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Abstract. The capacity of time-varying asymptotically
block memoryless channels with causal channel side infor-
mation at the sender and receiver is considered, We briefly
present a formal weak coding theorem and its converse.
We then show that our coding theorem can he used to ob-
tain the capacity of time-varying ISI channels, which can-
not generally be considered using traditional decomposi.
tion methods. For perfect instantaneous side information,
the form of the input distribution that maximizes capac-
ity is found to be conditional Gaussian. We also consider
the capaciiy of flat fading channels with imperfect channel
estimates.

1. INTRODUCTION.

We study stationary and ergodic time-varying channels
with memory where casual channel side information is
known at each time sample by the sender and receiver. We
consider asymptotically block memoryless channels. The
variations of the channel suggest that the sender should
adapt its transmission to the channel. Many practical
transmission schemes adapt to channel conditions at the
transmitter and/or receiver. However, determining the
optimal adaptation is difficult because the channel mem-
ory may introduce self-interference, which the adaptation
must consider ([1], [7]).

Most previous results on capacity of time-varying chan-
nels with side information either assume memoryless
channels or side information at the receiver only. Mem-
oryless channels with perfect channel state information
at the transmitter and receiver ([3], [4], [5]), and at the
receiver alone ({6], [7]) have been considered. The capac-
ity of a memoryless arbitrarily time-varying channel was
obtained in [14]. Other papers have considered the ca-
pacity of time-varying channels without side information
{[8], [9], {10, [11], {12}, [13}). In [15] & general channel
capacity was derived. This result can be extended to the
case of receiver ([16]), but not transmitter, side informa-
tion. Lack of side information at the transmitter prevents
adaptation to the changing channel. Qur results also dif-
fer from those for a finite-state Markov channel (FSMC)
with side information which is perfect at the receiver and
delayed at the transmitter (J17]).

In Section 2, we define capacity and obtain a weak cod-
ing theorem and its converse, under some assumptions
about channel decorrelation. Section 3 gives examples
of channels to which our coding theorem applies. The
first example is that of perfectly known ISI channels with
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bounded variance of the taps. Note that this result is
not trivial, since traditional decomposition methods to
btain capacity using decomposition techniques do not ap-
ply when we have time variations. The second example is
that of a channel with imperfect chanel estimates.

2, MODEL AND CODING THEOREM.

We consider a discrete time-varying channels, with
memory. The channel variations are stationary. At time
7. both transmitter and receiver have side information
kn € K, possibly imperfect and delayed, about the chan-
nel state, where the set K is finite. The channel input
at time 7 is &, and the output is y,. We denote vectors
thus: v = (v1,...,%), U = (Um,.-., V). Lower case
denotes sample values and upper case denotes r.v.s. We
now defize our channel properties.

Definition 1 The triplet (y™,k™,z™) is e-block-
memoryless in n samples iff

H p (30

p (EnN+11&nN+15@.:fN+1) (1 - E)ﬂ'
<p (ym &, @.m) 1

and the corresponding upper bound holds by replacing
—e by +&. Tff a triplet satisfies these bounds, we say that
(y™ E™,z™) € Dn,(y, k, z).

Definition 2: A channel is asymptotically block mem-
oryless iff for every input distribution, Veg, €3, an integer
fig, 3N > ng and j 8. & Ym > jn

z—!-l)n (z+1)n
el ?—m+1

p™E" 2™ > 1.

/;Em,lc_m,;m)eDn_Eo(!,_k_,z)
These definitions extend the notion of typical (mes-
sage, received sequence), so errors may occur because,
for a typical channel, we had an asypical transmission
or because the channel was atypical. We assume the

following input constraints. First, 1E (E;’i_l X 2) <
8, ¥m (Input Energy Constraint). Second, (™™} =
HJ 21 P (z;]29™1, k%) (Causal Constraint). Finally, for the

input and output alphabets we use, 34 < 0o, 8. €.
P 2") <A< oo V(1 0) @)

p(@ Ik, y7) <A<oo ¥ (¥, ko) (3)



{(Bounded Probability Constraint). We define C
ViMasocOZp(gn k=) [T (XM Y |K™)]. I C exists, it is
the channel capacity.

The gist of our coding theorem to achieve this ca-
pacity is to take n large enough so that we approach
capacity over an interval of length n and m large
enough that we can consider many D compouents,
for which the weal law of large numbers (WLLN) ap-
plies. The details of the coding theorem can be found
in [2]. We first find n sufficiently large that we have
C — matpnpey [T (X" Y|K™)] < § where p}, (£"&")
is an input distribution which achieves maximum mutual
information for a given n. The codeword is decoded using
typical set decoding We define the typical set A™ as the
set of all triplets (y™, k™, ™) that satisfy (y™, k™, z™) €

Daeo(y™ k™, ™) and M,;—'E—m) — C} < e. We decode

as follows, If there is a unique £™ s.t. (y™, k™, z™) € A™,
we decide z™ was transmitted. Otherwise, we declare an
€rTor.

