

0 otherwise
(5)

and Pej represents the erasure probability of a coded packet
sent from node j. For sj = s′j > 0 the expression for

the transition probability reduces to: P
(

sj |sj ,N(s1,s2,t)

)
=

Pej
N(s1,s2,t) . Note that for P

(
0|0,N(s1,s2,t)

)
= 1. Finally,

for s′j = 0

P
(

s′j=0|sj ,N(s1,s2,t)

)
= 1−

sj∑
s′j=1

P
(

s′j |sj ,N(s1,s2,t)

)
. (6)

A. Expected Time for completing transmission

The expected time for completing the sharing process of
all data packets between the nodes constitutes the expected
time of absorption, i.e. the time to reach states (0, 0, 0)
or (0, 0, 1) for the first time, given that the initial state

is either (M1,M2, 0) or (M1,M2, 1), depending on which
node starts transmitting. This can be expressed in terms
of the expected time for completing the transmission given
that the Markov Chain is in state is (s1, , s2, t), T(s1,s2,t)
, ∀s1 = 0, 1, ..M1,∀s2 = 0, 1, ..M2,∀t = 0, 1. For our
scheme, Tp−i = h+n+gMi

Ri
, Tprop is the propagation time,

and the waiting time Tw shown in Figure 3 is Tw = Tprop.
Let us define T (i,j,t) as the time it takes to transmit N(i,j,t)

coded data packets and reach the other node. It is easy to
show that T (i,j,t) = N(i,j,t)Tp−t+Tw. The mean completion
time when the system is in state (i, j, t) is given by

T(i,j,t) = T (i,j,t) +
∑

(i′,j′,t′)

P(i,j,t)→(i′,j′,t′)T(i′,j′,t′). (7)

We can express this in vector form as T̄ = µ̄+PT̄ , where
T̄ = [T(i,j,t)], µ̄ = [T ((i, j, t))] and P is the corresponding
transition probability. Thus, the mean completion time start-
ing as every state is given by T̄ = [I − P]−1µ̄. Since we
are interested in the mean completion time when we start at
states (M1,M2, 0) or (M1,M2, 1), we can use Cramer’s rule
as

T(M1,M2,t) =
det

(
Γ←(M1,M2,t) µ̄

)
det (Γ)

(8)

where Γ = I − P , and the notation Γ ←(M1,M2,t) µ̄
represents a matrix that has all columns as the Γ matrix
except the column corresponding to state (M1,M2, t) which
is substituted by the vector µ̄, t can take value 0 or 1.

B. Minimizing The Mean Completion Time

The expected time for each state depends on all the
expected times for the previous states. However, optimizing
the values of all N(i,j,t) is not as straightforward as the
recursive method used in [2]. Also, note that there are
2(M1 + 1)(M2 + 1) states in our Markov chain, and that
we have 2(M1 + 1)(M2 + 1) − 2 integer variables that we
need to optimize.

Let us consider exploiting the structure of the problem to
determine an algorithm to estimate the values of N(i,j,t),∀i =
1, ...,M1,∀j = 1, ...,M2,∀t = 0, 1. Let us express the mean
completion time for states with t = 0 as

T(i,j,0) = T (i,j,0) +
∑
i′

P(i,j,0)→(i′,j,1)T(i′,j,1) (9)

and the mean completion time for states with t = 1 as

T(i,j,1) = T (i,j,1) +
∑
j′

P(i,j,1)→(i,j′,0)T(i,j′,0). (10)

Notice that the mean completion time for any state of the
form (i, j, 0) depends on the mean completion time of states
of the form (i, j, 1) but not on states of the form (i, j, 0).
Thus, we can substitute equation (10) into (9), and use the

fact that T (i,j,t) = N(i,j,t)Tp−t + Tprop to obtain

T(i,j,0) = N(i,j,0)Tp−0 + 2Tprop (11)

+Tp−1

∑
i′

N(i′,j,1)P(i,j,0)→(i′,j,1)

+

∑
i′,j′

T(i′,j′,0)P(i,j,0)→(i′,j,1)P(i′,j,1)→(i′,j′,0).

