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Abstract—In an unreliable packet network setting, we study the
performance gains of optimal transmission strategies in the pres-
ence and absence of coding capability at the transmitter, where
performance is measured in delay and throughput. Although
our results apply to a large class of coding strategies including
maximum-distance separable (MDS) and Digital Fountain codes,
we use random network codes in our discussions because these
codes have a greater applicability for complex network topologies.
To that end, after introducing a key setting in which perfor-
mance analysis and comparison can be carried out, we provide
closed-form as well as asymptotic expressions for the delay per-
formance with and without network coding. We show that the
network coding capability can lead to arbitrarily better delay
performance as the system parameters scale when compared to
traditional transmission strategies without coding. We further
develop a joint scheduling and random-access scheme to extend
our results to general wireless network topologies.

Index Terms—Broadcast, delay analysis, erasure channel, max-
imum-distance separable (MDS) codes, network coding.

I. INTRODUCTION

HERE has been a growing interest in developing new
T transmission strategies for efficient use of scarce re-
sources in wireless networks. This is mainly motivated by
emerging bandwidth-intensive applications such as down-
loading video or music files, which involves transmission of
files to multiple (potentially heterogeneous) receivers. While
the standard approach to data transmission builds on the sched-
uling approach, where information is transmitted to one of
multiple receivers as a function of their channel conditions,
it has been recognized that broadcasting to multiple receivers
using network coding may improve performance in such set-
tings. A fundamental question is to understand and quantify the
performance gains obtained from network coding in wireless
networks.
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There has been considerable effort in revealing various gains
of network coding. For example, in recent works [3], [20], it has
been shown that network coding provides significant buffer sav-
ings over traditional methods. Most of the existing research to
date has focused on throughput gains obtained from network
coding (cf. [1], [12], [11], [13]). Although these throughput
gains may appear to imply gains in delay through Little’s law,
this is not clearly the case since coding is performed over large
blocks and each packet in the block must await the completion
of the whole block before it can be decoded. To capture these
effects, one must study the system at the packet level instead of
using the flow-level formulation of delay (see, e.g., [24]). De-
spite considerable practical interest in the use of network coding
in wireless communication systems, gains in delay performance
resulting from network coding relative to traditional scheduling
have not been analyzed or quantified.

In this paper, we develop a model to study delay performance
of network coding and traditional scheduling strategies in unre-
liable networks. To that end, we consider a scenario where a se-
quence of incoming files to a transmitter are to be communicated
over the time-varying wireless medium to a set of neighboring
receivers. This model not only captures the cellular and satellite
downlink communications, but also serves as a building block
for the operation and analysis of multihop wireless networks, as
will be discussed in this paper.

We assume that files are broadcast to the receivers in a rate-
less fashion, i.e., the subsequent transmissions do not start be-
fore the whole of the current file is received by all the interested
receivers. Our goal is threefold. First, we identify the optimal
strategies under two transmission modes, namely, scheduling
and network coding, and quantify and compare the delay perfor-
mance. Second, we use this model to investigate the sensitivity
of the delay gains of network coding to key system parameters
such as the number of receivers in the system and the file size.
Third, we show how these results can be extended to more gen-
eral network settings.

Our model involves transmission of (multiple) files from a
single transmitter to multiple receivers with varying channel
conditions. The varying channel conditions are modeled as sto-
chastic changes in ON/OFF state of the channel. We analyze the
model both when channel side information (CSI) about the state
of receiver channels is available to the base station and when
transmission must be carried without such information.

The first part of our analysis focuses on the key scenario of
transmitting a single flow, where a flow is a sequence of files
generated according to a random process, and destined to the
same set of receivers. We consider a dynamic traffic model, in
which the files associated with the flow arrive according to a
Poisson process. As a measure of performance, we first focus
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on the mean value of the completion time, which is defined as
the time required to transmit all packets of the head-of-line file
to all the receivers. For this metric, we establish the following
results: For the network coding mode, we show that the random
linear coding introduced by Ho et al. [8] is optimal, in the sense
of minimizing the mean completion time, both with and without
CSI. This is interesting because it provides simple transmission
strategy with no requirement of feedback, but still achieve op-
timal performance. For the scheduling mode, the presence of
CSI affects the optimal strategy. While without the CSI, the
optimal scheduling policy is the round robin (RR), the char-
acterization of the optimal policy in the presence of CSI ne-
cessitates a dynamic programming formulation, which we pro-
vide in the paper. Since the computation of the optimal policy
using this formulation becomes intractable as the size of the
problem increases, we also present an efficient heuristic policy
which we use for numerical comparisons. Our numerical anal-
ysis shows that network coding leads to a significant improve-
ment in mean completion time with respect to scheduling both
with and without CSI.

As a complementary measure of performance of the system,
we consider the mean value of the waiting time of an incoming
packet, which is defined as the average time between a typ-
ical file’s arrival and the completion of its service. It is known
from queueing literature that the mean waiting time is a func-
tion of the first and second moments of the completion time.
For random linear coding, we provide closed-form expressions
for the first and second moments of the completion time. How-
ever, since these expressions are in terms of infinite sums, they
do not enable us to do sensitivity analysis with respect to system
parameters. We therefore provide asymptotic approximations to
the first and second moments which highlight the explicit de-
pendence on key parameters. These asymptotic expressions for
the moments of mean service time with network coding are new
and should be of independent interest in the analysis of coded
networks.

For the RR scheduler, we present bounds on the first and
second moments of the waiting time. These results allow us to
study asymptotic gains of network coding compared to sched-
uling and establish a number of sensitivity results. In partic-
ular, our analysis shows the delay and throughput gains of net-
work coding compared to scheduling as a function of file size
and the number of receivers. Our analysis proves that in the
dense network setting where the number of receivers is large,
achievable throughput of network coding relative to scheduling
scales linearly with the file size, while the mean waiting time of
scheduling relative to network coding for the same load scales
quadratically with the file size.

