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Abstract—In this paper, we consider the problem of finding
the minimum entropy coloring of a characteristic graph under
some conditions which allow it to be in polynomial time. This
problem arises in the functional compression problem where the
computation of a function of sources is desired at the receiver.
The rate region of the functional compression problem has been
considered in some references under some assumptions. Recently,
Feizi et al. computed this rate region for a general one-stage tree
network and its extension to a general tree network. In their
proposed coding scheme, one needs to compute the minimum
entropy coloring (a coloring random variable which minimizes
the entropy) of a characteristic graph. In general, finding this
coloring is an NP-hard problem (as shown by Cardinal et
al.) . However, in this paper, we show that depending on the
characteristic graph’s structure, there are some interesting cases
where finding the minimum entropy coloring is not NP-hard,
but tractable and practical. In one of these cases, we show
that, having a non-zero joint probability condition on RVs’
distributions, for any desired function f , makes characteristic
graphs to be formed of some non-overlapping fully-connected
maximal independent sets. Therefore, the minimum entropy
coloring can be solved in polynomial time. In another case, we
show that if f is a quantization function, this problem is also
tractable.

Index Terms—Functional compression, graph coloring, graph
entropy.

I. INTRODUCTION

While data compression considers the compression of
sources at transmitters and their reconstruction at receivers,
functional compression does not consider the recovery of
whole sources, but the computation of a function of sources
at the receiver(s).

This problem has been considered in different references
(e.g., [1], [2], [3], [4]). In a recent work, we showed that, for
any one-stage tree network, if source nodes send ϵ-colorings
of their characteristic graphs satisfying a condition called
the Coloring Connectivity Condition (C.C.C.), followed by
a Slepian-Wolf encoder, it will lead to an achievable coding
scheme. Conversely, any achievable scheme induces colorings
on high probability subgraphs of characteristic graphs satisfy-
ing C.C.C. An extension to a tree network is also considered
in [5].

In the proposed coding scheme in [5], we need to compute
the minimum entropy coloring (a coloring random variable
which minimizes the entropy) of a characteristic graph. In
general, finding this coloring is an NP-hard problem ([6]).

However, in this paper, we show that depending on the charac-
teristic graph’s structure, there are certain cases where finding
the minimum entropy coloring is not NP-hard, but tractable
and practical. In one of these cases, we show that, having
a non-zero joint probability condition on RVs’ distributions,
for any desired function f , makes characteristic graphs to
be formed of some non-overlapping fully-connected maximal
independent sets. Then, the minimum entropy coloring can be
solved in polynomial time. In another case, we show that if f
is a quantization function, this problem is also tractable.

The rest of the paper is organized as follows. Section II
presents the minimum entropy coloring problem statement and
the necessary technical background. In Section III, main re-
sults of this paper are expressed. An application of this paper’s
results in the functional compression problem is explained in
Section IV. We conclude the paper in Section V.

II. PROBLEM SETUP

In this section, after expressing necessary definitions, we
formulate the minimum entropy coloring problem.

We start with the definition of a characteristic graph of
a random variable. Consider the network shown in Figure
1 with two sources with RVs X1 and X2 such that the
computation of a function (f(X1, X2)) is desired at the
receiver. Suppose these sources are drawn from finite sets
X1 = {x1

1, x
2
1, ..., x

|X1|
1 } and X2 = {x1

2, x
2
2, ..., x

|X2|
2 }. These

sources have a joint probability distribution p(x1, xk). We
express n-sequences of these RVs as X1 = {Xi

1}i=l+n−1
i=l

and X2 = {Xi
2}i=l+n−1

i=l with the joint probability distribution
p(x1,x2). Without loss of generality, we assume l = 1, and
to simplify notation, n will be implied by the context if no
confusion arises. We refer to the ith element of xj as xji. We
use x1

j , x2
j ,... as different n-sequences of Xj . We shall drop

the superscript when no confusion arises. Since the sequence
(x1,x2) is drawn i.i.d. according to p(x1, x2), one can write
p(x1,x2) =

∏n
i=1 p(x1i, x2i).

Definition 1. The characteristic graph GX1 = (VX1 , EX1) of
X1 with respect to X2, p(x1, x2), and function f(X1, X2) is
defined as follows: VX1 = X1 and an edge (x1

1, x
2
1) ∈ X 2

1 is in
Ex1 iff there exists a x1

2 ∈ X2 such that p(x1
1, x

1
2)p(x

2
1, x

1
2) > 0

and f(x1
1, x

1
2) ̸= f(x2

1, x
1
2).