A similar expression can be found for T(i,j,1).
Note that these expressions are redolent of the mean

completion time for a link presented in [2]. Reference [2]
showed that the cost for transitioning from the current state to
other states was of the form NiTp+2Tprop+Tack. In our ex-
pressions, we have a similar cost with some changes, namely
there is no cost for transmitting an ACK packet because the
ACKs are piggybacked in the coded packets. Also, we have
an additional term, i.e. Tp−1

[∑
i′ N(i′,j,1)P(i,j,0)→(i,j,1)

]
,

which represents the mean additional waiting time for one
transmitter due to the transmission of the other node.

Let us define N̂(i,j,t)(n) as the estimate for N(i,j,t)
at step n of the algorithm, and P(i,j,0)→(i′,j,1)(n) and
P(i,j,0)→(i,j′,1)(n) are the transition probabilities based on
the estimates N̂(i,j,t)(n) for the n-th step.

Algorithm 1: Search algorithm for case of two nodes
• STEP 1: INITIALIZE

-Set N̂(i,j,1)(0) = j and N̂(i,j,0)(0) = i.
-Set n = 1.

• STEP 2: TRANSMISSION FROM NODE 1 TO
NODE 2:
FOR j′ = 1, 2, ...,M2

Compute N̂(i,j′,0)(n),∀i = 1, ...,M1 to minimize
the completion time of a TDD link, as in [2],
with transition cost N̂(i,j′,0)(n)Tp−0 + 2Tprop +

Tp−1

[∑
i′ N̂(i′,j′,1)(n− 1)P(i,j′,0)→(i′,j′,1)(n)

]
END FOR

• STEP 3: TRANSMISSION FROM NODE 2 TO
NODE 1:
FOR i′ = 1, 2, ...,M1

Compute N̂(i′,j,1)(n),∀j = 1, ...,M1 to minimize
the completion time of a TDD link, as in [2],
with transition cost N̂(i′,j,1)(n)Tp−0 + 2Tprop +

Tp−1

[∑
j′ N̂(i′,j′,0)(n)P(i′,j,0)→(i′,j′,0)(n)

]
END FOR

• STOPPING CRITERIA:
IF N̂(i,j,t)(n) = N̂(i,j,t)(n− 1), ∀i, j, t
Stop
ELSE
n = n + 1, and go to Step 2.
END IF

The proposed algorithm computes the N(i,j,t) by using the
search algorithm for a link, as in [2], with the appropriate
costs. The algorithm is iterative and has two phases. The
first one tries to solve the problem of a link for the case in
which the first transmitter is operating. This means that we
are looking to optimize the variables N(i,j,0),∀i assuming

the variables N(i′,j,1) to be fixed and j also fixed. We repeat
the process for every value of j. After finding the optimal
values for N(i,j,0),∀i, j, the algorithm proceeds to the second
phase, which is to compute the optimal values of N(i,j,1)
given the new values of N(i,j,0), keeping these last values
fixed. The algorithm stops when N(i,j,t) becomes stable, i.e.
when the current iteration provides the same result as the
previous iteration.

Let us emphasize that the N(i,j,t)’s do not need to be
computed in real time. They can be pre-computed and stored
in the receiver as look-up tables, as explained in [2]. Thus,
the computational load on the nodes is minimal, because they
only have to choose the appropriate N(i,j,t)’s from the tables
considering channel conditions at the time of transmission.

III. COMPARISON SCHEMES

In this section, we present two full duplex schemes as a
basis for comparison. First, we consider a full duplex network
coding scheme that minimizes the mean completion time of
the sharing process. Secondly, we extend the work of [5],
which deals with broadcast, to determine the mean comple-
tion time for a round robin scheduling policy for sharing
information between two nodes. This policy considers no
coding of the data packets, no channel state information,
and nodes that only ACK when they have received all
information.

We consider that both schemes send the ACK in the header
of the coded data packets that each node sends. As in [5], we
restrict the analysis to independent symmetric channels, i.e.
Pe1 = Pe2 and Tp−0 = Tp−1 = Tp, and no erasures in the
ACKs for tractability. Note that we had no such restrictions
in our TDD network coding scheme and will not have it for
the full duplex network coding scheme. Our contribution to
the work of broadcast scheduling policies in [5] includes 1)
considering the effect of Tprop, Tp, 2) the characterization of
a full duplex channel, and 3) resetting the analysis to match
the problem of sharing information between two nodes.