In the second part of our analysis, we focus on another
canonical scenario where multiple streams are downloaded
to a different set of receivers. For this scenario, we present
the optimal transmission strategies under both scheduling and
coding modes. We establish the following results: We show
that a variant of the longest connected queue (LCQ) policy
introduced in [21] is the optimal network coding strategy;
we prove that coding across sessions (intersession network
coding) is not favorable for our system; we characterize the
optimal scheduling strategies both with and without CSI, and

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 12, DECEMBER 2008

observe significant gains from network coding when CSI is
not available. These findings are important in identifying the
optimal methods to be employed when multiple flows are to be
served by the transmitter.

Our paper differs from the existing work in this area by ex-
plicitly modeling delay performance in file downloads and al-
lowing for transmission without CSI. Previous research has in-
stead focused on either optimal scheduling with time-varying
channel conditions (see [21], [22]), or on the capacity gains from
network coding (see [15], [9], [10], [18], [14], [23]) under var-
ious different scenarios. This work builds on the findings of [5],
which provided the first quantification of delay gains of network
coding by using mean service time as the performance metric.
In a more recent independent work [6], Ghaderi et al. provided
an asymptotic formulation of the mean delay gains by building
on the work of Grabner et al. ([7]). In this work, we extend these
results by considering dynamic arrivals and studying the mean
waiting time to provide exact as well as asymptotic expressions
for the gains of network coding and scheduling. In another in-
dependent work [16], Nguyen et al. study the network coding
performance in a single-hop broadcast setting in the presence
of acknowledgements from the receivers.

The first part of our work is most closely related to [19], where
the authors study a multicast scenario with stochastically ar-
riving packets and provide a transform-based analysis of delay
for arbitrary coding window sizes. This approach, while pro-
viding explicit characterizations of the distributions of the ar-
rival and service processes, does not reveal the relationship be-
tween the delay performance and the critical system parame-
ters such as the number of users and the coding window size.
Yet, characterization of such a relationship is important in un-
derstanding the impact of essential system parameters on perfor-
mance, and hence in providing valuable insights for the design
of efficient systems. In this paper, we exert considerable effort
and utilize completely different machinery such as Mellin trans-
forms to obtain an asymptotically accurate formulation of delay
with respect to the number of users, channel statistics, and the
coding window size. Also, different from [19], we study the sce-
nario of multiple unicast sessions and discuss ways of extending
the analysis to the multihop network setting.

The remainder of the paper is organized as follows: In Sec-
tion II, the system model is introduced along with the transmis-
sion modes of interest and our goals. In Section III, the key sce-
nario of a single flow destined to all the receivers is analyzed
in detail, where we characterize the optimal transmission strate-
gies, provide explicit as well as asymptotic expressions for their
performance, and show the significant gains of coding with re-
spect to scheduling. Section IV considers the case of multiple
unicast flows. A method to extend the results to more general
network settings is suggested in Section V. Finally, we provide
a summary and our concluding remarks in Section VI.

II. SYSTEM MODEL AND GOALS

In this section, we describe the single-hop setting of one
transmitter broadcasting to multiple receivers over indepen-
dently time-varying channels. This setting not only models the
characteristics of cellular or satellite systems, but also serves
as the fundamental building block for more general networks.
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Fig. 1. System model.

The connection to general topologies will be made explicit in
Section V.

a) Single-Hop Setting: Consider a single transmitting node
and a set V' of receiving nodes that are connected to it over time-
varying channels. We assume a time-slotted system to which
all the nodes are assumed to be synchronized. The duration of
each time slot is selected with respect to the coherence time of
the associated system so that channels stay constant within each
slot, and vary across time slots.

A set F of flows generates a sequence of files to be multi-
cast to a subset of the receivers. Specifically, flow f € F is
demanded by the set Ny C N of receivers.! Files associated
with each flow arrive at (or are generated by) the transmitter
according to a stochastic process. Each file associated with a
flow f is composed of Ky packets, each of which is a vector of
length m over a finite field ;. We assume that the duration of
a time slot can accommodate a single packet. The files of each
flow are accumulated in a separate queue? to be transmitted in
a first-in first-out (FIFO) manner. We assume that transmission
of a file starts only after the transmission of the file prior to it in
the queue is complete.

The channel between the transmitter and the ith receiver is a
randomly varying ON/OFF channel. We let C;[¢] € {0, 1} denote
the state of user #’s channel in slot £. We assume that Receiver-7
successfully receives the packet transmitted at slot ¢ if C;[t] =
1, and it cannot receive anything if C;[t] = 0. We will take
each C;[t] to be a Bernoulli random variable with mean p; €
(0, 1) that are independent across time and across receivers. The
channels of different receivers can in general be asymmetric,
i.e., p; may be different for different 7 € {1,---, N}. However,
in parts of the subsequent analysis we will restrict our attention
to the symmetric case of p; = p for all < in order to have tractable
formulations. The system model is depicted in Fig. 1.

b) Availability of CSI: We distinguish between two cases
regarding the availability of CSI at the transmitter. We say
that CSI is available when the vector? of channel states
c[t] £ (Ci[t],---,Cn]t]) is known by the transmitter at the
beginning of slot ¢ so that transmissions can be decided with
the perfect knowledge of which receivers will get them. Such
an assumption requires extra overhead for estimation and feed-
back operations, and may be impractical especially when the

I'We will use F, N, and N to denote the cardinalities of the sets F, A/, and
N, respectively.

2This queue need not be a physically separate buffer, but a virtual one where
files of different flows are accounted for separately.

3We will consistently use boldface letters to denote vectors.