In other words, in order to avoid confusion about the
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Fig. 1. A network with two sources where the computation of a function is
desired at the receiver.

function f(X1, X2) at the receiver, if (x1
1, x

2
1) ∈ Ex1 , then

descriptions of x1
1 and x2

1 must be different.
Next, we define a coloring function for a characteristic

graph.

Definition 2. A vertex coloring of a graph is a function
cGX1

(X1) : VX1 → N of a graph GX1 = (VX1 , EX1)
such that (x1

1, x
2
1) ∈ EX1 implies cGX1

(x1
1) ̸= cGX1

(21). The
entropy of a coloring is the entropy of the induced distribution
on colors. Here, p(cGX1

(xi
1)) = p(c−1

GX1
(cGX1

(xi
1))), where

c−1
GX1

(xi
1) = {xj

1 : cGX1
(xj

1) = cGX1
(xi

1)} for all valid j is
called a color class. We also call the set of all valid colorings
of a graph GX1 as CGX1

.

Sometimes one needs to consider sequences of a RV with
length n. In order to deal with these cases, we can extend the
definition of a characteristic graph for vectors of a RV.

Definition 3. The n-th power of a graph GX1 is a graph
Gn

X1
= (V n

X1
, En

X1
) such that V n

X1
= Xn

1 and (x1
1,x

2
1) ∈ En

X1

when there exists at least one i such that (x1
1i, x

2
1i) ∈ EX1 .

We denote a valid coloring of Gn
X1

by cGn
X1

(X1).

In some problems such as the functional compression prob-
lem, we need to find a coloring random variable of a character-
istic graph which minimizes the entropy. The problem is how
to compute such a coloring for a given characteristic graph.
In other words, this problem can be expressed as follows.
Given a characteristic graph GX1 (or, its n-th power, Gn

X1
),

one can assign different colors to its vertices. Suppose CGX1

is the collection of all valid colorings of this graph, GX1 .
Among these colorings, one which minimizes the entropy of
the coloring RV is called the minimum-entropy coloring, and
we refer to it by cmin

GX1
. In other words,

cmin
GX1

= arg min
cGX1

∈CGX1

H(cGX1
). (1)

The problem is how to compute cmin
GX1

given GX1 .

III. MINIMUM ENTROPY COLORING

In this section, we consider the problem of finding the
minimum entropy coloring of a characteristic graph. The
problem is how to compute a coloring of a characteristic
graph which minimizes the entropy. In general, finding cmin

GX1

is an NP-hard problem ([6]). However, in this section, we
show that depending on the characteristic graph’s structure,
there are some interesting cases where finding the minimum
entropy coloring is not NP-hard, but tractable and practical. In
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Fig. 2. Having non-zero joint probability distribution, a) maximal inde-
pendent sets can not overlap with each other (this figure is to depict the
contradiction) b) maximal independent sets should be fully connected to each
other. In this figure, a solid line represents a connection, and a dashed line
means no connection exists.

one of these cases, we show that, by having a non-zero joint
probability condition on RVs’ distributions, for any desired
function f , finding cmin

GX1
can be solved in polynomial time. In

another case, we show that if f is a quantization function, this
problem is also tractable. For simplicity, we consider functions
with two input RVs, but one can easily extend all discussions
to functions with more input RVs than two.

A. Non-Zero Joint Probability Distribution Condition

Consider the network shown in Figure 1. Source RVs
have a joint probability distribution p(x1, x2), and the re-
ceiver wishes to compute a deterministic function of sources
(i.e., f(X1, X2)). In Section IV, we will show that in an
achievable coding scheme, one needs to compute minimum
entropy colorings of characteristic graphs. The question is
how source nodes can compute minimum entropy colorings
of their characteristic graphs GX1 and GX2 (or, similarly the
minimum entropy colorings of Gn

X1
and Gn

X2
, for some n).

For an arbitrary graph, this problem is NP-hard ([6]). However,
in certain cases, depending on the probability distribution
or the desired function, the characteristic graph has some
special structure which leads to a tractable scheme to find
the minimum entropy coloring. In this section, we consider
the effect of the probability distribution.