1) Data Sharing with Network Coding in Full Duplex
Channel (DSNC Full Duplex): Each node generates random
linear combinations of its original Mi data packets, and sends
those coded packets back-to-back through the channel to the
other node. We assume that both nodes start transmitting at
the same time to reduce the completion time of the sharing
process. This problem can be modelled through a Markov
chain with states (i, j), where i and j represent the dofs
required by the to decode at node 1 and 2, respectively.
Since both nodes start transmitting at the same time, and we
assume the packets to take the same time to be transmitted
Tp, then transitions occur every arrival of a coded packet.
The transition probabilities are modeled as P(i,j)→(i′,j′) =
Pi→i′Pj→j′ where we assume independence of the channels.
Note that

Pi→i′ =

Pe if i = i′ 6= 0,
1 if i = i′ = 0,
1− Pe if i = i′ + 1,
0 otherwise

(12)

where M ≥ i, i′ ≥ 0.
Using a similar procedure as in previous sections, we can

express the mean number of coded packets from each node to
complete the sharing process in vector form as T̄ = 1̄+PT̄ ,
where T̄ = [T(i,j)] is the vector of mean completion times
starting at each state (i, j), 1̄ = [1] is a vector of all ones,
and P is the corresponding transition probability. Thus, the
mean completion time for the sharing process is

E[T] = Tw + Tp

det
(
Γ←(M,M) 1̄

)
det (Γ)

(13)

where Tw = 2Tprop + Tdelay , Tdelay = Th +
Tp

(
1− R

(
Tprop, Tp

))
, Th = h/R. Note that Tdelay rep-

resents the delay to send the ACK because it is piggybacked
to the header of the coded packets. Note that the function
R(x, y) returns the remainder of x/y.

2) Round Robin Data Sharing in Full Duplex Channel
(DSRR Full Duplex): The objective is to transmit M1 data
packets from node 1 to node 2, and M2 data packets
from node 2 to node 1. We consider the simpler problem
when M1 = M2 = M . We assume that both nodes start
transmitting at the same time. Note that packet k in the block
of each node is transmitted every (mM +k)Tp time units for
m = 0, 1, 2, ... until the other nodes gets all M packets. The
sharing process is completed when both nodes have received
all information. Note that this problem is very similar to that
in [5]. Using a similar analysis,

E[T] = Tw + TpM

(
γ + E[max

i,k
Xi

k]
)

(14)

where 1 + Xi
k is the number of transmissions of packet

k needed to reach node i from the other node, γ ∈
(1/2, 1), Tw = 2Tprop + Tdelay ,Tdelay = Th +
Tp

(
1− R

(
Tprop, Tp

))
, Th = h/R, and

E[max
i,k

Xi
k] =

∞∑
t=1

[
1− (1− Pet)2M

]
. (15)

Note that γ = 1 and γ = 1/2 give us an upper and lower
bound on the mean completion time, respectively.

3) Round Robin Data Sharing in TDD Channel: This
approach is similar to DSRR Full Duplex but considering
a TDD channel. Again, the objective is to transmit M1 data
packets from node 1 to node 2, and M2 data packets from
node 2 to node 1. We consider the simpler problem when
M1 = M2 = M and that each transmitter sends all M
packets before stopping to listen for a transmission of the
other. The data packets also contain feedback indicating if
the node should keep transmitting or if all packets have
been received successfully at the other node. Note that this
problem is very similar to that in [4]. Using a similar analysis,
the mean completion time E[T] is bounded by

E[T] ≤ (Tw + 2TpM)
(

1 + E[max
i,k

Xi
k]

)
(16)

and

E[T] ≥ (Tw + TpM)
(

1 + E[max
i,k

Xi
k]

)
+ TpM (17)

10
−3

10
−2

10
−1

10
0

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Packet Erasure Probability

M
ea

n
C

om
pl

et
io

n
T

im
e

(s
)

TDD Network Coding
Full Duplex Network Coding
Full Duplex Scheduling (Lower Bound)
Full Duplex Scheduling (Upper Bound)
TDD Scheduling (Upper Bound)
TDD Scheduling (Lower Bound)

Fig. 5. Mean completion time for the TDD scheme choosing the N(i,j,t)’s
through the search algorithm proposed in Section II-B, two full duplex
schemes, and a TDD scheme with no coding. We use the following
parameters R = 1.5 Mbps, h = 80 bits, g = 20 bits, a block size per
node of M = 15.

using the same definitions as in DSRR Full Duplex.

