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Abstract

The current study of the low SNR fading channels focuses on two extreme cases: the
coherent case with perfect channel state information (CSI) available at the receiver, and
the non-coherent case with no hope to obtain the channel information at all. Most of
practical channels, with a low SNR and a slowly varying channel, lies in between these
two extremes. In this paper, we use training based schemes to take the advantage of
such channel coherence in the low SNR regime. We characterize how slowly the channel
can change over time such that a "near coherent” performance to be achieved. We
demonstrate that use training scheme in a flashy fashion can improve the performance.
We also defined the notion of ”operation coherence level”, which is used to describe a
continuum between the coherent and the non-coherent extremes.

1 Introduction

The study of using a large bandwidth to improve the power efficiency in wireless communi-
cations dates back to 1960’s. Kennedy [1] showed that for a Rayleigh fading channel at the
infinite bandwidth limit, the amount of energy required to reliably transmit one information
bit is % = —1.59d B, which is the same limit for the AWGN channels. Denote the signal-to-
noise ration per degree of freedom as SNR, and the corresponding capacity as C'(SNR), this
result is equivalent as

Cfading(SNR) T CAWGN(SNR) o
S, SNR BT v ! (1)

This result is very robust. it applies to both the cases that the instantaneous channel
state information is/is not available at the receiver, referred as the coherent/ noncoherent
channels, respectively, in this paper. It is later shown [2] that (1) also holds for general
fading distributions.
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However, it is also observed [2, 5] that it is much harder to approach the wideband limit for
the non-coherent channel than for the coherent channel. Using the standard spread spectrum
techniques in the non-coherent channel cannot achieve the wideband capacity limit. In fact
this limit can only be achieved by transmitting flashy signals, which means transmitter must
concentrate all its power must in a vanishing fraction of the available time slots, and remain
silent for the rest of the time. Such signaling, with large peak-to-average ratio, is hard to
implement in practice. Moreover, it is also observed that the wideband limit is approached
much slower for the non-coherent case than the coherent case as the bandwidth increases.
Such important practical differences between the coherent and the non-coherent channels
are not captured by the result (1).

Recently, Verdu addressed this issue quantitatively by looking at the second order Tyler
expansion of the capacity expression:

C(SNR) = C"(0)SNR + C"(0)SNR? + o(SNR?). (2)

where C’(0) and C"(0) are the first and second derivatives of the function SNR — C(SNR)
at SNR = 0. It is shown that for a general class of channels, when CSI is not available at
the receiver, it is necessary that the transmitted signals to be "flashy”, in order to achieve
the first order optimal C’(0) = 1. However, with flash signals, the second derivative C”(0)
is always —oo, in contrast to the capacity of a channel with perfect CSI at the receiver, for
which C”(0) is finite. Thus the difference between the coherent and the noncoherent cases
lies in the sub-linear terms of the capacity expressions.

While the difference between the coherent and the noncoherent cases is clarified, the connec-
tions between the two cases are not well-understood. In practice, the coherent /noncoherent
assumptions are made based on the speed that the channel changes over time. Intuitively, as
the channel coherence time increases, one can afford a large amount of time and energy for
channel estimation, without affecting the overall performance. Therefore, the near-coherent
performance can be achieved even if the CSI is not available in the first place. The cur-
rent notion of the ”coherent channel” assumes perfect channel information, without covering
the cases with partial channel information; on the other hand, the current notion of the
"noncoherent channel” assumes the channel realizations to be independent from one symbol
period to another, without taking the advantage of slow channel variation. These two cases,
which will be continue referred as the coherent/noncoherent cases throughout this paper,
can thus be viewed as two extreme cases. The performance gap between these two extremes
is significant.

A natural question is therefore: how slowly the channel can change over time such that the
capacity for a non-coherent channel starts to ”look like” that for the coherent channel, or
the gap between the two extremes being closed.

In this paper, we address this issue by studying the performance of training-based schemes,
used in a non-coherent block fading channel. We give a sufficient condition on the channel
coherence time in order that C”(0) in (2) of the non-coherent channel to be finite. In other
words, we characterize the coherence time required for a non-coherent block fading channel to
behave close to a channel with perfect CSI at the receiver. Furthermore, we define the notion
of "operational coherence level”, in order to describe a continuum between the coherent and



the non-coherent extremes. We also characterize the coherence time required to achieve an
intermediate level of coherence, thus bridge the gap between these two extremes.