Y Receiver 1

Y Receiver 2

Y Receiver N

number of receivers is large or the channel variations are too
fast to accommodate the feedback delay. We study this scenario
under the assumptions of perfect and instantaneous feedback
with negligible overhead as a limiting idealistic case. The
outcome of this study will allow us to identify the strengths of
weaknesses of different strategies even when CSI is available.

The scenario of NO-CSI refers to the case when no channel
quality information is available to the transmitter at the outset of
transmission. Thus, the decision as to what to transmit must be
made blindly. In this extreme, we assume that feedback is very
costly, and hence must be minimized. This is a reasonable as-
sumption when the number of receivers is large. Thus, instead of
intermediate scenarios such as automatic repeat request (ARQ)-
type schemes, we focus on the case where the receivers send ac-
knowledgment (ACK) packets only when they receive the whole
file. Thus, we assume a file-based ACK scheme, rather than the
significantly more costly packet-based ACK scheme.

c) Transmission Strategies: The strategy employed by the
transmitter to broadcast the head-of-the-line file to the receivers
has a critical effect on the service time distribution of the file
completion. We focus on two modes of transmission in this
paper, namely scheduling and coding. Before we define these
two modes, we introduce some notation. Since the files are
transmitted in a FIFO order, we can focus on the head-of-line
(HOL) file of flow f, which is composed of K ; packets. Then,
Packet-k of the HOL file of flow f is referred to as P j,, which
is a vector of length m over a finite field F4. Finally, let P[¢]
denote the packet chosen for transmission in slot ¢.

Definition 1 (Scheduling): Scheduling refers to the mode of
transmission where in any given slot, the transmitter must pick
a single packet from the HOL file to transmit. Specifically, we
have P[t] € {Pysi|f € F.k=1,...,Ky}.

Definition 2 ((Network) Coding): (Network) Coding refers to
the mode of transmission where in every slot, say ¢, any linear
combination of the packets belonging to the HOL file can be
transmitted. Specifically, we have

Ky
Pit] =" arsltlPry

feF k=1

where af i[t] € Fqforeach f € Fand k € {1,...,Ky}. The
transmitter chooses the coefficients {a [t]} for each ¢.

ey

d) Goals: For the above model, we are interested in
* identifying the optimal transmission strategies under
scheduling and coding transmission modes, and under
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the assumption of CSI and NO-CSI, where the optimal
strategy is the one which minimizes the mean service time;
e providing an analytical expression of the mean waiting
time (including queueing delay and service time) for the
incoming packets under the optimal transmission schemes;
* understanding the asymptotic effect of the number of users
and the file sizes on the mean waiting time;
» providing methods for extending the single-hop setting to
multiple-hop networks with general topologies.
We will address each of these goals in the subsequent analysis.

III. BROADCASTING A SINGLE FLOW

In this section, we focus on the key scenario of the transmitter
broadcasting the incoming files of a single flow to all the re-
ceivers, i.e., we set F' = 1, and Ny = N in our model. This
scenario allows us to isolate the delay analysis from issues of
scheduling transmissions across flows, and allows for tractable
analysis. Since there is only one flow in the system, we will drop
the subscript f in our notation throughout this section, and de-
note Packet-k of the HOL file of the flow as Py, and the size of
the file as K.

We assume that files of the flow arrive according to a Poisson
process* of rate A. The Poisson assumption allows us to view
the whole system as an M/G/1 queue, where the service time
distribution is a function of the transmission strategy being em-
ployed at the transmitter. Let Z(N, K) denote the time required
to transmit all the packets of the HOL file to all the receivers
under a given transmission strategy, and (N, K) parameters. We
refer to Z (N, K) as the completion (or service) time of a file
download. The mean waiting time W (), N, K) of an incoming
file is given by the Pollaczek—Khinchin formula ([2])

— AE[Z(N, K)?]

VAN = s ez m)y @
It is seen from (2) that the mean waiting time is a function
of the first and second moments of the HOL file completion
time. In Section III-A, we identify the optimal transmission
strategies under the scheduling and coding modes of operation,
where optimality is in terms of minimizing the mean completion
time. Then, in Section III-B, we provide closed form as well as
asymptotic expressions for the first and second moments of the
completion time under the identified optimal strategies. Numer-
ical as well as asymptotic performance comparison of the two
transmission strategies will be provided in Section III-C. This
investigation will reveal the delay gains of network coding with
respect to traditional scheduling strategies in unreliable wireless
systems.

A. Optimal Transmission Strategies

The aim of this subsection is to identify those coding and
scheduling strategies that lead to minimum mean completion
time of the HOL file, both in the presence and absence of CSI.
It can be seen by looking at (2) that the mean service time of a
policy is the key factor in determining the maximum arrival rate
A that the policy can support with a finite delay. This is our mo-
tivation for focusing on minimizing this performance criterion.
Next, we focus on the coding and scheduling cases separately.

“4For other arrival processes, various bounds such as Kingman’s bound can be
used to characterize the system delay.
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1) Optimal Coding Strategy With and Without CSI: There are
various coding strategies that can be used in our setting. These
include maximum-distance separable (MDS) codes, Fountain
codes, random network coding, etc. MDS codes are carefully
designed codes with the property that the reception of a cer-
tain number of its transmitted packets (also called symbols) is
sufficient for decoding the file (also called the message). Also,
Fountain codes encode each file into packets (according to var-
ious randomized rules) such that the reception of any fixed frac-
tion suffices (with high probability) for decoding the message.
In a similar spirit, random network coding is a strategy where
packets for transmission are generated from the original file by
randomly selecting the coefficients in (1). Although we focus
on the case of random network coding in our subsequent dis-
cussions, our results in this section apply to MDS and Fountain
codes since they possess approximately the same service time
distribution characteristics (with higher precision as the field
size increases).

