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Abstract— The single-source min-cost multicast problem is
considered, which can be framed as a convex optimization
problem with the use of network codes and convex increasing
edge costs. A decentralized approach to this problem is presented
by Lun, Ratnakar, et.al. for the case where all users cooperate to
reach the global minimum. This paper analyzes the cost for the
scenario where each of the multicast receivers greedily routes
its flows and shows that a Nash equilibrium exists for such a
scenario. An allocation rule by which the edge-cost at each edge
is allocated to flows through that edge is presented. Under this
rule, it is shown that for any (monomial) power-law cost function
on each edge, there is a pricing rule such that the flow cost at
user equilibrium is the same as the min-cost. This leads to the
construction of an autonomous flow-steering algorithm for each
receiver, which is also globally optimal.

I. INTRODUCTION

The single-source multicast problem for network coding has
received much attention in recent years due to the tractability
of designing optimal linear network codes for this case.
Ahlswede, Cai and Yeung in [1] prove that for networks
where the min-cut max-flow rate cannot be achieved by
simple forwarding of packets, coding incoming packets at
intermediate routers (network-coding) can help achieve the
max-flow min-cut rate for such networks. Further, Ho et. al.
[2], [3] suggest the use of Random Linear Codes (RLCs) that
can achieve the above linear network code rate asymptotically
in the size of the symbol alphabet used for encoding/decoding.
Since the intermediate routers can code randomly independent
of other routers in the network, RLCs offer the means for
decentralized design of network codes and form the basis for
practical network coding schemes [4].

The problem of finding the minimum-cost multicast tree for
networks has been studied extensively. For a general directed
graph with a cost function at each edge, a specified root
(source) and a subset of the nodes (receivers), the problem
of finding a minimum-cost arborescence rooted at the source
and spanning all the receivers is called the Directed Steiner
Tree (DST) problem. Approximation algorithms for the DST,
which is known to be NP-hard, has received considerable
attention in recent years. Charikar et. al. [5] present a non-
trivial O(i(i− 1)k1/i) algorithm in O(nik2i) time where k is
the number of receivers. An LP-relaxation of the problem leads
Zosin and Khuller [6] to a O(D + 1)-approximation for the
special case when the subgraph induced by the non-terminal
nodes is a tree of depth D.

A decentralized but cooperative scheme has been suggested
by Lun et. al. in [7] where the authors solve the network-
coding min-cost optimization from [8] using primal-dual
methods by message passing between intermediate routers.
However, this scheme requires a separate (differential-equation
based) controller at each intermediate router for every flow
passing through it. Further, many current models of heteroge-
neous network service provisioning assume that selfish routing
decisions are made by end-users based on the price of the
links [9], [10]. Such scenarios are likely to emerge with ad-
hoc networking where each end-user is attached to a single
multicast sink and therefore seeks to minimize her own cost.
The dual problem of maximizing utility in a congestion game
over a packet-forwarding network is considered in [9], [11].
Recently, the authors in [12] have framed this congestion
control problem for network coding for single- and multiple-
source multicasts as a generalization of the Eisenberg-Gale
convex program to compute market equilibrium in the presence
of economies of scale. Further, the primal-dual algorithm in [7]
requires computationally intensive steps to be performed at
each intermediate router.

Recent work in [13] presents a cooperative node-based
primal gradient projection algorithm that is shown to converge
to the minimum cost solution (joint routing and congestion
control). In this scheme, each intermediate node (router) polls
its neighbors for their marginal costs for each session and ad-
justs routing variables (maintained at each node) appropriately.
The source adjusts the admission rate of the multicast session
(using a gradient projection algorithm).