For our coding theorem, we design the code in blocks.
Within each block the code achieves the maximum mutual
information for the given side information sequence. Qur
coding theorem states that

Theorem 1: C is achievable.

We outline the proof in [2] below. We generate code-
books gradually, as side information becomes available.
For each k™, we generate 2™ codewords of length m in
blocks of size n as follows. For each ¢ we independently
generate the first symbol x, (4) of the ¢2* codeword accord-
ing to p} (x}k.), yielding a partial codebook. We gener-
ate the next symbel by conditioning the distribution on
z1(1), k1, k2, and so on. The family of codebooks for each
k™ is finally made known to the receiver. The state in-
formation alphabet is finite, so this transmission requires
only a finite amount of time.

We now show that the average error probability is up-
per bounded by ¢ for any side information sequence. The
average probability of error is obtained by averaging over
the codewords of each codebook. WLOG, assume the first
codeword is chosen. Let B; = {(z™(i},y™ &™) € A"}
vi € {1,...,278}. The error probability is upper
bounded by p (ET) + 3.4, p(E:) . We have

p{EY) <p((y™ K™ 2™) & Daeo(k, 1))
+p (i @™y &™) —nC | 2 €) 4
Consider now the RHS of (4). The first term is bounded
by ¢/2 by our decorrelation asumptions. Let us bound
the second term. Let N = | % |. Then, from Definitions 1
and 2 and our block memoryless codebooks, p(y™ (&™) >

N1 1
I py ke ™y, |1k ) (1~€0)™ and up-

per bounded similarly by replacing —ey with +¢,. Hence,
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A similar lower bound holds by replacing § with —§.
The following lemma, whose proof can be found in [2],
allows us to handle the end terms in (5).

Lemina 1: Assumen € A fixed. ThenVu e N st 1<
g <n,andVe' > 0,e” > 0, IM st Ym > M,

P ((wuu Liin

—In {p* (¥, 2"))| > ) < €. (6)
Using our stationarity assumptions, let us now create
two sets of IID r.v.s. The first set of r.v.s takes, with

pdf p* (?,'S;fl)", gﬁ;";ﬁ’") the value equal to the In

of the p.df. The second set of r.v.s takes, with p.d.f.

*{yliatin, _Iggf,*;ﬁ’”,;;ﬁ“), the value equal to the In of

the p.df. We then apply the WLLN to these sets of r.v.s.
For n laxge enough, p* ([ (X Y*|K™) - nC| > €) < §
Thus, each term on the RHS of (4) is bounded above by
€/2, so we have P (Ef) <e.

We must still upper bound 37, P (E;).

PlE) = f(ﬂ"‘(a’),y"‘.le’")éf*?‘
p(™E™)p (y™ &™) p(E™) (7)

since z™(i) and y™ are independent for ¢ # 1 condi-
tioned on ™ and on z™(1) having been transmitted. For
™ k", z™) € A7,

p(y™ME™) pE™(IE™) <
p (ym’gm(j)lgm) 2—-m(0—c)' (8}

Substituting into {7),
we have 3, P(E;) < 2m8-m(C-9) Gince ¢ > R and
€ is arbitrarily small, the above RHS — 0 as m — 0.

We now state the converse theorem and sketch a proof
for it. A detailed proof can be found in [2].

Theorem 2: Any sequence of (2™% m, ey,) codes with
average power S, causal side information &, and e,,, — 0
as m - oc has rate R < C.
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Consider a sequence of (2™F) codes {zw(i]}[%; with W €
{1,...,2™"} and error probability e, — 0 a8 m - cc.
Assume these codes satisfy the input constraints. Let W
be uniformly distributed on {1,...,2™#%}. For any side
information sequence K™ independent of W, mR £ 1+
emmBHI(X™; Y™|K™), from Fano’s inequality. Dividing
both sides by m and letting m — oo yields the desired
result.

3. EXAMPLES OF CHANNELS.
3.1 IST Channels.

The capacity of chanpels with time-invariant ISI has
been thoroughly studied. The channel capacity is ob-
tained by decomposing the ISI channel into a set of paral-
lel independent memoryless channels for which the capac-
ity is known. Gallager’s [18] derivation uses a Karhunen-
Lodve (KL) decomposition and then applies the KMS the-
orem to obtain the maximum rmtual information in the
limit of infinite blocklength. An alternate derivation us-
ing a Fourier decomposition appears in [19]. Other ap-
proaches rely on limiting resulta of Toeplitz matrices [20].