It has been shown in the literature that linear coding is suffi-
cient to achieve the maximum achievable rate for a single mul-
ticast session in wireline networks with general topologies [12].
Noticing that the broadcast scenario is a special instance of
a multicast transmission, we focus on linear coding strategies
where the transmitted packet in slot ¢ is given by

K
P[t] = Zak[t]Pk, withay[t] € Fq, foreach k € {1,...,K}.
k=1

Proposition 1: Assume the transmission of a file with K
packets to N receivers over Bernoulli distributed channels.
Then, the following randomized strategy is asymptotically
optimal as the field size d tends to infinity in the sense that the
mean completion time of the file is minimized over all other
policies. The transmitter performs the following operation for
the HOL file

RANDOMIZED BROADCAST CODING (RBC):

While (File is incomplete)
Pick ay[t] uniformly at random from F; for each k;

Transmit P[t] = Zszl ax[t)P;

t—t+1;

Each receiver keeps the incoming packets that it could receive
and then decodes all the packets { Py} (x—1,... k) as soon as K
linearly independent combinations of the packets are collected
(cf. [8] and references therein). Finally, each receiver that suc-
cessfully recovers the HOL file sends an acknowledgment to the
transmitter.

Proof: The expected number of slots before K linearly
independent combinations can be collected with randomized
broadcast coding (RBC) is given by 25:1[1 — (1/d)*)~1.
Here, [I — (1/d)*]~! gives the expected number of random
coefficients (ag)r to be selected by the RBC policy before
a vector (i.e., a packet) that is linearly independent from
previously transmitted (k — 1) linearly independent vectors
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TABLE 1

DEMONSTRATION OF EXAMPLE 1: R; CORRESPONDS TO RECEIVER-,

‘—' DENOTES OFF CHANNEL STATES, AND THE ENTRY a|b GIVES THE OPTIMAL

TRANSMISSIONS WITH SCHEDULING | CODING, RESPECTIVELY. WITH SCHEDULING, NO CHOICE OF {P; } IN SLOT 4 CAN COMPLETE THE FILE AT ALL THE
RECEIVERS FOR THE GIVEN CHANNEL REALIZATION

| t=1 | t=2 | t=3 | t=4
Ry P2|(P2+P3) | P3|(P1+P3) | ?[(P1+P2+Pg3)
Ro P1|(P1+P2) — P3|(P1+P3) | ?[(P1+P2+P3)
R3 P1|(P1+P2) | P2|(P2+P3) — ?|(P1+P2+P3)

can be generated. This expression can be upper-bounded by
Kd/(d — 1), which in turn can be made close to K even with
reasonably low values of d. Thus, for a large enough field size
d, it is sufficient for each receiver to be active approximately
K slots before it can decode the whole file. Notice that it is
impossible to send the file with less than K transmissions
since at most one packet can be successfully transmitted in one
transmission, and so RBC asymptotically (in d) achieves the
best possible performance over all strategies. O

Another important issue is the overhead related with this
mode of transmission. Coding requires [K log, d] bits of
overhead to contain the coefficients of the associated linear
combination, whereas the packet size is [m log, d] bits. Thus,
for m > K, the overhead is negligible. Henceforth, we will
consider this scenario, and ignore the overhead.

Notice that RBC is not only easy to implement, but also re-
quires no knowledge of the channel state vector, and asymptoti-
cally achieves the minimum mean completion time over all poli-
cies. We will see in Section III-A2 that the optimal scheduling
policy is much more difficult to characterize, even for symmetric
channel conditions.

2) Scheduling Mode: In this mode, unlike in the coding
mode, the presence or lack of CSI affects the performance.
Hence, these two cases will be studied separately.

a) Scheduling with CSI: Before we characterize the optimal
scheduling rule with CSI, we demonstrate the suboptimality of
scheduling compared to coding with the following key example.

Example 1: Consider the case of K = 3and N = 3, i.e.,
three packets are to be broadcast to three receivers. Consider
the channel realizations ¢[1] = (0,1,1),¢[2] = (1,0,1),¢[3] =
(1,1,0), and ¢[4] = (1,1, 1). Thus, in the first four slots, each
receiver can hear the transmission three times. The optimal
scheduling rule would transmit Py, Py, P3 in the first three
slots, leaving Receiver-: in demand for Packet-¢ in the fourth
slot. Clearly, no scheduling rule can ever complete the file down-
load at all three receivers in the fourth slot. With coding, on the
other hand, the following transmissions will complete the trans-

missions: (P; + Ps), (P2 + P3), (P1 + P3), (P + Py + P3)
(see Table I). It is not difficult to see that coding will never
require more slots than is necessary for scheduling for all other
realizations. Hence, we achieve strictly better completion times

with coding. o

OPTIMAL SCHEDULING RULE WITH CSI: We use Dynamic
programming (DP) to find the characterization of the optimal
scheduling policy. Given ¢[t], the scheduler can choose any one
of the packets { Py, ..., Px} for transmission. A little thought
reveals the need for memory at the transmitter about the his-

tory of receptions of each receiver. For this purpose, we de-
fine M; 1 [t] to be the memory bit associated with Packet-£ and
Receiver-i. In particular, M; r[t] = 1 (or 0) implies that Re-
ceiver-7 has not received (or has received) Packet-k in the slots
1,...,t — 1. Moreover, we will use M[t] to denote the matrix
of memory bits [M; . [t]]5=) X The details of the dynamic
programming formulation to find the optimal scheduling rule is
moved to Appendix A.

Although DP yields a formulation to find the optimal policy,
for large values of IV and K the necessary number of operations
required to find the optimal strategy gets exponentially large
and quickly becomes impossible to handle. Thus, we propose
an efficient heuristic policy below and simulate its performance
for comparison.