Theorem 4. Suppose for all (x1, x2) ∈ X1×X2, p(x1, x2) >
0. Then, maximal independent sets of the characteristic graph
GX1 (and, its n-th power Gn

X1
, for any n) are some non-

overlapping fully-connected sets. Under this condition, the
minimum entropy coloring can be achieved by assigning
different colors to its different maximal independent sets.

Proof: Suppose Γ(GX1) is the set of all maximal indepen-
dent sets of GX1 . Let us proceed by contradiction. Consider
Figure 2-a. Suppose w1 and w2 are two different non-empty
maximal independent sets. Without loss of generality, assume
x1
1 and x2

1 are in w1, and x2
1 and x3

1 are in w2. In other words,
these sets have a common element x2

1. Since w1 and w2 are
two different maximal independent sets, x1

1 /∈ w2 and x3
1 /∈ w1.

Since x1
1 and x2

1 are in w1, there is no edge between them in
GX1 . The same argument holds for x2

1 and x3
1. But, we have an

edge between x1
1 and x3

1, because w1 and w2 are two different
maximal independent sets, and at least there should exist such
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Fig. 3. Having non-zero joint probability condition is necessary for Theorem
4. A dark square represents a zero probability point.

an edge between them. Now, we want to show that it is not
possible.

Since there is no edge between x1
1 and x2

1, for any x1
2 ∈ X2,

p(x1
1, x

1
2)p(x

2
1, x

1
2) > 0, and f(x1

1, x
1
2) = f(x2

1, x
1
2). A similar

argument can be expressed for x2
1 and x3

1. In other words,
for any x1

2 ∈ X2, p(x2
1, x

1
2)p(x

3
1, x

1
2) > 0, and f(x2

1, x
1
2) =

f(x3
1, x

1
2). Thus, for all x1

2 ∈ X2, p(x1
1, x

1
2)p(x

3
1, x

1
2) > 0,

and f(x1
1, x

1
2) = f(x3

1, x
1
2). However, since x1

1 and x3
1 are

connected to each other, there should exist a x1
2 ∈ X2 such

that f(x1
1, x

1
2) ̸= f(x3

1, x
1
2) which is not possible. So, the

contradiction assumption is not correct and these two maximal
independent sets do not overlap with each other.

We showed that maximal independent sets cannot have
overlaps with each other. Now, we want to show that they
are also fully connected to each other. Again, let us proceed
by contradiction. Consider Figure 2-b. Suppose w1 and w2

are two different non-overlapping maximal independent sets.
Suppose there exists an element in w2 (call it x3

1) which is
connected to one of elements in w1 (call it x1

1) and is not
connected to another element of w1 (call it x2

1). By using
a similar discussion to the one in the previous paragraph, we
may show that it is not possible. Thus, x3

1 should be connected
to x1

1. Therefore, if for all (x1, x2) ∈ X1×X2, p(x1, x2) > 0,
then maximal independent sets of GX1 are some separate
fully connected sets. In other words, the complement of
GX1 is formed by some non-overlapping cliques. Finding the
minimum entropy coloring of this graph is trivial and can be
achieved by assigning different colors to these non-overlapping
fully-connected maximal independent sets.

This argument also holds for any power of GX1 . Suppose
x1
1, x2

1 and x3
1 are some typical sequences in Xn

1 . If x1
1 is

not connected to x2
1 and x3

1, it is not possible to have x2
1 and

x3
1 connected. Therefore, one can apply a similar argument to

prove the theorem for Gn
X1

, for some n. This completes the
proof.

One should notice that the condition p(x1, x2) > 0, for all
(x1, x2) ∈ X1 × X2, is a necessary condition for Theorem 4.
In order to illustrate this, consider Figure 3. In this example,
x1
1, x2

1 and x3
1 are in X1, and x1

2, x2
2 and x3

2 are in X2. Suppose
p(x2

1, x
2
2) = 0. By considering the value of function f at these

points depicted in the figure, one can see that, in GX1 , x2
1 is

not connected to x1
1 and x3

1. However, x1
1 and x3

1 are connected
to each other. Thus, Theorem 4 does not hold here.

It is also worthwhile to notice that the condition used in

f(x1,x2)

(a)

X1

1

2

3

4

5

X2

f(x1,x2)

(b)

1

X2

1

4 42

2 5 5

3

X2
1

X2
2

X2
3

X1
1

X1
2

X1
3

X1

Function Region

X1

2
×X2

3

Fig. 4. a) A quantization function. Function values are depicted in the figure
on each rectangle. b) By extending sides of rectangles, the plane is covered
by some function regions.