In addition to the conventional training schemes, we also developed the "flash training”
schemes, which only send training signals and communicate over a small fraction of the
available coherence blocks. Such schemes are particularly useful in the low SNR regime. We
demonstrate the performance improvement by using such flash schemes, and characterize
the optimal level of flashiness as a function of the channel coherence time and SNR.

2 Preliminaries and Problem Formulation

In this paper, we consider a block fading channel, which can be written as
y; = VSNRhx; +w;, i=1,...,1

where x;,y; are the transmitted and received signals, respectively, at time instance i, and w;
is the additive white Gaussian noise with unit variance. The fading coefficient h is assumed
to be also CN(0, 1) distributed. More over we assume that h remains constant over a block
of [ symbols, and after that changes into independent realizations. The block length [, also
referred as the coherence time, indicates the speed that the fading channel changes over time.
The power constraint for this channel is normalized so that E[|x;|?] = 1.

We consider a communication system over many of such independently faded coherence
blocks, resulting from communicating over a long period of time and/or over a wide frequency
band that covers multiple coherence bandwidth.

It is well known that at the low SNR regime, the capacity of this channel, whether the fading
coefficients are known to the receiver or not, is close to a linear function of SNR, i.e.,

C'(SNR) = SNR + o(SNR)(nats/symbol) (3)

However, the sub-linear term SNR — C'(SNR) can be very different depending on the avail-
ability of the channel state information at he receiver.

For the coherent case, i.e., when h is perfectly known at the receiver, the channel capacity
at low SNR can be written as

Ocoherent(SNR) = SNR — O(SNRQ)

That is, the sub-linear term SNR — C'(SNR) is of the order O(SNR?). On the other hand, it
is shown in [4] that for the non-coherent channel, for which h is not known, the sub-linear
term in of the capacity is much larger,

SNR — Cnon—coherent(SNR) > SNR2 (4)

where > means the ratio between the two sides goes to infinity at low SNR.



The gap between the coherent and the non-coherent cases are thus obvious in the sub-linear
term of the capacity. Although this contribute to only a small fraction of the capacity, it is
shown in [4] that this difference becomes important when communicating with a constraint
on the energy per information bit. The bandwidth required to achieve a particular energy
efficiency level is much larger for the non-coherent case than for the coherent case. In other
words, the non-coherent channel converges to the wide band limit much slower.

Intuitively, if the channel changes slowly over time, then one can use a significant amount
of energy in training to help the receiver to estimate the channel precisely, yet this cost of
energy is only an ignorable fraction of the total energy. Thus as the coherence time increases,
we should have a continuum between the coherent and the non-coherent extremes. The result
in [4], however, does not describe such a continuum. It is stated that for any given coherence
time [, as SNR approach 0, (4) always holds, which means that a near coherent performance
(3) can never be achieved. In fact, whether a channel, with particular values of the coherence
time and SNR, is closer to the coherent extreme or the non-coherent extreme depends on
the relation between the coherence time and the SNR, instead either parameter alone. By
fixing the coherence time and let the SNR go to 0, this key relation is distorted, thus we
always get to the non-coherent extreme.

To address this problem, in this paper, we study the channel with both the SNR goes to
0 and the coherence time [ goes to infinity, while maintaining a relation between the two,
described as [(SNR). We ask the question as ”for what function [(SNR), or how fast needs
the coherence time goes to infinity, in order that a near coherent throughput (3) can be
achieved?” We answer this question by studying the performance of a specific training based
scheme.

To describe a continuum between the two extremes, we also studied the problem of how
large the coherence time has to be, in order that the throughput behaves like

SNR — O(SNR'*®)

for o € [0, 1], where o« = 0 corresponds to the non-coherent extreme and o = 1 corresponds
to the coherent. Thus the intermediate values of a can be called the operational coherence
level of the channel.

3 Training schemes for the Block fading model

In this section, we study a sub-optimal approach to use the block fading channel, namely,
by using training schemes. Training schemes are widely used in communicating over fading
channels when the fading coefficients are unknown to the receiver. At the beginning of each
coherence block, a training sequence, known to the receiver, is transmitted to help the receiver
to estimate the channel coefficients, and then these estimates are used to communicate during
the rest of the coherence block. We follow the approach used in [3] and [6], to compute a lower
bound of the achievable throughput by optimizing the amount of energy used in training.

We start by describing the training scheme in details. We rewrite the block fading channel



model, within one coherence block, as follows

yi = VSNRhx; +w;, i=1,...,1

where the fading coefficient h is assumed to remain constant within a block of [ symbols. For
convenience, we refer to vSNRx; as the ”transmitted signal”, which has an average energy
per symbol time of SNR.

