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Abstract We consider wideband fading channels

which are block fading in time and in frequency (doubly

block fading). We show that, as bandwidth increases to in-

�nity, capacity goes to zero when signaling is constrained

in its second moment and peak signal amplitude. This

result is consistent with similar results which do not con-

sider doubly block-fading channels. None of these results,

however, o�er a range for the optimal spreading band-

width, because they consider only upper bounds to ca-

pacity. While we know that spreading over very large

bandwidths is detrimental in terms of capacity, we wish

to determine over what range of bandwidths spreading is

bene�cial. We are able to give a range for the optimal

spreading bandwidth by combining our upper bound with

a suitable lower bound.

1 Introduction.

Recent results in the area of wideband fading chan-
nels have shown that, as the bandwidth over which
we transmit becomes arbitrarily large, capacity goes
to zero if we scale the signal inversely with the band-
width. Several models have been considered for these
channels variations. In [4], a �nite number of time-
varying paths are considered and, if paths remain un-
resolvable, capacity is shown to go 0 as as bandwidth
becomes arbitrarily large. In [1], a general doubly se-
lective fading channel model is considered, in which
paths never become resolvable. References [1, 3] con-
sider DS-CDMA transmissions over channels which
are block fading in frequency but continuously fad-
ing in time.

The above models all exhibit continuous variations
in time. In this paper, we �rst show, in Section 2,

that similar results to those which apply to continu-
ously varying doubly selective channels apply to dou-
bly block fading channels, which are block fading in
time and frequency. We are mainly interested in de-
termining over what range of bandwidths spreading
is bene�cial. While all of the results mentioned above
show that excessive spreading is detrimental in terms
of capacity, we suspect that spreading is bene�cial as
long as it remains above some threshold. In Section
3, we develop a lower bound to capacity. Combin-
ing our upper and lower bounds, we show in Section
4 how we can �nd upper and lower bounds to the
optimal spreading bandwidth.

We use a channel model where each block in fre-
quency fades according to the model in [2]. Over each
coherence bandwidth of size W , the channel experi-
ences Rayleigh at fading. All the channels over dis-
tinct coherence bandwidths are independent, yielding
a block-fading model in frequency. We transmit over
� coherence bandwidths. The energy of the propaga-
tion coeÆcient F [i]j over coherence bandwidth i at
sampled time j is �2F . For input X[i]j at sample time
j (we sample at the Nyquist rateW ), the correspond-
ing output is Y [i]j = F [i]jX[i]j + N [i]j , where the
N [i]js are samples of WGN bandlimited to a band-
width of W . The time variations are block-fading
nature: the propagation coeÆcient of the channel re-
mains constant for T symbols (the coherence inter-
val), then changes to a value independent of previ-

ous values. Thus, F [i]
(j+1)TW
jTW+1 is a constant vector

and the F [i]
(j+1)TW
jTW+1 are mutually independent for

j = 1; 2; : : :. For the signals over each coherence
bandwidth, the second moment is upper bounded
by X2 � E

�
and the amplitude is upper bounded by
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E
p
X2.

2 Upper bound on wideband ca-

pacity.

We �rst note that we can restrict ourselves, in the
upper bound, to signals which satisfy the second mo-
ment constraint with equality. Indeed, let us sup-
pose that we obtain an upper bound using a signal-
ing scheme which does not meet the second moment
constraint with equality. Then, by multiplying our
signals by some � > 1, we can achieve the second
moment constraint with equality. Moreover, at the
receiver we could divide the received signal by �, in
e�ect reducing the AWGN. Thus, by the data pro-
cessing theorem, the capacity of the channel with the
input multiplied by � would be greater than that of
the channel not multiplied by �.

The following lemma gives our upper bound.

Lemma 1
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Proof of Lemma 1.

First, we express C in terms of mutual informa-
tions. From our model, we have that
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�1A(2)
where the fourth central moment of X[j]i is


�2

and

its average energy constraint is E
�
. Since we have

no sender channel side information and all the band-
width slices are independent, we may use the fact
that mutual information is concave in the input dis-
tribution to determine that selecting all the inputs to
be IID maximizes the RHS of (2). We �rst rewrite
the mutual information term as:
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We may upper bound the �rst term of (3) by:
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because entropy is maximized

by a Gaussian distribution

for a given autocorrelation matrix
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from Hadamard's inequality
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where the last inequality uses the concavity of the
log function and our average energy constraint. We
now proceed to minimize the second term of (2).