IV. NUMERICAL RESULTS

This section provides numerical results that compare the
performance of our network coding scheme for sharing
disjoint information between two nodes in TDD channels. We
consider a GEO satellite example where the propagation time
Tprop = 125 ms [2], and data packets of size n = 10, 000
bits. We assume symmetric uplink and downlink channels,
i.e. Pe1 = Pe2 = Pe and R1 = R2 = R = 1.5 Mbps.
We compare the performance of the scheme in terms of
mean completion time when the N(i,j,t)’s are chosen to
minimize the mean completion time using the proposed
search algorithm under different packet erasure probabilities
Pe. We consider that both nodes have he same number
of packets at the start of the process, which means that
M1 = M2 = M data packets. We show that our TDD scheme
can outperform a full duplex round robin scheduling scheme
for large Pe. Also, our TDD scheme performs at most 3 dB
above that of a full duplex network coding scheme. For small
Pe, the difference between our scheme and the full duplex
network coding is much less than 3 dB. Finally, we show
that the number of iterations required for our algorithm to
convergence is very small for a wide range of Pe.

Figure 5 shows the mean completion time for the TDD
scheme choosing the N(i,j,t)’s through the search algorithm
proposed in Section II-B, two full duplex schemes, and a
TDD scheme with no coding.

Figure 5 illustrates that choosing N(i,j,t)’s using the search
algorithm provides very good performance in terms of mean
completion time for a wide range of packet erasure probabil-

10
−4

10
−3

10
−2

10
−1

0

1

2

3

4

5

Packet Erasure Probability

N
um

be
r

of
 I

te
ra

tio
ns

 (
n)

M = 5
M = 10
M = 15

Fig. 6. Number of iterations of the algorithm to reach a stable solution
under different packet erasure probabilities. We use the following parameters
R = 1.5 Mbps, h = 80 bits, g = 20 bits.

ities, when compared to full duplex schemes and the TDD
scheme with no coding. In general, our scheme outperforms
the TDD with no coding. This difference is most noticeable
at large Pe, but even at moderate schemes there is a clear
advantage of our scheme. Also, note that at low packet
erasure probabilities, our TDD scheme is only 1 dB away
from the performance of the DSNC full duplex scheme,
which is the optimal scheme in terms of mean completion
time. Since we have packets to be transmitted from both
nodes, we expected the difference between these two schemes
to be around 3 dB, i.e. twice the completion time for the
TDD scheme because it has half of the channels that the
network coding full duplex scheme has. The main reason for
this improvement is related to the relatively small number
of coded packets that are being transmitted. Thus, the main
cost in the completion time is the Tprop of the packets. For
very high packet erasure probabilities, our TDD scheme is
closer to the expected 3 dB. In this case, the number of coded
packets transmitted in order to decode the information is the
dominant cost to the completion time.

Figure 5 also shows that for high packet erasures, Pe ≥
0.4, our TDD scheme using the proposed search algorithm
to choose the N(i,j,t)’s, outperforms a full duplex scheduling
scheme (SDRR full duplex). This is clear because the lower
bound on the mean completion time of the SDRR full duplex
exceeds the mean completion time of our scheme at around
Pe ≥ 0.4. It is possible that we could outperform SDRR full
duplex with our TDD scheme even for Pe > 0.2, which is
the point at which the upper bound of SDRR full duplex
intersects with the mean completion time of our scheme.
Note that for Pe = 0.8 our TDD scheme outperforms
SDRR full duplex by about 1.1 dB. Thus, even with a single
channel for data and feedback, i.e. half of the resources, we

can perform better than scheduling by tailoring coding and
feedback appropriately.

Figure 5 shows that if we have a full duplex system for
two nodes to share data they clearly should do so using
network coding, specially for high packet erasures. Note that
for Pe = 0.8 SDNC full duplex exceeds by more than 4 dB
the performance of the scheduling scheme SDRR full duplex.
It is important to point out that for low packet erasures the
lower bound on the mean completion time of SDRR full
duplex is loose while the upper bound is tight. In fact, the
performance of SDRR full duplex is always equal or worse
to that of the full duplex network coding scheme.

Finally, Figure 6 illustrates the number of iterations that
the search algorithm proposed in this work before it reaches
a stable solution. We observe that for different values M and
a wide range of Pe, the number of iterations is very low,
always lower or equal to 5 iterations in the example. Thus,
the algorithm converges very fast, especially if the Pe is low.
Thus, we have an algorithm that converges fast in a search
that involves a very large amount of integer variables, e.g.
with M = 5 and M = 15 initial packets in each node, we
need to optimize 70 and 510 variables, respectively, for every
value of Pe.