From the previous study, we observe that in order to maximize the throughput for a non-
coherent channel at low SNR, a flashy input signal has to be used. That is, the transmitted
energy needs to be concentrated in a small fraction of the available time slots. Intuitively,
this is because that the available energy is not enough to estimate all the channel coeffi-
cients. However, most of the current study on the training schemes assumes that signals are
transmitted in every coherence block. Such treatment implicitly labelled training schemes as
more suitable for the cases when the SNR is high and the coherence time is long, or in other
words, when the channel is nearly coherent. It is shown in [3] that such training schemes is
optimal at high SNR in achieving the maximum number of degrees of freedom, and in [5]
that at the achievable rate by such schemes decreases to 0 at the wideband limit. Thus to
adopt training schemes in the cases with transmit energy being limited, we need to study
"flash training schemes”. That is, we introduce flashiness into training schemes by concen-
trating the transmitted energy in a small fraction § of coherence blocks. Within each of these
blocks, training and communication take places as before, while the other coherence blocks
are simply ignored. In this section, we will demonstrate the performance improvement by
using this simple idea.

In a long time period, we choose to transmit signals in ¢ fraction of available coherence
blocks. In each block that signals are transmitted, the total average energy is given by

1
Etotal = SZSNR

At the beginning of a block, we use ~y fraction of the total energy in training. For convenience,
denote the energy used in training as

1

ISNR
ke

Etr = /YEtotal =

The receiver computes the minimum mean square estimate of the fading coefficient h. Since
the quality of this estimate depends only on the energy, instead of the time period, of the
training signal, we assume in the following that the training signal is transmitted within 1
symbol period, i.e., the signal transmitted in the first symbol of a block is

Vv SNRX1 = \/ Etr

and the receiver signal is

Yi=vV Etrh + wy



Use h and h to denote the minimum mean square estimate of h and the estimation error,
respectively, we have

R E,
E[h]?)] = !
[h[*] 1+ E,
_ 1
E[|lhl?] =
B[] 1+ E,

For the rest (I —1) symbols within the same block, we communicate by using an i.i.d. Gaus-
sian random code with average power of (1 —7)3SNR. The channel in this communication
phase can be written as

1— ) 1— .
1— .
- %st hx; + W/
for i = 2,...,1, and x; is normalized to have F[|x;|?] = 1. Notice that the second term in

QE)), the extra noise due to the channel estimation error, is uncorrelated with the signal term,
hx;. Thus to obtain a lower bound of the mutual information, we can replace it with the
additive Gaussian noise with the same power. The overall noise W/} is replaced by a Gaussian
noise with variance

o = 1+@E[1ﬁ2}SNR

1
+ 0 1+ E,

The resulting mutual information per symbol time is lower bounded by

U1 SNR|h?
log (1 4 e SNRIBP )
g

where the factor 6(I — 1)/l is due to the fact that one § fraction of the time is used in
communication, and that 1 symbol time out of a block is used in training.

—1
I,,(SNR, §) > 5ZTE

3.1 The Performance of Non-Flash Training Schemes

With the performance lower bound of the training schemes established, now we optimize over
the power allocation 7, and the following lemma gives a lower bound of the achievable data
rate for the conventional non-flashy training schemes, corresponding to 6 = 1. To simplify
the notation, we write the mutual information for § = 1 as

I,,(SNR) £ I,,(SNR, 5 = 1)



Lemma 1 Fiz 0 = 1. If the coherence time satisfies
I(SNR) > SNR~(1+22)
for o € [0,1], then the training scheme described above achieves a data rate I, (SNR) with
SNR — I,,(SNR) < SNR'™
In other words, we can achieve a data rate of the order

I,-(SNR) > SNR — O(SNR'*®)

Proof:
Omitted for this version of the paper.

This Lemma says that the coherence time required for a training schemes to achieve a certain
coherence level o is [ = SNRf(HZO‘), which is much larger than that for the channel capacity
(SNR™2%). In particular, if we wish to achieve a near coherent performance (3) with the
training scheme, corresponding to the case o = 1, Lemma 1 suggests that it is sufficient to
have

[ =SNR™? (7)

While Lemma 1 is only an achievable performance, in the following, we argue in the following
that the condition (7) is indeed necessary for a training scheme, to achieve the near coherent
performance in (3). Intuitively, if we want a training scheme for a non-coherent channel to
have a throughput close to the capacity of the perfectly coherent channel, it is necessary
that both the following conditions be satisfied:

e The energy used in training, Ej,., is large enough such that the channel estimation error
is ignorable.

e The fraction of energy used in training, v is small enough such that its effect is ignorable.
In the scaling of interests, these two conditions can be quantitatively specified.