HEURISTIC POLICY: We have observed in the above discus-
sions that the optimal scheduling rule has a complicated struc-
ture. Yet, it is possible to find practical scheduling algorithms
that performs close to the optimal. Here, we describe a heuristic
policy that achieves near-optimal performance based on numer-
ical comparisons.

At any given time slot ¢, let us denote the set of nodes with
an ON channel (also called the set of active receivers) by A[t] =
{i € {1,...,N} : Ci[t] = 1}. Under the symmetric conditions
that we assumed, the packet that would provide the most benefit
should intuitively be transmitted over the channel. We propose
that the benefit of a packet be measured in the number of nodes
in A[t] that has not yet received that packet. The underlying idea
is to transfer the maximum number of useful packets over the
channel at any given time. These remarks point to the heuristic
algorithm given next.

HEURISTIC BROADCAST SCHEDULING (HBS):

If (t =1)
M; p[t] — 1forallk € {1,...,K},ie {1,...,N};
While (34, 3in, Milt] > 0)
Kt] 2 {k € {1,...,K} : 3i € Alt] with M; ;[t] = 1};
It (K[ # 0)
T[t] £ arg maxexpy > icap Mix[tl;
Pick a k* € argminger > ;¢ apg Mik[t]:
M; i+ [t] — O forall i € Alt];
Transmit Packet-£* over the channel at slot ¢;

t—t+1;
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In the algorithm, each packet in K[t] has at least one re-
ceiver with an ON channel in slot £ which demands that packet.
Clearly, those packets that are not in X[¢] should not be chosen
for transmission. If K[t] # (), then we define 7 [t] to be the set
of packets in K[¢] that yield the most benefit, i.e., those packet
that are requested by the most number of ON receivers, in slot
t. Then, we have a second-level selection from 7 [t] whereby
a packet within 7 [¢] that is previously received by the most
number of OFF receivers is picked for transmission in slot ¢. This
second-level selection is included to reduce the chances of re-
transmitting the packet later on for a receiver that is currently
disconnected.

We note that our HBS policy is optimal for N = 2 under
general channel conditions. This follows from the fact that in
this case every time a receiver is ON, it will receive a useful
packet under our HBS policy until all its packets are complete.
However, this is not necessarily true for larger V. Alternatively
to the second-level selection strategy in HBS, the packet may
be selected randomly or according to some other rule from
T[t]. It is true that under symmetric channel conditions the
second-level selection strategy used in our HBS policy will
yield a mean service time that is minimal within the class of
all selection strategies that serves a packet from 7 [t], but this
is not necessarily true under asymmetric channel conditions.
The identification of the optimal selection strategy for general
K, N under asymmetric channel conditions is complicated and
requires increasing memory to operate. On the other hand, the
complexity of HBS at each iteration of the loop is O(KN)
and requires no extra memory, and hence it is relatively easy to
implement.

b) Scheduling Without CSI: In view of the assumptions that
the transmitter receives feedback from each receiver only at the
completion of the whole file and that the channels are sym-
metric, we can see that all packets in the HOL file have equal
priorities. Therefore, we have the following result.

Proposition 2: Assuming NO-CSI and independent and iden-
tically distributed (i.i.d.) channels across time slots and users,
the optimal scheduling policy is RR, where Packet-k is trans-
mitted in time slots (mK + k) for m = 0,1,--- until all the
receivers get the file.

Proof: This follows from the perfectly symmetric condi-
tions assumed under this scenario. O

B. Service Time Distributions

The goal of this subsection is to provide analytical and
asymptotic performance expressions for mean waiting time
under the optimal coding and scheduling transmission strategies
identified in Section III-A. The exact analytical expressions
provided here are in terms of infinite sums, and therefore do not
yield much insight about the impact of system parameters on
the performance. Here, we also derive asymptotic expressions
to provide a sensitivity analysis with respect to key system
parameters. We focus on the more realistic scenario of NO-CSI
throughout this section. Our arguments are based on deriving
expressions for the first and second moments of the completion
time under coding and scheduling, and then using them in (2)
to get the mean waiting time performances.
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1) Performance Analysis of RBC: Let us define the random
variable Y;RBC as the number of slots before Receiver-i’s
channel is ON K times, for ¢ = 1,...,N. Then, the com-
pletion time under RBC for a given N and K, denoted by
ZRBC(N| K), satisfies

ZMEC(N,K) = Ve @3)

max
i€{1 N}

which is the maximum of [V Pascal variables of order K. We
will use mRBC and mRBC denote the first and second mo-
ments of ZRBC (N, K), respectively. Through algebraic manip-
ulations, we can derive closed-form expressions for these mo-

ments. As an example, the first moment is given by

e 3 (LS (4 )t

i=1 \7=K

where (:l) gives the number of size m combinations of n ele-
ments, and ¢; 2 (1 — p;). Similarly, a combinatorial expression
can be given for the second moment. For simplicity of exposi-
tion, we provide the second moment for the symmetric channel

conditions

i N
= . - -1\ (o
e (5 (4o

=1 T=K

i1 L N
T — r—
- <Z (K— 1) d K)pK)
T=K

Although the exact expressions provided above can be used for
numerical comparison, the expressions can be simplified by fo-
cusing on the asymptotic regime for the symmetric case. Such an
asymptotic study has the added advantage of revealing the gains
of coding versus scheduling as a function of relevant system
parameters. The asymptotic formulations are especially useful
to understand the gains in dense networks, where an increasing
number of transceivers are used within a fixed geographic area.

The next proposition, proved in [7], will be used in our subse-
quent analysis. It provides an expression for an infinite sum that

is directly related to m{*B€ as will be noted in Proposition 4.