In this paper, we seek to design a min-cost flow-allocation
algorithm when users are non-cooperative and minimize com-
putation performed at each intermediate router. The users are
assumed to be selfish agents that play a non-cooperative game
to minimize personal costs selfishly without regard to the
global or social optimal, and the expectation is that these
users reach a Nash equilibrium if one exists. It is well-known
that Nash equilibria do not optimize social welfare in general
- a classical example of such an inefficient equilibrium is
the ‘Prisoner’s Dilemma’ [14]. Thus it immediately becomes
important to quantify the inefficiency inherent in a selfish
solution - dubbed the ‘price of anarchy’ [15], [16]. The unicast
selfish-agent min-cost routing problem is a classical problem
in transportation literature and has been discussed by the
authors in [17], [18], which corresponds to the uncoded packet



forwarding scenario. The authors in [15], [19], [20] recently
calculated the price of anarchy for this problem for a variety
of convex cost functions for the capacitated and uncapacitated
links. However, the optimization problem for the multicast
min-cost flow with network coding as shown in the following
section departs significantly from the min-cost unicast flow
problem for uncoded packets and thus motivates independent
analysis.

A. Main Contributions

In this paper, we consider the min-cost flow routing prob-
lem with network coding for the selfish-agent case. We first
consider the case with a single source and T multicast sinks
(receivers), with each sink requiring a total rate R. We study
the case where the network supports multi-path routing. A flow
(along a particular path) from the source to a sink accumulates
a cost that depends on the flow rate as well as the congestion
on each of the links the flow traverses. Each sink t “steers” the
flow rate allocation among its paths (i.e., among all paths from
the source to the selected sink t such that the sum rate across
paths is R) such that its total cost is minimized (in other-
words, a “greedy” setup for each sink). The main contributions
are as follows.
(i) We present the min-cost optimization problem for the

single-source multicast with network coding and derive
an asymptotically accurate approximation to that problem
in Section II. The selfish routing scenario is presented
in Section III where a market is defined for bandwidth,
being sold by links (sellers), that is utilized by flows to
individual sinks (buyers). We develop a mechanism for
links (sellers) to allocate the link-costs among users of
the link and demonstrate that for monomial edge cost
functions (see section III), a Nash equilibrium exists, and
that the flow allocation at Nash equilibrium corresponds
to the min-cost flow. In other-words, we show that the
mechanism that we develop for link pricing leads to a
rate allocation among users such that “greedy” flow rate
allocation by each sink leads to the globally optimal
flow rate allocation that minimizes the total cost in the
network. In terms of algorithmic game theoretic literature,
this means that the ‘price of anarchy’ [15], [16] for the
considered “greedy” system is 1.

(ii) Further, inspired by the treatment of Roughgarden and
Tardos in [15], we present a bicriteria result in Section III-
D. We show that with any general positive convex link
cost functions, the (network) Nash cost (i.e., the total cost
with greedy sinks) when each sink requires a total of rate
R is less than the optimum network cost (where all sinks
cooperate to minimize the total network cost) under a
higher rate requirement 2R.
In the context of a network multicast, a bicriteria result
is a good indicator of optimal over-provisioning. While
it is often easy to design networks for the optimal case,
analyzing sub-optimal cases can be difficult. However,
via the bicriteria argument, it follows that a sub-optimal
cost is not worse than the optimal cost under a larger

demand. Hence, a network designer with a view to limit
service cost can simply design for the optimal case with
the larger demand.

(iii) Next, in Section IV we present UESSM – User Equi-
librium with Single Source Multicast, a non-cooperative
decentralized flow-steering algorithm that provably con-
verges to the min-cost flow allocation for the class of
convex, monomial edge cost functions defined in Sec-
tion III. At each receiver, UESSM “steers” flows across
the paths leading to it in order to greedily minimize its
own cost. This allows us to achieve the min-cost flow
with network coding, without having to maintain state or
perform per-flow primal-dual type calculations at every
intermediate router. All that links have to do in UESSM
is to allocate link costs according to the rule developed
in subsection III-A.

(iv) We finally present simulation results for UESSM to
illustrate convergence properties.

II. GLOBAL EQUILIBRIUM

Consider a directed graph G = (N,A) that models the
network with the set of nodes N and the set of directed edges
between them A. Let ce() be the cost function corresponding
to edge e ∈ A. We assume that ce(x) is convex, positive, and
monotonically increasing in x.