V. RANDOM NETWORK CODING FOR SHARING
INFORMATION IN TDD CHANNELS: N NODES

The problem for N nodes constitutes a natural and simple
extension from the case of two nodes. Each node i has Mi

data packets or disjoint random linear combinations that he
wants to share with the other node. We assume that the nodes
transmit following a round robin assignment, where the order
of transmission has been predefined. Each node i can transmit
information at a given data rate Ri [bps] to the other nodes.
We assume a memoryless packet erasure channel Pei,j for
transmissions from node i to node j, and that the channels
are independent. We also assume that each transmission from
a node can be received by each of the other nodes. Finally,
we assume that the next transmitter node will wait for all
nodes to receive the previous information. For later analysis,
let us define Tprop−i as the propagation time from node i to
the node that is farthest from it.

Again, the process is modelled
as a Markov chain. The states(
(s1,2, .., s1,N), (s2,1, s2,3, .., s2,N), .., (sN,1, .., sN,N−1), t

)
are defined by the number of dofs required sa,b required
by node b to successfully decode all packets from node a,
and the node t that acts as transmitter in this state. Note
that (sa,1, ..., sa,N) represents the degrees of freedom that
other nodes require from node a in order to decode his
information. In order to simplify notation, let us define S =(
(s1,2, .., s1,N), (s2,1, s2,3, .., s2,N), .., (sN,1, .., sN,N−1)

)
,

so that (S, t) represents a state of the Markov chain,
and Sa = (sa,1, sa,2, .., sa,N) being the state of the
receivers of node a. This is a Markov chain with
N(M1 + 1)N−1(M2 + 1)N−1..(MN + 1)N−1−N transient
states and N recurrent states. Finally, note that a transition
occurs every time that a batch of back-to-back coded packets
is received at one receiver.

The number of variables to be optimized in order to
provide an optimal solution increases exponentially with the
number of nodes N , because we would have to consider a
variable per state, i.e. N((S1,S2,...,SN),t),∀Si, t. However, we
can use a similar approach to [4] to reduce the number of
variables, i.e. consider only the maximun degrees of freedom
sa = maxb sa,b that the receivers of a need in order to com-
pletely decode the information. This reduces the number of
variables to optimize to N(M1 + 1)(M2 + 1)...(MN + 1)−
N and we will rename them N((s1,s2,...,sN),t), which repre-
sent the number of coded packets to send. Given the char-
acteristics of the Markov chain, the transition probabilities
from state (S, t) to state (S′, t′) are

P(S,t)→(S′,t′) =
P

(
S′

a|Sa,N((s1,...,sN),t)

)
if,Sb = S′b,∀b 6= a,

t = a, t′ = tnext(a), ∀a
0 otherwise

where tnext(a) represents the next node that should transmit
after node a has transmitted, and P

(
S′

a|Sa,N((s1,...,sN),t)

)
is

the probability of transitioning from Sa to S′a when node a
has transmitted N((s1,...,sN),t) coded packets. Assuming that
a transmission from any node to the other N − 1 nodes goes
through independent channels, we have that

P
(

S′
a|Sa,N((s1,...,sN),t=a)

)
= (18)∏

j 6=a

P
(

s′a,j |sa,j ,N((s1,...,sN),t=a)

)
(19)

where P
(

s′a,j |sa,j ,N((s1,...,sN),t)

)
has the same distribution

studied in Section II, and represents the transition probability
related to the knowledge of node j with respect to the data
node a has, when node a sends N((s1,...,sN),t) coded packets.
For ease of notation, we will substitute N((s1,...,sN),t) for Nt.
For 0 < sa,j′ < sa,j , this can be translated into

P
(

s′a,j |sa,j ,Nt

)
= (20)

f(sa,j , sa,j′)(1− Pea,j)
sa,j−sa,j′Pea,j

Nt−sa,j+sa,j′ .(21)

For sa,j = sa,j′ > 0 the expression for the transition
probability reduces to P

(
sa,j |sa,j ,Nt

)
= Pea,j

Nt. Note that
for P (0|0,Nt) = 1. Finally, for s′j = 0 P

(
sa,j′=0|sa,j ,Nt

)
=

1−
∑sa,j

sa,j′=1 P
(

sa,j′ |sa,j ,Nt

)
.