Proposition 3([7]): Let g(r) = Br® and let 1q( - ) be a short-
hand for log. (- ), then

> (1= (1 =g(r)g)N)

r>0

1
=IlqN + alqlq N + g6 + = — ’y
2 loggq

+ h(IgN + alglg N 4+ 1g8) + o(1)

where v is the Euler—Mascheroni constant (approximately
equal to 0.5772), and h(-) is a periodic C°°-function of
eriod 1 and mean value 0, whose Fourier coefficients are
h(k) = A-T(2k™) fork € 7. O

log q logq

The next proposition provides asymptotic expressions for
mBBC and mEB€ under symmetric conditions as a function of
N and K.
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Proposition 4: Assume symmetric channel conditions, i.e.,
p; =pforalli € {1,...,N}, and let1q(-) be a shorthand for
log1 (). Then, we have

q

1 Y

RBC

=1qT + = — —— + h(qT 1
my al' + 5 1qu+z(q)+0()

2
myP = 1°T +1qT(1 + 2y + 201(1a7)) + 3

v (P4 (x?/6))
ST + O((K — 1)lglgN)
+ h(1qT) + g2(1qT) + o(1)

K-1, (K-1)
T7=nN(2 "N
q (K -1)!

where

and h( -) is the periodic function of Proposition 3, and g1 (- ),
and go(-) are two periodic C°°-functions of period 1 and
mean 0.

Proof: The proof is moved to Appendix B. O

Proposition 4 yields asymptotic formulations for the first and
second moments of the maximum statistics of N Pascal dis-
tributed random variables of order K, and may, therefore, be
of independent interest. Noting that we are primarily interested
in understanding their effect on the mean waiting time, we next
remark on the dominant terms. To that end, we study the dense
network setting by fixing the file size K to a constant value and
focusing on the asymptotic behavior as /V increases. In this case,
T behaves as lqN (1 + o(1/1qN)) = lgN for large N. When
this value is substituted in mligc of Proposition 4, we can see
that

m?BC ~IqN, and m?BC ~ 1g°N.

This is an interesting result when we note that mJBC¢ >
(mBPBC)2 due to Jensen’s inequality. Thus, RBC asymptoti-
cally achieves the minimum possible second moment for the
given first moment. Since we already know that mPBC is the
minimum achievable mean service time (cf. Proposition 1),
this allows us to make the following statement about the mean
waiting times.

Corollary 1: For symmetric channel conditions and fixed K,
the RBC policy is asymptotically optimal in /V for minimizing
the mean waiting time (cf. (2)).

2) Performance Analysis of RR: To compute the moments of
the RR scheduler, we define X }C to be the number of transmis-
sions of P}, before it is received by Receiver-i. Then

ma)éK}{KXk + k}
gives the time slot when Receiver-i receives the whole file.
Finally, Z®®(N, K) = max;e(1,..,N} Y gives the completion
time of the RR scheduler. Similar to the RBC case, we use
mBPR and mRR to denote the first and second moments of
ZBR(N, K), respectively. The next proposition provides tight
bounds on m{E,
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Fig. 2. Mean service time performance for K = 30 and p = 1/2.

Proposition 5: Under symmetric channel conditions (i.e.,
pi = p € (0,1) for all 4), we have

mlfR_ .- 1 1 t\KN
T —7+;[—(—q) ]

for some v € (1/2,1).
Moreover, the asymptotic performance of the moments of the
RR scheduler with respect to N for fixed K satisfies

?

K
5+ Klg(KN) < mf® < K 4+ Klq(KN)
m&® > (K/2 4+ Klq(KN))2.
Proof: The proof is moved to Appendix C. O

C. Performance Comparison

In this subsection, we aim to demonstrate the coding gains
on the mean waiting time for moderate and asymptotic values
of N. To that end, we first provide numerical computations and
simulations to compare the performance of various schemes we
have discussed so far for moderate values of V and K.

A comparison of the first moments of RBC, RR , and HBS is
illustrated in Fig. 2 as a function of N, with K = 30, and each
channel is ON or OFF equiprobably at every time slot. The figure
demonstrates the strength of the coding policy to the scheduling
policy with and without CSI. We further observe that as N in-
creases the advantage of using coding improves.

Fig. 3 demonstrates the mean service time behavior of each
scheme as the file size increases for a fixed number of receivers,
N = 40. It can be seen that the mean service time increases
approximately linearly in each scheme, and the gains of coding
with respect to other schemes increase as K increases.

Fig. 4 illustrates the waiting time performance of RBC versus
RR for K = 30. It can be observed that the mean completion
time gains are carried over to the mean waiting time perfor-
mances. Notice that these huge gains are especially important
to serve real-time traffic such as voice in unreliable networks.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 15:57:24 EST from IEEE Xplore. Restrictions apply.



5518

1200 T T T T T T T T
4
\"\
RR G
1000 - | '=r=rmy Upper Bound '\,\\\y J
“““ m?R Lower Bound
- = wmHBS
800 | 1 .
mfch

600

400

Mean Service Time, E[Z]

200

Number of Packets per File, K

Fig. 3. Mean service time performance in K for N = 40, and p = 1/2.

600

500
[0
£
= 400
2
= y —E[W] for RBC
= 300 === E[W] for RR (lower bd) 1
§ R E[W] for RR (upper bd)
= 200F 1

100 | _—

0 i i i
0 10 20 30 40

Number of receivers, N

Fig. 4. Mean waiting time performance of RBC versus RR for &' = 30.