Flows along the set of paths Pt from s to t are indexed as
fP ∈ R for all P ∈ Pt; P = ∪t∈TPt is the set of all possible
paths. Then the optimal cost for a rate R multicast connection
from a single source s ∈ N to sink nodes T ⊂ N is given by
the solution to the following optimization problem similar to
[7], [8], GLOBAL(G, c, R):

minimize C(f) =
∑
e∈A

Ce(ze)

subject to ze = max
t

{ ∑
P∈Pt:e∈P

fP

}
∀e ∈ A

fP ≥ 0 ∀P ∈ P∑
P∈Pt

fP = R(t) ∀t ∈ T.

However, since max{. . .} is not differentiable everywhere,
we use the Ln approximation

max{x1, x2, . . . xk} = lim
n→∞

(
k∑

i=1

xn
i

)1/n

for analysis, thereby avoiding sub-gradient methods. Following
the approximation of the max() above the Ln-relaxed cost
function of GLOBAL(G, c, R),

Cn(f) =
∑
e∈A

ce

[∑
t∈T

(
∑

P∈Pt:e∈P

fP )n

]1/n


is differentiable everywhere. We note that a similar approxi-
mation has been used for the multicast congestion problem in
[21], [7].
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Since the cost functions are convex and the constraints form
a convex set, the necessary and sufficient first-order Karush-
Kuhn-Tucker conditions to solve Ln-GLOBAL(G, c, R) are
obtained by forming the Lagrangian

L(f, λ, µ) = Cn(f) +
∑
t∈T

λt(
∑

P∈Pt

fP −R(t))−
∑
P∈P

µP fp

and differentiating with respect to each flow fP , and the
Lagrangian parameters λt and µP to yield the unique min-
imizing solution f∗, λ∗, µ∗. Note that for all P ∈ P , f∗P
and µ∗P are complimentary slack, i.e. f∗P = 0 if µ∗P 6= 0
and vice-versa. Hence for paths with strictly positive flow,
differentiating L(f, λ, µ) with respect to a particular flow fP1 ,
for P1 ∈ Pj , gives

∑
e∈P1

c′e(z
(n)
e )

(∑
P∈Pj :e∈P fP

z
(n)
e

)n−1

+ λj = 0,

where c′e(x) = ∂ce(x)
∂x and

z(n)
e ,

(∑
t∈T

(
∑

P∈Pt:e∈P

fP )n

)1/n

is the corresponding Ln relaxation of ze. This implies that
∀P1, P2 ∈ Pj ,

∑
e∈P1

c′e(z
(n)
e )

(∑
P∈Pj :e∈P fP

z
(n)
e

)n−1

≤
∑
e∈P2

c′e(z
(n)
e )

(∑
P∈Pj :e∈P fP

z
(n)
e

)n−1

.

(1)

Hence the KKT conditions in Equation (1), together with the
uniqueness of solution to the strictly convex Ln-GLOBAL(G,
c, R) optimization problem can be summarized in the follow-
ing lemma.

Lemma 2.1: A network coded multicast flow f is optimal
for Ln-GLOBAL(G, c, R) if and only if for all t ∈ T , and any
strictly positive P1, P2 ∈ Pt∑

e∈P1

c′e(z
(n)
e )α(n)

e,j =
∑
e∈P2

c′e(z
(n)
e )α(n)

e,j , (2)

where,

α
(n)
e,j ,

z
(n)
e

xe,j
.

1∑
t∈T ( xe,t

xe,j
)n

, (3)

and

xe,j,
∑

e∈P :P∈Pj

fP

is the total flow of type j through the edge e.
Observe that as n → ∞, Cn(f) → C(f). Hence the

corresponding solutions to the set of conditions in Equation
(2) will tend to the limiting conditions as n→∞.

III. SELFISH ROUTING AND EQUILIBRIUM

The solution to GLOBAL finds the optimum flow that
minimizes routing cost in the overall network cost. This
section deals with the system under the condition that each
receiver minimizes its own cost to achieve user equilibrium
under a defined bandwidth market to model selfish behavior
as shown below. The ultimate goal of this section (and the next,
respectively), is to show that under certain conditions on ce,
the user equilibrium corresponds to the global equilibrium (is
comparable to the global equilibrium of a related optimization,
respectively). These results will motivate a user-equilibrium
based distributed optimization algorithm, discussed in Sec-
tion IV.