One might hope to obtain the capacity of the time-
varying ISI channel using similar decomposition tech-
niques. Unfortunately, this approach will not work, even
in the case where the channel realization is perfectly
known a. priori. In this case one can decompose the time-
varying ISI channel over any finite time interval using the
KL decomposition [18, Theorem 8.4.1]. Since the chan-
nels are time invariant, appropriate care must be taken
to take into account the fact that more output degrees of
freedom than input degrees of freedom are present [21],
[22]. However, the decomposition cannot be used to ob-
tain the channel capacity since the eigenvalues of the KL
expansion may not converge as the time window increases
to infinity. The only time when these eigenvalues con-
verge to a limit is for the special case where the time-
varying channel is just a time-invariant channel with a
finite time window. In this case the limit of the eigenval-
ues is given by the KMS theorem [18], and application of
the KMS theorem to this case yields the capacity of the
tirne-invariant ISI charmmel in [18]. Note that the Toeplitz
matrix appreach is also not suited to time-varying chan-
nels, because limiting results may not hold.

Thus, we cannot use a decomposition to obtain the ca-
pacity of a time-varying ISI channel with a priori infor-
mation about the channel variation. Moreover, we are in-
terested in the case where we have causal side information
about the channel, for which the KL decomposition is not
applicable anyway. We now show that the capacity of the
time-varying ISI channel with causal side information can
be obtained from our capacity formula. This formula does
not apply directly, since the ISI channel is not asymptot-
ically block memoryless. However, our capacity formula
¢an be used to obtain upper and lower bounds for the ca-
pacity of a time-varying IS] channel, which we then show
to converge.

Consider a time-varying ISI channel with input z(t},

1l

time-varying impulse response h({t;7), and output y(t)
given by

y(t) = f hit; T)ar(t — T)dr + n(t). ©)

We assume that the sampling rate at the receiver is suf-
ficiently fast {23] so that owr chanmel can be represented
by the diserete time model

"
Yo = 3 _ DiTk—i + Tk, (10)

i=1

where p < oc is the memory of the ISI channel, We
assume that the taps hy; are stationary, pth order
Markov. The output has zero mean and power constraint
(L3 92] < o}. We have perfect channel side infor-
mation so that at time &, Ky = (hga,...,R,) is known
at both the transmitter and receiver. The pth order
Markov assumption implies that K} is independent of K
if |k— 3! > p. Note that this channel is not asymptotically
block memoryless, i.e. it does not satisfy Definition 2.

We first lower bound the capacity of this channel. The
lower bound is obtained by considering a similar ISI chan-
nel with the same outputs fjr = wx as the original channel
except that for any block length m > max(y, p), the out-
put § = 0 over the last u outputs in the block. Specifi-
cally, the input/output relationship of our modified chan-
nel is

ngl hk,imk—i +n; k # Im - ooy im,
VieZ
0 else

gk =
{11)

Since we can discard the last p outputs in any block of
length m for our original channel, the capacity of the mod-
ified channe! is clearly no larger than that of the origi-
nal channel. This modified channel is easily shown to be
block memoryless for a block length of m, so we can use
our capacity theorem to obtain its capacity Cr.m, < C.
Specifically, this capacity is given by

. 1 R
Cum = Jim masmiey |21 (XENE)|, (12)

where the maximum is taken over distributions which
satisfy our average energy, causal side information and
bounded erergy constraints. Inm [2] we show that Cp
converges to a finite value for every m, for input alpha-
bets that are discrete or satisfy mild constraints. Since
Cr.m < C¥m we get the lower bound
supC, ,m < C. (13)
m
The upper bound is obtained by considering the capacity
of the following set of two parallel independent channels.
Fix any integer m > max(p, u). The first channel is the
same as the channel used to obtain the lower bound as
defined in (11). The second channel is the same as our



original channel except that over each block of size m, the
output y = 0 except over the last y outputs in the block.
Specifically,

A Y heiTei +n k=lm—p,..in,
by = Vie Z (14)
0 else

Thus, the set of two parallel channels is described by
{11) for the first channel and (14) for the second channel.
We assume that each channel in the parallel set has the
same average input power constraint as the original chan-
nel. The capacity of this parallel set is clearly at least as
much a8 the capacity of our original channel since, if we
1se the same input &3 on both channels then ¥, = fe +35,
where i, is the same output as on the original channel.
Thus we can obtain the same data rate as on the original
channel by restricting the input and output on our par-
allel set, so the parallel set has capacity greater than or
equal to that of the original channel. Moreover, as long as
m 2> it is easily shown that both channels in our parallel
set are block memoryless and therefore we can apply our
capacity theorem to both channels.