We can define P as the transition probability for our
system.

A. Expected Time for completing transmission

The expected time for completing the sharing process
of all data packets between the nodes constitutes the ex-
pected time of absorption, i.e. the time to reach any state
((0, ...0), ..., (0, ...0), t) for some t for the first time, given
that the initial state is ((M1, ...,M1), ..., (MN , ...,MN), t)
for some t, depending on which node starts transmitting.
This can be expressed in terms of the expected time for

completing the transmission given that the Markov chain is
in state (S, t), T(S,t) , ∀S∀t. For our scheme, we consider
that the transmission time of a packet from node i is given
by Tp−i = h+n+gMi

Ri
.

Let us define T (S,t) as the time it takes to transmit
N(s1,...,sN ,t) coded data packets and reach the node that
is farthest away from t. It is easy to show that T (S,t) =
N(s1,...,sN ,t)Tp−t + Tprop−t.

The mean completion time when the system is in state
(S, t) is given by

T(S,t) = T (S,t) +
∑

(S′,t′)

P(S,t)→(S′,t′)T(S′,t′) (22)

which can be expressed in vector form as T̄ = [I − P]−1µ̄,
where T̄ = [T(S,t)], µ̄ = [T (S,t)], and P is the cor-
responding transition probability. Since we are interested
in the mean completion time when we start at states
((M1, ...,M1, ..., (MN , ...,MN), t) for some t, we can use
Cramer’s rule as in Section II.

B. Minimizing The Mean Completion Time

Note that even after reducing the number of variables
to optimize, the optimization becomes computationally pro-
hibitive because the number of states in the Markov chain
increases exponentially with the number of nodes. However,
we can compute the variables of interest by using a slightly
modified version of the algorithm for two nodes. This new
algorithm uses heuristics to obtain good estimates of the
variables while reducing computation. Since we have as-
sumed that only one node transmits at each time and that
this transmitter will broadcast the information to all other
nodes, we can use similar heuristics to those presented in [4]
for the case of broadcast. These heuristics rely on solving
the link case [2] considering as packet erasure probability
of the link a function of the packet erasure probabilities of
the different channels in broadcast. This approximation will
allow us to use a similar algorithm to that proposed for the
case of two nodes, with only slight modifications.

The heuristic that showed best performance in [4] was the
’Worst Link Channel’ heuristic. This heuristic approximates
the system as a link to the receiver with the worst channel,
i.e. the worst packet erasure probability. Then, we compute
N(s1,...,sN),t,∀si and ∀t to minimize the mean completion
time as in [2] with similar modifications to that in the
algorithm for two nodes, namely using as round trip time
that depends on both the physical round trip time and the
transmissions of other nodes in the system.

Note that using a similar procedure to that of Section II-B,
we can obtain that

T(S,t1) = N(s1,..,sN ,t1)Tp−t1 +
N∑

b=1

(
Tprop−tb

)
+

∑
n=2,..,N

Tp−tnEt2,..,tn

[
N(i1,..,iN ,tn)|(S, t1)

]
+

∑
S′,S(2),..,S(N)

T(S′,t1)P(S,t1)→(S′,t1)

where

P(S,t1)→(S′,t1) =

P
(S,t1)→(S(2),t2)

P
(S(2),t2)→(S(3),t3)

...P
(S(N),tN)→(S′,t1)

,

and

Et2,...,tn

[
N(i1,...,iN ,tn)|(S, t1)

]
= (23)∑

S(2),...,S(n)

N
(S(n),tn)

P
(S,t1)→(S(n),tn)

(24)

where

P
(S,t1)→(S(n),tn)

= (25)

P
(S,t1)→(S(2),t2)

...P
(S(n−1),tn−1)→(S(n),tn)

. (26)

Let us define N̂(s1,s2,...,sN ,tk)(n) as the estimate for
N(s1,s2,...,sN ,tk) at step n of the algorithm. Then, our
algorithm can be written as follows

Algorithm 2: Search Algorithm for N nodes
• STEP 0: INITIALIZE

-Set N̂(s1,s2,...,sN ,tk)(0) = sk, ∀k.
-Set n = 1.