Note that, conditioned on X [j]
(i+1)TW
iTW+1 , Y [j]

(i+1)TW
iTW+1

is Gaussian, since F [j]
(i+1)TW
iTW+1 is Gaussian and

N
(i+1)TW
iTW+1 is AWGN. Hence, we have that

1
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h
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EX

�
log
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(i+1)TW
iTW+1
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: (5)

�
Y [j]

(i+1)TW
iTW+1

has kth diagonal term �2Fx[k]
2 +1 and

o�-diagonal (k; j) term equal to x(k)x(j)�2F , condi-

tioned on X[j]
(i+1)TW
iTW+1 = x = [x(1); : : : ; x(TW )]. The

eigenvalues �j of �Y are 1 for j = 1 : : : TW � 1 and

jjxjj2 �2F + 1 for j = TW .
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Hence, we may rewrite (4) as
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We seek to minimize the RHS of (6) subject to
the second moment constraint holding with equality
and the subject to the peak amplitude constraint.
The distribution for X which minimizes the RHS of
(6) subject to our constraints can be found using the
concavity of the log function. The distribution is such
that the only values which jXj can take are 0 and p

�E
with probabilities 1� E2

2
and E2

2
, respectively. Thus,

we may lower bound (6) by
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Combining (7), (4) and (2) yields (1).

Q.E.D.

We obtain immediately from (1) that
lim�!1C

�
W; E ; �2F ; T; �

�! 0.

The RHS of (1) increases with T . Intuitively, we
expect the real capacity to also increase with T , since
a longer coherence time entails better measurement of
the channel, and thus channel behavior which is close
to that of an AWGN channel over every coherence
time. Moreover, RHS of (1) increases withW . Again,
a longer coherence bandwidth entails better measure-
ment of the channel. Finally, we may note that, as
 increases, the bound in (1) converges more slowly.

For any �, the limit as  !1 is �W
2 log

�
�2F

E
�
+ 1

�
.

3 Lower bound on wideband ca-

pacity.

Our lower bound on capacity is obtained by choosing
the X[j]s to be:

X[j] =

8<
:

q
E
W�

with probability 1
2

�
q

E
W�

with probability 1
2

: (8)

Moreover, we select the Xs to be IID. The channel
we consider for our lower bound is a BSC with cross-
over probability � = �

�
�
q

E
W�

�
. Thus, the capacity

of our original channel is lower bounded byW� times
the capacity of this BSC channel
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We may bound � as follows:
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Hence, we may upper bound H(�) in the following
manner:
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Using the fact that ln(1 � x) � �x, we can write
the bounds:
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Thus, from (9, 11, 12), we obtain

Lemma 2
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We may examine the behavior of the RHS of (13)

as � ! 1. We have lim�!1
�
E
4 e
�2 E
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= E

4 . The

limit of the second term of the RHS of (13) can be
examined using L'Hospital's rule:

lim
�!1

pEW�

4
e
� E

W� log

0
B@

1
2 � 1

4

q
E
W�

e
� E

W�

1
2 +

1
4

q
E
W�

e
� E

W�

1
CA

=

pEW
4

lim
�!1

�� E
W�2

e
� E

W�

� log

0
B@

1
2 � 1

4

q
E
W�

e
� E

W�

1
2 +

1
4

q
E
W�

e
� E

W�

1
CA+ e

� 2E
W�

�
 pE
4
p
W

��
3
2 +

E
W

3
2 1

�2

3
2

e
� E

W�

!

� 1

1
2 � 1

4

q
E
W�

e
� E

W�

+ e
� 2E
W�

�
 pE
4
p
W

��
3
2 +

E
W

3
2 1

�2
e
� E

W�

!

� 1

1
2 +

1
4

q
E
W�

e
� E

W�

1
CA �2
��

3
2

1
CA

=
�E
4

(14)

Hence, the limit of the RHS of (13) as �!1 is 0,
and Lemmas 1 and 2 provide tight bounds.

4 Upper and lower bounds to the

optimal spreading bandwidth

We may now use our upper and lower bounds to �nd
a range for ��, the optimal value of � to which to
spread.
First note that spreading from � to n� is bene�-

cial i� C
�
W; E ; �2F ; T; �; 

� � C
�
W; E ; �2F ; T; n�; 

�
.

We also note that, given the convexity of ca-
pacity, we have that C

�
W; E ; �2F ; T; �; 

�
=

nC
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W; E

n
; �2F ; T; �; 

�
.

Let us �x � = 1. Our lower and upper bounds
from Lemmas 1 and 2 are denoted, respectively, by
the functions Clow and Cup . Figure 1 shows Clow

and Cup as a function of E , with all other parame-
ters kept constant. These functions have the property
that they are convex for small values of E and con-
cave for large values of E . They each exhibit a single
saddle point.
The line tangent to Clow emanating from the ori-

gin is tangent to Clow at E1. It intersects Cup at
E0 and E2, where E2 > E0. Let us assume that
E2 = nE1, for n integer. Then, we have that
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Let us now assume that mE0 = E1. Then, we have
that
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Figure 1: Upper and lower bounds for capacity and
the graphical interpretation of the upper and lower
bounds to the optimal �

For � = 1, E1 is an upper bound to the optimal
E and E0 is a lower bound. If we �x E = �, then ��

must be in the range
h
�
E1
; �
E0

i
.
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