A. The bandwidth market and link price-allocation

Each edge e ∈ A sells bandwidth to the receivers (sinks)
which are the users. Note that in the solution to the global
problem we were merely concerned with the sum cost ce(z

(n)
e )

and did not need to consider how the cost of an edge in the
network is divided among the flows through that network,
while this sharing of costs (price allocation) needs to be
defined for the user costs.

Hence, we propose a price allocation rule at each link and
subsequently show that under this protocol, the sum cost under
user equilibrium is equal to the min-cost for a wide range of
cost functions ce. Our price allocation rule is as follows –
for each edge e the total cost of the flows ce(z

(n)
e ) is divided

among flows of all type t ∈ T so that
xn

e,jP
t∈T xn

e,t
fraction of

the edge cost is borne by the flows in fP , P ∈ Pj of type j.
In turn xe,j is divided among all flows of type j through edge
e in the ratio fP /xe,j for all P ∈ Pj . Thus the marginal cost
of a flow fP through a path P ∈ Pj , j ∈ T

d
(n)
P (f),

∑
e∈P

ce(z(n)
e )

1
xe,j

xn
e,j∑

t∈T xn
e,t

. (4)

Observe that by simply multiplying and dividing by z
(n)
e ,

Equation (4) can be written as

d
(n)
P (f) =

∑
e∈P

ce(z
(n)
e )

z
(n)
e

α
(n)
e,j ,

where α
(n)
e,j is as defined in Equation (3).

B. User costs and equilibrium

Under the selfish condition, each flow from source s to des-
tination j tries to minimize its marginal cost. This corresponds
to each receiver minimizing its own total cost selfishly.

Assuming cost functions are continuous and differentiable
everywhere, we define user equilibrium as follows,

Definition 3.1: A user equilibrium is an allocation f fea-
sible in Ln-GLOBAL(G, c, R) such that for any P1, P2 ∈ Pt

where fP1 > 0,

d
(n)
P1

(f) ≤ d
(n)
P2

(f). (5)

3



Note that this version of user equilibrium is also referred to as
a local Nash equilibrium or Wardrop equilibrium in existing
literature [17], [20].

Corresponding to this equilibrium, the total system cost for
the flow f at Nash equilibrium is then

Cn(f),
∑
P∈P

d
(n)
P (f)fP .

In other words, any small ε → 0 change to the flow
allocations from path P1 to P2 will only increase the sum cost
along the paths in Pt for sink t. The notion of a local Nash
equilibrium can be practically justified in scenarios where end
users are in a distributed setting, with no or partial knowledge
of the system, and try to reach their own local selfish optima
by making small modifications to the flow allocations across
paths in Pt, where the flow steering proceeds only if that
provides the selfish agent with immediate cost reduction.

C. User equilibrium vs. Global optimum

The similarity between the conditions in Lemma 2.1 and
Definition 3.1 have been noticed for the case of costs de-
pending on sum flows through an edge by Dafermos and
Sparrow [17] and Beckman [18] and is cited by [15]. An
important difference in our case is that while the edge cost
in [15], [17], [18] is equally divided among all the flows
through it, here, the cost is borne only by the critical flows
through the edge. Lemma 2.1 and Definition 3.1 then lead
us to the following lemma that allows us to formulate the
Nash equilibrium condition for a particular set of edge cost
functions in terms of a global optimum for the same graph
over a different set of edge cost functions.

Lemma 3.1 ( [17], [18]): A single source multicast flow f
solves Ln-GLOBAL(G, c, R) if and only if it is in local Nash
equilibrium for Ln-GLOBAL(G, c′, R). Also, if ce(x)/x is
continuous and monotonically increasing in x for all e ∈
A, then a local Nash equilibrium flow f exists for Ln-
GLOBAL(G, c, R). Moreover, if f and f̃ are feasible flows
at Nash equilibrium, then Cn(f) = Cn(f̃).
Proof: See [22].