It is shown in [2] that the capacity of the parallel set
is bounded above by the sum of capacities on each of the
parallel channels. We will denote this sum capacity as

Cuym > C, which is given by
~t
(X Yy {K“)
i °°p(x"lK"J n

(xs#"1x"). a9

Thus, if we can show that the second term on the RHS
of {15) goes to zero for any m, we have shown that the
upper and lower bounds of C' converge. By definition of

¥ we have

Cvm =Crm+ lim  max —I

< Cp+ lim max EI
n-+00 p(z” |[K") T

1 s ;
I(X™Y | Z I, X1V K™). (16)
n z—n—u
Define the quantity
Yog = hig®img + 2. an
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Then y; = 371, i, 50
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where (18) follows from the fact that we can compress all
of our average signal energy for the block of size m into
these p inputs. Combining (15), (18}, and the output
power constraint, we have
2
c < CrL + hm — )

2 “—2 2

Using the fact that p, o}, and ok aze all finite we got
that the second term in the RHS of (19) is zero for every
m. Therefore we have the desired result € < Cr. Thus
our upper and lower bounds converge to C'r, which equals
the capacity of the original time-varying ISI chanmel.

We achieve the capacity €' = C, of the time-varying
ISI channel as follows. Fix any € > 0. We then find m
such that |C, — CL n} < €¢/2. Then, if we assume that
the decoder discards the last g outpuis in every block of
size m, by Theorem 1 there exists a coding strategy for
this channel with rate Cf,  — €/2 and arbitrarily small
error probability. We cannot achieve a higher rate on the
time-varying ISI channel since its rate is bounded above
by the rate of the parallel channel described above, and
we have shown that we cannot achieve a rate higher than
(. on thig parallel channel.

We now obtain a formula for ¢. By definition of our
channel

I(X* Y™ |K™)

log (1 + {19)

il

h(Y"|K™ - h(Y"|K", X™)
S h(viyTL K™ - 3 h(NgO)
=1 i=1

It

Thus, maximizing (20) i equivalent to maximizing
i, A (VY K™), which in turn is equivalent to max-
imizing 337, h (YY", K*). Moreover, using the fact
that conditioning reduces entropy and [24, pp. 232-234],
we have that

Y b (VYLK
T h (Y — oYK
E?=1 %ln (271'8 I Ayi_gﬂ}«_'iullg—i I )

where ¢ is an arbitrary n x n vector dependent on K*
and A denotes an autocorrelation matrix, and | | denotes

IA

(21)
(22)

In



absolute value of determinant. I o is chosen to be the
LLSE for Y;, then (21) holds with equality. If Y; — a¥*™!
conditioned on K* is Gaussian , then (22) will hold with
equality. Thus, 3, h (Vi[Y*™', K*) will equal the RHS
of (22) if we select, for all 4, X* to be a Gaussian random
vector conditioned on K*. Thus, the distribution of the
sender’s signal is Gaussian conditioned on the chanmnel up
to the present time. The input distributions must comply
with a total energy constraint

3 n
Y@ Y [k E) dedm| <s
i j=1 =il
(23)
which arises because we must allocate our energy judi-

ciously so as to reserve energy for future transmissions.
3.2 Flat-Foding Channels with Imperfect Estimates

Consider a single-tap (flat-fading) channel with additive

white Gaussian noise n;, 80

¥i = bz + . (24)
Using a discretization argument similar to that in the cod-
ing theorem proof of [3] we can show that our capacity
results are applicable to this channel even if k; and the
corresponding side information are not restricted to finite
sets. However, we still require that the channel be asymp-
totically block memoryless.

Suppose for this channel that at time § both the trans-
mitter and receiver have a noisy or delayed estimate of
k; and assume that the K;s are iid.. Such an assump-
tion holds for frequency-hopped channels, such as the one
eonsidered in [25]. The channel is block memoryless for
a block size of one and our theorem applies. Thus, the
capacity is given by

max I(X;Y1K),

25
p(ziK) (25)

where the maximum is taken over all distributions that
satisfy E[X|K] £ 5. The optimal conditional input dis-
tribution will depend on the relationship between k; and
Y;, and will not in general be Gaussian. When k; is known
perfectly at both the transmitter and receiver the capacity
has a simple form [3]:

1
C= max / =log (1 + M) p(v)dv,
St f Stnp(mdy=sJ 2 5

(26)
where p(y) = p(K?) and is independent of i by stationar-
ity. In this case the optimal input distribution is Gaussian
with power optimized nsing a water-filling in time.

4. CONCLUSIONS.

We have analyzed the capacity of a discrete time-
varying channel with channel side information at the
sender and receiver. The side information is updated at
each timne instant relative to the changing channel, which
is asymptotic block memoryless. We proved a weak coding

theorem and its converse. This coding theorem allows us
to find the capacity of a large class of ISI channels with
channel estimates. We also find the input distribution
that maximizes capacity for these channels. Our theorem
also allows us to consider the capacity of certain channels
with imperfect channel estimates. The ability to treat ISI
channels without the use of decomposition along a certain
basis is crucial in allowing us to find capacity of channels
with memory when the channel is time-varying.
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