• STEP 1: TRANSMISSION FROM NODE 1:
-Set N̂(s1,s2,...,sN ,tk)(n) = N̂(s1,s2,...,sN ,tk)(n−1), ∀k.
FOR s′2 = 1, 2, ...,M2

...
FOR s′N = 1, 2, ...,MN

Compute N̂(s1,s′2,...,s′N ,t1)(n),∀s1 = 1, ...,M1

to minimize the completion time of a TDD link
with Pe = maxb Pe1,b, and with transition cost
N̂(s1,s′2,...,s′N ,t1)(n)Tp−1 +

∑N
b=1

(
Tprop−tb

)
+∑

y=2,...,N Tp−tyEt2,...,ty

[
N̂(i1,...,iN ,ty)(n)|(S, t1)

]
where S = (s1, s

′
2, ..., s

′
N).

END FOR
...
END FOR

• STEP k (=2,...,N): TRANSMISSION FROM
NODE k TO NEXT NODE:
FOR s′1 = 1, 2, ...,M1

...
FOR s′N = 1, 2, ...,MN

Compute N̂(s′1,...,sk,...,s′N ,tk)(n),∀sk = 1, ...,Mk

to minimize the completion time of a TDD link
with Pe = maxb Pek,b, and with transition
cost N̂(s′1,...,s′N ,tk)(n)Tp−k +

∑N
b=1

(
Tprop−tb

)
+∑

y=k+1,..,N,1,..k−1 Tp−tyEtk,..,ty

[
N̂(i1,..,ty)(n)|(S, tk)

]
where S = (s′1, ..., sk, ..., s′N).
END FOR
...
END FOR

• STEP N+1: STOPPING CRITERIA
IF N̂(s1,...,sN ,t)(n) = N̂(s1,...,sN ,t)(n)(n − 1),
∀s1, ..., sN , t
Stop
ELSE

n = n + 1, and go to Step 1.
END IF

VI. CONCLUSION

This paper provides an extension to the use of random
linear network coding over time division duplexing channels.
We study the case of sharing disjoint information between
two nodes. Each node i has a block of Mi data packets,
and both nodes want to have all information at the end of
the sharing process. Similar to our work in [2] the scheme
considers that a number of coded data packets are transmitted
back-to-back before stopping to wait for the other node to
transmit its own coded data packet and acknowledge how
many degrees of freedom, if any, are required to decode the
information correctly.

We provide a simple algorithm to compute the number of
coded packets to be sent before stopping given the state of the
system. This algorithm is based on an iterative computation
of the number of coded packets, and repeatedly using the
minimization procedure of a link presented in [2] but with a
slightly different cost associated to it. We present numerical
examples showing that the number of iterations required for
the algorithm to converge is very low for wide ranges of the
packet erasure probability.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grants No. 0831728, 0831728 and CNS-
0627021, by ONR MURI Grant No. N00014-07-1-0738,
subcontract # 060786 issued by BAE Systems National
Security Solutions, Inc. and supported by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Space
and Naval Warfare System Center (SPAWARSYSCEN), San
Diego under Contract No. N66001-06-C-2020 (CBMANET),
subcontract # 18870740-37362-C issued by Stanford Univer-
sity and supported by the DARPA.

REFERENCES

[1] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, B.
Leong,“A Random Linear Network Coding Approach to Multicast”,
Trans. Info. Theory, vol. 52, no. 10, pp.4413-4430, Oct. 2006

[2] D. E. Lucani, M. Stojanovic, M. Médard, “Random Linear Network
Coding For Time Division Duplexing: When To Stop Talking And Start
Listening”, in Proc. INFOCOM’09, Rio de Janeiro, Brazil, pp. 1800-
1808, Apr. 2009

[3] D. E. Lucani, M. Stojanovic, M. Médard, “Random Linear Network
Coding For Time Division Duplexing: Energy Analysis”, in Proc.
ICC’09, Dresden, Germany, Jun. 2009

[4] D. E. Lucani, M. Médard, M. Stojanovic, “Broadcasting in Time-
Division Duplexing: A Random Linear Network Coding Approach”,
in Proc. NetCod’09, Lausanne, Switzerland, pp. 62-67, Jun. 2009

[5] A. Eryilmaz, A. Ozdaglar, M. Médard, “On Delay Performance Gains
from Network Coding”, In Proc. CISS’06, pp. 864-870, Princeton, NJ,
USA, Mar. 2006