This ensures that there exists a flow allocation that satisfies
the user equilibrium (5).

We can now present the analog of the main result in Rough-
garden and Tardos [15] for the min-cost multicast problem
with network coding in the following theorem.

Theorem 3.1: If for an instance (G, c, R) the cost function
at each edge e is of the monomial form ce(ze) = aez

k
e for any

fixed k ∈ R, k > 1, then for all n ∈ N, the cost of flow f at
local Nash equilibrium C(n)(f) equals the cost C(n)(f∗) of
the global min-cost flow f∗.
Proof: Follows immediately by differentiating ce and using
Lemma 3.1.

We note that notwithstanding the simplicity of the proof, the
above result is significant due to it’s application in Section IV.

The result above implies that for an large class of edge cost
functions, a global min-cost multicast with network coding can
be achieved by merely steering flows across edges to achieve
user equilibrium corresponding to each sink t.

Note that in general, the global min-cost flow can be
achieved if each link charges the “Lagrangian cost” he(x) =∫ x

0
ce(t)/t dt instead of the true cost ce(x). However, this

would imply that the seller (link) earns an amount dispropor-
tionate to the true value of the goods or services(bandwidth)
sold. The link-price allocation scheme detailed in subsection
III-A ensures that the seller receives the ‘fair’ cost ce(x) but
charges the selfish users differently so as to ensure that user
equilibrium coincides with the socially-optimal flow alloca-
tion.

Observe that at n = 1, the L1-GLOBAL(G, c, R) problem
is the same as the classical min-cost flow allocation problem.
Also, correspondingly, our price allocation reduces to the
allocation of link cost to a sink in linear proportion to the
magnitude of flow to that sink through the particular link –
thereby making the marginal cost of every flow through a link
the same. This is exactly the same as the anarchic scenario
in [15] where each flow through a particular edge e has the
same marginal cost(edge delay) le and the net cost of that edge
ce = le

∑
e∈P,P∈P fP .

In general, the results herein define a differentiated pricing
scheme for a shared service whose cost depends not on
the sum of the demands but on the max demand. At the
limit n → ∞, we observe that only the set of users T ′ =
arg maxt∈T

∑
P∈Pt:e∈P fP pay for the cost of the link. Our

price allocation rule automatically induces separate selfish
agents to collaborate to benefit from this economy of scale.

D. A Bicriteria result for the min-cost flow problem

In this section, we determine a bicriteria result to compare
the local Nash cost under a particular rate requirement R with
the optimum routing cost under a higher rate requirement 2R
for any general positive convex increasing cost function.

It is instructive to note that our bicriteria result is the same
as that achieved by Roughgarden and Tardos [15] for the
uncoded unicast flow case. However, the proof technique in
[15] does not apply directly owing to the fact that the edge cost
there is a function of the sum flow through an edge, whereas,
network coding allows the edge cost to be a function only of
the maximum flow of a particular type through that edge.

Theorem 3.2: If f is the flow assignment under local Nash
equilibrium for the instance (G, c, R) and f∗ is any flow
assignment feasible for the instance (G, c, 2R), then C(f) ≤
C(f∗).
Proof: See [22].

IV. DISTRIBUTED ALGORITHMS FOR MIN-COST FLOW

Section III demonstrates that the sum-cost of the edges
with any uniform power-law edge cost function under user
equilibrium is the same as the min-cost. This result lends
itself readily to the construction of a simple non-cooperative
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optimal min-cost flow routing algorithm for a single-source
multicast with network coding. The following section deals
with the single-source multicast for sake of simplicity. It is
easy to show that due to the separable and additive nature
of the costs for the multiple-source multicast, we can run the
same algorithm independently over each session to reach the
user equilibrium in this case too.

In this section, we develop UESSM, a non-cooperative de-
centralized flow-steering algorithm that provably converges to
the min-cost flow allocation for the class of convex, monomial
edge cost functions defined in Section III. At each receiver,
UESSM “flow-steers” among the paths leading to it in order
to greedily minimize its cost. This allows us to achieve the
min-cost flow with network coding, without having to perform
per-flow primal-dual type calculations at every intermediate
router.