Next, we provide the asymptotic gains of network coding
compared to scheduling. We start by noting that for a fixed K,

miP¢ =1gN (1 + o(1/1qN))
and

m5PC =1q’ N(1 + o(1/1q°N))
whereas
mi® = KlgN (1 4 o(1/1qN))

and m}® > K?1q>N. Substituting these in (2) yields

—RBC Mg?N 1
WOy~ 24t N
N~ i agyy iy
—RR AK?1g2N 1
W)~ 2 9 L
W~ 0 =akiay)y < Kigw
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We see that the maximum supportable arrival rate A\ of RBC is
K times that of RR. Moreover, when the system load is fixed
to p € (0,1) fraction of the available capacity, i.e., \ARBC =
p/lqN and ARR = p/(K1qN), then we have’

WRR ()\RR)

KQ

WRBC()\RBC) _

In this section, we have seen that either with or without CSI,
coding provides a considerable gain in the mean delay to
download a given file to multiple receivers over a time-varying
medium. Moreover, its operation is significantly easier than the
scheduling policy. However, it requires an additional decoding
operation at the receivers, which may or may not be critical
depending on the file sizes and the computational capacity of
the receivers.

IV. SERVING MULTIPLE UNICAST SESSIONS

In this section, we consider the scenario where N receivers
with symmetric channel conditions demand unique flows, i.e.,
F = N,and Ny = 1forall f € F.In this case, it is not clear
whether coding will have the dominating behavior as it did in the
broadcast scenario. Again, the availability of CSI is important.
In Section IV-A, we will study some of the properties of the op-
timal scheduling and coding strategies. Then, in Section IV-B,
we will demonstrate the performance comparison through nu-
merical computations.

A. Optimal Transmission Strategies

We will first study the scheduling case and then move on to
the coding case.

1) Scheduling for Multiple Unicasts: We again consider the
case of CSI and NO-CSI.

a) Scheduling Without CSI: Without CSI, the obvious op-
timal scheduling is again RR, except that it must be performed
across files and across packets in each file. In particular, in
the first round, the first packet of each file is transmitted one
after another, and in the next round, the second packets are
transmitted consecutively. When the end of a file is reached,
we move to the first packet and continue until all the packets
of a file are received by its receiver. Only then we remove that
file from the RR scheduler and continue with the remaining
ones.

In this scenario, we define the completion time as the amount
of time required for all the HOL files to be completed at the inter-
ested receivers. As before, we assume that only after all the HOL
files are transmitted, the transmission of the next batch of HOL
files starts. This model can be extended to give different weights
to different flows, and hence achieve different fairness distribu-
tions. The mean completion time performance of the above RR
scheduling rule is easy to compute using recursive arguments,
which is omitted here since it does not add any significant in-
sights to our analysis.

b) Scheduling with CSI: Here, the constraint is to serve at
most one receiver at every time slot. This problem is a special
case of a problem studied by Tassiulas and Ephremides in [21]

SWe note that the waiting time is measured per file, which consists of K
packets.
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with no arrivals to the system. The following policy is intro-
duced in [21].

LONGEST CONNECTED QUEUE (LCQ):

t «— 0;
Q; — K, foralli € {1,...,N};
Do
t—t+1;
i*[t] — arg maxi<;<n{Ci[t]Q:};
if (Ci«[t] # 0)
Transmit P« ., ;
Qi — max(0,Q; — 1);
while (S5, Qi > 0):

Return ¢; /ICompletion time

In the policy, Q); is used both as a pointer to the index of the next
packet to be transmitted to Receiver-i, and also as the number of
packets yet to be transmitted to Receiver-i. Thus, LCQ is a my-
opic policy that favors the receiver with the maximum number
of packets to be received among all connected receivers. We re-
peat the result of [21] for future reference.

Proposition 6 ([21]): Under symmetric channel conditions
(i.e., p; = p for all 7), LCQ is minimizes the completion time
over all scheduling policies. In other words

ZLCQ jst Zﬂ—v

where 7CQ denotes the completion time under the LCQ policy
and 7 is any other feasible scheduling policy.®

This result is very strong and implies that E[ZXCQ] < E[Z™]
for any feasible scheduling policy 7.

2) Coding for Multiple Unicasts: A deep understanding of
achievable rates for multiple unicast sessions in a network is
still an open problem. In general, it is not clear whether network
coding should be performed, and if it should what the strategy
must be. We will tackle this problem for the downlink model at
hand.

We define the set of coding classes that partitions F (or equiv-
alently ) into J subsets. We use C; to denote the files (or
equivalently receivers) in Class-j. We set the restriction that
only those files within the same class will be linearly coded with
random coefficients as in RBC, while files of different classes
will not be mixed. Notice that for each class, say C;, this strategy
effectively results in a single file of length K7 £ > fec, K¢ that
is demanded by b; 2 |C;] distinct receivers. Hence, the multiple
unicasts problem is converted into a special case of multiple
multicasts with each multicast having a disjoint set of receivers.
Notice that the description of the strategy is yet incomplete, be-
cause we must describe how to “schedule” the transmissions

6<., is a stochastic ordering as described in [21].
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of different classes. We will investigate this question with and
without CSI.

a) Coding without CSI: In this case, as in Section III-A1, we
assume that each receiver informs the transmitter when it can
decode its own file, which in turn implies that it can decode all
the files within its class. The optimal policy is again going to be
of the form of RR over the coding classes. We will consider the
case of b; = band K/ = K equal for all j. If J denotes the
total number of coding classes, then only a combination from
C; will be transmitted in slot (m.J + j) form = 0,1, - - until
all the receivers get their files.