Theorem 4 only restricts the probability distribution and it
does not depend on the function f . Thus, for any function
f at the receiver, if we have a non-zero joint probability
distribution of source RVs (for example, when source RVs
are independent), finding the minimum-entropy coloring and,
therefore, the proposed functional compression scheme of
Section IV and reference [5], is easy and tractable.

B. Quantization Functions
In Section III-A, we introduced a condition on the joint

probability distribution of RVs which leads to a specific
structure of the characteristic graph such that finding the
minimum entropy coloring is not NP-hard. In this section,
we consider some special functions which lead to some graph
structures so that one can easily find the minimum entropy
coloring.

An interesting function is a quantization function. A nat-
ural quantization function is a function which separates the
X1 −X2 plane into some rectangles such that each rectangle
corresponds to a different value of that function. Sides of these
rectangles are parallel to the plane axes. Figure 4-a depicts
such a quantization function.

Given a quantization function, one can extend different sides
of each rectangle in the X1−X2 plane. This may make some
new rectangles. We call each of them a function region. Each
function region can be determined by two subsets of X1 and
X2. For example, in Figure 4-b, one of the function regions is
distinguished by the shaded area.

Definition 5. Consider two function regions X 1
1 × X 1

2 and
X 2

1 × X 2
2 . If for any x1

1 ∈ X 1
1 and x2

1 ∈ X 2
1 , there exist x2

such that p(x1
1, x2)p(x

2
1, x2) > 0 and f(x1

1, x2) ̸= f(x2
1, x2),

we say these two function regions are pairwise X1-proper.

Theorem 6. Consider a quantization function f such that
its function regions are pairwise X1-proper. Then, GX1 (and
Gn

X1
, for any n) is formed of some non-overlapping fully-

connected maximal independent sets, and its minimum entropy
coloring can be achieved by assigning different colors to
different maximal independent sets.

Proof: We first prove it for GX1 . Suppose X 1
1 ×X 1

2 , and
X 2

1 ×X 2
2 are two X1-proper function regions of a quantization
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function f , where X 1
1 ̸= X 2

1 . We show that X 1
1 and X 2

1

are two non-overlapping fully-connected maximal independent
sets. By definition, X 1

1 and X 2
1 are two non-equal partition sets

of X1. Thus, they do not have any element in common.
Now, we want to show that vertices of each of these partition

sets are not connected to each other. Without loss of generality,
we show it for X 1

1 . If this partition set of X1 has only one
element, this is a trivial case. So, suppose x1

1 and x2
1 are two

elements in X 1
1 . By definition of function regions, one can

see that, for any x2 ∈ X2 such that p(x1
1, x2)p(x

2
1, x2) > 0,

then f(x1
1, x2) = f(x2

1, x2). Thus, these two vertices are not
connected to each other. Now, suppose x3

1 is an element in X 2
1 .

Since these function regions are X1-proper, there should exist
at least one x2 ∈ X2, such that p(x1

1, x2)p(x
3
1, x2) > 0, and

f(x1
1, x2) ̸= f(x3

1, x2). Thus, x1
1 and x3

1 are connected to each
other. Therefore, X 1

1 and X 2
1 are two non-overlapping fully-

connected maximal independent sets. One can easily apply this
argument to other partition sets. Thus, the minimum entropy
coloring can be achieved by assigning different colors to
different maximal independent sets (partition sets). The proof
for Gn

X1
, for any n, is similar to the one mentioned in Theorem

4. This completes the proof.
It is worthwhile to mention that without X1-proper con-

dition of Theorem 6, assigning different colors to different
partitions still leads to an achievable coloring scheme. How-
ever, it is not necessarily the minimum entropy coloring. In
other words, without this condition, maximal independent sets
may overlap.

Corollary 7. If a function f is strictly increasing (or, decreas-
ing) with respect to X1, and p(x1, x2) ̸= 0, for all x1 ∈ X1

and x2 ∈ X2, then, GX1 (and, Gn
X1

for any n) would be a
complete graph.

Under conditions of Corollary 7, functional compression
does not give us any gain, because, in a complete graph, one
should assign different colors to different vertices. Traditional
compression in which f is the identity function is a special
case of Corollary 7.