The implementation of UESSM, assumes flow routing be-
tween the source and destination, where the source router
encodes downstream hop-by-hop routing information into the
IP-header, as can be implemented in IPv6. The intermediate
routers in the network between the source and sink do not need
to maintain state-information locally. All that the intermediate
routers need to do is route packets along the outgoing edges
corresponding to the hop-by-hop information embedded in
each packet and network code across packets of the same type
at each instant of time using a random linear code.

Also, each downstream packet aggregates the cost that it has
paid along each edge on a particular flow path. For efficiency,
this information need not be carried by every downstream
packet, but only by representative packets at each iteration
of the algorithm.

We initialize with any arbitrary flow allocation among the
paths P ∈ P that satisfy the source and sink rates of R. The
flow allocations in our implementation are elements from a
lattice L = {. . . ,−2∆,−∆, 0,∆, 2∆, . . .}, for some fixed
∆ > 0. Now, one of the sinks t ∈ T is chosen at random.
Sink t now picks two paths P1, P2 ∈ Pt at random and
compares the values of path costs dP1(f) and dP2(f). If
dP1(f) > dP2(f) and fP1 > ∆, then fP1 ← fP1 − ∆ and
fP2 ← fP2 + ∆ or vice versa.

A. Asynchronous implementation

The implementation of the algorithm above does not re-
quire synchronous timing between the clocks at the various
sink nodes but only requires that the clocks have the same
cycle frequency. We assume that the path-delay timescale
along the network (for the update of the path costs etc.) is
negligible compared to the time-steps in which the algorithm
proceeds. Each sink j ∈ T picks a random delay that is
exponentially distributed before adjusting it’s flows. Since the
exponential distribution is a continuous time-distribution, the
collision probability is small. Further, since all flow steering
is implemented at the source, the source can be designed to
sequentially adjust flows of each sink. This ensures that only
one sink adjusts flows at a time in the asynchronous algo-
rithm, thereby retaining the same features as the synchronous

implementation.

B. Convergence of UESSM to the min-cost flow

In the following, we will prove that after a sufficiently
long period of time UESSM settles with a flow allocation
that is within a ∆-neighborhood defined below of the user-
equilibrium flow allocation in Definition 3.1.

Definition 4.1: ∆-neighborhood: A flow allocation f fea-
sible on (G, c, R) is said to be within a ∆-neighborhood of
another feasible flow f ′ if and only if for each P ∈ P ,
|fP − f ′P | < ∆.

Theorem 4.1: UESSM eventually converges to a ∆-
neighborhood of f0.
Proof: See [22].

C. Simulation results

We simulate UESSM over the classic 7-node butterfly
network in [1], [7] with the edge costs shown in Figure 1 for a
rate 1 multicast session from source S1 to destinations D1 and
D2. The links are marked with the edge cost functions ce(x).
In this example, P1 = {f1, f2, f3} and P2 = {F1, F2, F3}.

We first study how Cn(f) changes with increasing values
of n in the Ln-approximation to the max function. The
trajectories for 100 representative UESSM runs with ∆ = 0.01
with varying values of n are plotted in Figure 2. The n = 1
case corresponds to multicast without network coding and
has a much higher sum-cost than that achieved by the L100

approximation, which is very close to the cost with using
the non-differentiable max function in GLOBAL(G, c, R).
However, we note that there is not much gain in going from
n = 10 to n = 100. This suggests that the Ln approximation
works well for even small values of n. This leads us to the
open problem of bounding the error in the Ln approximation
for small values of n.

We have also shown error bars corresponding to one stan-
dard deviation about the mean, with random initial condi-
tions. We observe that, irrespective of initial conditions, the
simulation sum-cost trajectories converges to the mean with
progressively small variance. Typical trajectories of flow rates
through various paths for the Butterfly network with a step-
size of ∆ = 0.01 are presented in Figure 3.
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