For convenience, we write the RHS of (6) with 6 =1 as !

- 12
log (1 L a stNRrhr )]
g

1Strictly speaking, Ry.(SNR) is a lower bound of the achievable rate for the training schemes. However, in
order to achieve a rate higher than R;,.(SNR), a receiver that can take the advantage of the estimation error
term, hx, is required, which is usually difficult. Therefore, we take R:.(SNR) as a ”practical” approximation
of I;-(SNR).

-1




Notice that 02 > 1, and use Jansen’s inequality, a simple upper bound of R;.(SNR) is given
by

R (SNR) < log(1 + SNRE[|h[?))

Etr
< SNR
o 1+Etr
1
= SNR - SNR
1+Etr

In order that Ry;,.(SNR) = SNR — O(SNR?), it requires that the training energy to be as large
as:

E, > SNR™! (8)

Another upper bound of Ry,(SNR), noticing E[[h|?] < 1, can be written as

R:.(SNR) < log(1+ (1 —7)SNR) 9)
< SNR —~SNR (10)

In order that R;.(SNR) = SNR—O(SNR?), it requires that fraction of energy used in training
to be as small as

v < SNR (11)
Combining (8) and (11), and recall that Ey. = vFipa = YISNR, we have
| >SNR™?

as a necessary condition that the near coherent throughput to be achieved.

3.2 Flash Training Schemes

Allowing flashiness in training schemes does not help to improve the performance at the
coherent end (o« = 1). This is because to achieve the near coherent performance, it is
necessary to use a 6 = SNR?. To see that, suppose § = SNR® for € > 0, even in the AWGN
channel, the resulting throughput is

ol 1+ SN_R < 4 SN_R — l SN_R i + 1 SN_R ’
©8 5 ) = 5 2\ 3\
= SNR — O(SNR*™©) 4+ O(SNR*™2)

for small ¢, this is strictly less than SNR — O(SNR?). Intuitively, to achieve the coherent
performance, one should transmit in all the available time frequency slots, thus the non-flashy
training scheme is optimal, and [ = SNR™® is still necessary.

However, at an intermediate level of coherence, a < 1, allowing flashy training does reduce
the gap between the performance of training schemes and the capacity. The following Lemma
gives a characterization of this effect.



Lemma 2 For a block fading channel with coherence time | = SNR™*, using a flash training
scheme with § = SNR™U=Y one can achieve a data rate of the order SNR — O(SNR'*)

Proof:
Write the throughput of the described flashy training scheme as

ItT(SNR75) = 6Itr <S'?ITR>

where I,.(SNR) is the throughput for a non-flashy training scheme with average power per
symbol time as

SNR
NR = —
> )
Now for § = SNR™1~%_ we have
SNR’ = SNR*

Lemma 1 says that if the coherence time

I = (SNR')™® = SNR™**

we have
I;,(SNR’) = SNR' — O((SNR")?) = SNR* — O(SNR**)
and thus
I,-(SNR,8) = 01,.(SNR')
= SNR — O(SNR'*"*)
is achievable. o

Comparing to the non-flashy training schemes, which requires the coherence time to be of
order SNR™(+2% ¢4 achieve the performance at coherence level v, the flash training schemes
requires only SNR™®, which is significantly less for & < 1. In particular, near the non-
coherent end, the flash training scheme, with a slight variation that we randomly choose
the blocks in which signals are transmitted, reduces to the on-off signaling schemes. Thus
the capacity at [ = 1 can also be achieved. The flash training schemes thus provide us a
migration path between the two extremes.

It needs to be emphasized that the performance of the flash training schemes may not be
optimal, in the sense that other schemes might require a shorter coherence time to achieve the
same coherence level. Intuitively, the training schemes separates the channel estimation from
the communication, thus a significant amount of energy is wasted. Joint channel estimation
and communication schemes might thus perform significantly better when the channel is
energy limited. The results on this issue will be reported in the journal version of this paper.



4 Conclusion

In this paper we studied the performance of training and flash training schemes, in fading
channels with low SNR and long coherence time. We give a sufficient condition of how
slow the channel can change over time in order that the near coherent performance can be
achieved. We also demonstrate that the performance can be improved when training schemes
are used in a flashy fashion. A notion of operational coherence level is also defined to bridge
the gap between the coherent and the non-coherent extremes.
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