IV. APPLICATIONS IN THE FUNCTIONAL COMPRESSION
PROBLEM

As we expressed in Section II, results of this paper can be
used in the functional compression problem. In this section,
after giving the functional compression problem statement, we
express some of previous results. Then, we explain how this
paper’s results can be applied in this problem.

A. Functional Compression Problem Setup

Consider the network shown in Figure 1. In this network, we
have two source nodes with input processes {Xi

j}∞i=1 for j =
1, 2. The receiver wishes to compute a deterministic function
f : X1×X2 → Z , or f : Xn

1 ×Xn
2 → Zn, its vector extension.

Source node j encodes its message at a rate RXj . In
other words, encoder enXj maps Xn

j → {1, ..., 2nRXj }.
The receiver has a decoder r, which maps {1, ..., 2nRX1} ×
{1, ..., 2nRX1 } → Zn. We sometimes refer to this encod-
ing/decoding scheme as an n-distributed functional code.

For any encoding/decoding scheme, the probability
of error is defined as Pn

e = Pr
[
(x1,x2) :

f(x1,x2) ̸= r(enX1(x1), enX2(x2))
]
. A rate pair,

R = (RX1 , RX2) is achievable iff there exist encoders
in source nodes operating in these rates, and a decoder r at
the receiver such that Pn

e → 0 as n → ∞. The achievable
rate region is the set closure of the set of all achievable rates.

B. Prior Results in the Functional Compression Problem

In order to express some previous results, we need to define
an ϵ-coloring of a characteristic graph.

Definition 8. Given a non-empty set A ⊂ X1 × X2, de-
fine p̂(x1, x2) = p(x1, x2)/p(A) when (x1, x2) ∈ A, and
p̂(x1, x2) = 0 otherwise. p̂ is the distribution over (x1, x2)
conditioned on (x1, x2) ∈ A. Denote the characteristic graph
of X1 with respect to X2, p̂(x1, x2), and f(X1, X2) as ĜX1 =
(V̂X1

, ÊX1
) and the characteristic graph of X2 with respect

to X1, p̂(x1, x2), and f(X1, X2) as ĜX2 = (V̂X2 , ÊX2). Note
that ÊX1 ⊆ EX1 and ÊX2 ⊆ EX2 . Finally, we say that
cGX1

(X1) and cGX2
(X2) are ϵ-colorings of GX1 and GX2 if

they are valid colorings of ĜX1 and ĜX2 defined with respect
to some set A for which p(A) ≥ 1− ϵ.

Among ϵ-colorings of GX1 , the one which minimizes the
entropy is called the minimum entropy ϵ-coloring of GX1 .
Sometimes, we refer to it as the minimum entropy coloring
when no confusion arises.

Consider the network shown in Figure 1. The rate region of
this network has been considered in different references under
some assumptions. Reference [3] considered the case where
X2 is available at the receiver as the side information, while
reference [4] computed a rate region under some conditions
on source distributions called the zigzag condition. The case
of having more than one desired function at the receiver with
the side information was considered in [7].

However, the rate region for a more general case has
been considered in [5]. Reference [5] shows that if source
nodes send ϵ-colorings of their characteristic graphs satisfy-
ing a condition called the Coloring Connectivity Condition
(C.C.C.), followed by a Slepian-Wolf encoder, it will lead
to an achievable coding scheme. Conversely, any achievable
scheme induces colorings on high probability subgraphs of
characteristic graphs satisfying C.C.C.

In the following, we briefly explain C.C.C. for the case of
having two source nodes. An extension to the case of having
more source nodes than one is presented in [5].

Definition 9. A path with length m between two points Z1 =
(x1

1, x
1
2) and Zm = (x2

1, x
2
2) is determined by m points Zi,

1 ≤ i ≤ m such that,
i) P (Zi) > 0, for all 1 ≤ i ≤ m.
ii) Zi and Zi+1 only differ in one of their coordinates.

Definition 9 can be expressed for two n-length vectors
(x1

1,x
1
2) and (x2

1,x
2
2).

Definition 10. A joint-coloring family JC for random vari-
ables X1 and X2 with characteristic graphs GX1 and GX2 ,
and any valid colorings cGX1

and cGX2
, respectively is defined
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Fig. 5. Two examples of a joint coloring class: a) satisfying C.C.C. b) not
satisfying C.C.C. Dark squares indicate points with zero probability. Function
values are depicted in the picture.

as JC = {j1c , ..., j
njc
c } where jic =

{
(xi1

1 , xj1
2 ), (xi2

1 , xj2
2 ) :

cGX1
(xi1

1 ) = cGX1
(xi2

1 ), cGX2
(xj1

2 ) = cGX2
(xj2

2 )
}

for any
valid i1, i2, j1 and j2, where njc = |cGX1

| × |cGX2
|. We call

each jic as a joint coloring class.

Definition 10 can be expressed for RVs X1 and X2 with
characteristic graphs Gn

X1
and Gn

X2
, and any valid ϵ-colorings

cGn
X1

and cGn
X2

, respectively.

Definition 11. Consider RVs X1 and X2 with characteristic
graphs GX1 and GX2 , and any valid colorings cGX1

and
cGX2

. We say these colorings satisfy the Coloring Connectivity
Condition (C.C.C.) when, between any two points in jic ∈ JC ,
there exists a path that lies in jic, or function f has the same
value in disconnected parts of jic.

C.C.C. can be expressed for RVs X1 and X2 with charac-
teristic graphs Gn

X1
and Gn

X2
, and any valid ϵ-colorings cGn

X1

and cGn
X2

, respectively.
In order to illustrate this condition, we borrow an example

from [5].

Example 12. For example, suppose we have two random
variables X1 and X2 with characteristic graphs GX1 and
GX2 . Let us assume cGX1

and cGX2
are two valid colorings

of GX1 and GX2 , respectively. Assume cGX1
(x1

1) = cGX1
(x2

1)
and cGX2

(x1
2) = cGX2

(x2
2). Suppose j1c represents this joint

coloring class. In other words, j1c = {(xi
1, x

j
2)}, for all

1 ≤ i, j ≤ 2 when p(xi
1, x

j
2) > 0. Figure 5 considers two

different cases. The first case is when p(x1
1, x

2
2) = 0, and other

points have a non-zero probability. It is illustrated in Figure 5-
a. One can see that there exists a path between any two points
in this joint coloring class. So, this joint coloring class satisfies
C.C.C. If other joint coloring classes of cGX1

and cGX2
satisfy

C.C.C., we say cGX1
and cGX2

satisfy C.C.C. Now, consider
the second case depicted in Figure 5-b. In this case, we have
p(x1

1, x
2
2) = 0, p(x2

1, x
1
2) = 0, and other points have a non-

zero probability. One can see that there is no path between
(x1

1, x
1
2) and (x2

1, x
2
2) in j1c . So, though these two points belong

to a same joint coloring class, their corresponding function
values can be different from each other. For this example,
j1c does not satisfy C.C.C. Therefore, cGX1

and cGX2
do not

satisfy C.C.C.

In Section III, we did not consider C.C.C. in finding the
minimum entropy coloring. For the non-zero joint probability

case, under the condition mentioned in Theorem 4, any valid
colorings (and therefore, minimum entropy colorings) of char-
acteristic graphs satisfy C.C.C mentioned in Definition 11. It
is because we have at least one path between any two points.
However, for a quantization function, after achieving minimum
entropy colorings, C.C.C. should be checked for colorings. In
other words, despite the non-zero joint probability condition
where C.C.C. always holds, for the quantization function case,
one should check C.C.C. separately.

V. CONCLUSION

In this paper we considered the problem of finding the
minimum entropy coloring of a characteristic graph under
some conditions which make it to be done in polynomial time.
This problem has been raised in the functional compression
problem where the computation of a function of sources is
desired at the receiver. Recently, [5] computed the rate region
of the functional compression problem for a general one stage
tree network and its extension to a general tree network. In
the proposed coding schemes of [5] and some other references
such as [4] and [7], one needs to compute the minimum
entropy coloring of a characteristic graph. In general, finding
this coloring is an NP-hard problem ([6]). However, in this
paper, we showed that, depending on the characteristic graph’s
structure, there are some interesting cases where finding the
minimum entropy coloring is not NP-hard, but tractable and
practical. In one of these cases, we show that, by having a
non-zero joint probability condition on RVs’ distributions, for
any desired function f , finding the minimum entropy coloring
can be solved in polynomial time. In another case, we show
that, if f is a type of a quantization function, this problem is
also tractable.

In this paper, we considered two cases such that finding the
minimum entropy coloring of a characteristic graph can be
done in polynomial time. Depending on different applications,
one can investigate other conditions on either probability
distributions or the desired function to have a special structure
of the characteristic graph which may lead to polynomial time
algorithms to find the minimum entropy coloring.
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