Notice that the analysis of the RR scheduler of Section III-A1
does not directly apply to this case, because here once all the re-
ceivers of a class, say C;, decode their file, then that class can
be extracted from the RR cycle. Nevertheless, similar analysis
based on recursive formulations can be used for this setting.
This analysis is omitted here due to space constraints. We re-
mark that without CSI the gain in grouping subsets of users as
described above is only due to the decreasing size of the cy-
cles as groups complete their receptions. If the period of each
cycle were kept constant at its starting value of .J throughout
the operation, then grouping would have no effect on the av-
erage delay performance, because in such a scenario we would
be comparing the expected number of slots before K ON chan-
nels are observed to 1/b times the expected number of slots be-
fore bK ON channels are observed.

b) Coding With CSI: In the presence of CSI, we must deter-
mine the optimal partitioning of the files {C;}, and also find the
optimal scheduling policy across these classes. The following
proposition finds the optimal policy using stochastic coupling
arguments.

Proposition 7: Under the symmetric channel conditions (i.e.,
p; = p forall ¢ € N), the mean delay minimizing partitioning
is obtained when b; = 1 for all j, and the optimal policy is to
implement LCQ.

Proof: Consider any given partitioning of the files, say
P = {C;} 3-’:1, and let mp denote the optimal policy for this
partitioning, which is not known in general. Also, let 77" be
the random variable that denotes the completion time of all
the files under the policy 7p. In other words, 77 is the first
slot when each receiver in Class-j received K7 linear combi-
nations of the packets from within their class, for all j. We use
w = ([1],¢[2], - -) to denote a sample path of the channel state
process. Notice that the policy and w determines 777 (w).

Next, we will define a new policy 7 and show that it satis-
fies T™(w) < T™ (w) for all feasible w. For a given w, if mp
serves Class-j in slot ¢, then 7 will send only the HOL packet of
one of the connected receivers in the same class which received
the minimum service so far. In other words, amongst the con-
nected receivers in Class-7, only the receiver that has the max-
imum number of remaining packets is served. Notice that this
policy does not do any coding, and hence requires Receiver- f
in Class-j to successfully receive Ky packets of its file instead
of K7 packets as in 7p.

To see that T7(w) < T7(w), observe that whenever
Class-j is served under mp, at most one packet (or one degree
of freedom) can be received by each receiver in that class. Thus,
before all of its receivers can decode their own packet, Class-j
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must be served at least K7 times. But, with # we can send
a single degree of freedom to one of the connected receivers
in Class-j whenever that class is served under 7p. Since for
each f € C;, only K degrees of freedom are required for Re-
ceiver- f with 7, all the receivers complete their reception when
Class-j is served K7 = Y rec, Ky times. These arguments
prove that for any feasible sample paths the completion of the
new policy is not larger than that of 7p for any partition P.

To complete the proof, we need to show that 7%¢Q < T To
that end, we note that 7 is actually a scheduling policy, where at
each slot, a single packet is transmitted over the channel. Thus,
an application of Proposition 6 completes the proof. ]

B. Performance Comparison

In this subsection, we compare the typical performance of
various policies for reasonable parameters. We take b; = b for
all j and Ky = K for all f € F. Moreover, we let K = 30
and N = F = 12 and study the mean completion time be-
havior of the scheduling and coding strategies with and without
CSI. Regarding the channel connectivity statistics, we assume
that p;, = 1/2 for all the channels. Fig. 5 depicts the simula-
tion results of the policies discussed above for varying number
of classes. In the figure, we observe that the performance of
the LCQ scheduler serves as a lower bound as we have proved
in Proposition 7. Since the optimal coding policy is not spec-
ified for an arbitrary b, in the simulation we use the following
heuristic policy: At each time slot among the classes with the
maximum number of connected receivers, the policy serves the
class with the maximum degrees of freedom yet to be trans-
mitted. This policy, when b = 1 is the same as the LCQ policy.
For this policy, we observe that the mean delay value achieved
decreases to half its value when b is decreased from 12 to 1. We
also observe that in agreement with our arguments, the perfor-
mance of the coding without CSI improves as b decreases, but
this decrease is rather insignificant.

Without CSI, the performance of scheduling is significantly
worse than the coding solution. In this particular case, we ob-
serve almost a threefold delay with scheduling as opposed to
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Source
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Fig. 6. A multicast setting in a general network topology.

coding. Given that the single-hop multiple unicasts scenario
does not improve the capacity of the channel, the presence of
such a considerable delay gain is particularly striking.

The fact that both with and without CSI the performance of
the coding strategy improves as b goes to 1 implies that for uni-
cast transmissions, it is best to code within files, but not across
them.

V. EXTENSION TO GENERAL TOPOLOGIES

So far we have considered single-hop wireless networks
in which packets are transmitted from the transmitter to each
receiver over a single hop without any intermediate relaying
mechanism. We next present a simple model to study delay
gains from coding in multihop wireless networks. We achieve
this by rearranging the general topology into a layered topology,
and then analyzing the layered topology as a chain of single-hop
networks. The following example demonstrates our layering
approach.

Example 2 (Decomposition of a Network Into Layers): Con-
sider the multicast setting shown in Fig. 6 consisting of two sink
nodes, a single source node, and some intermediate nodes.

We decompose the network in layers such that a node belongs
to Layer-¢ if the shortest path from the source to it is ¢ hops. We
can identify the layer in which each node is to be placed by
simply flooding the network or by using sophisticated shortest
path algorithms. The files generated at the source are transmitted
from one layer to the next subject to interference constraints that
will be discussed next. o

We assume that nodes belonging to the same layer are sched-
uled to transmit at the same time, while nodes in different layers
transmit in orthogonal channels (e.g., disjoint frequency bands
or time slots). Therefore, only the transmissions of nodes be-
longing to the same layer interfere. The interference model is
assumed to be a collision channel for each receiver, i.e., a re-
ceiver successfully receives a packet in a time slot if and only if
it receives exactly one packet in that time slot. We assume that
there is no communication among nodes within the same layer,
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Receivers
(Nodes in Layer i+1)

Fig. 7. A multiple-transmitter multiple-receiver system with three transmitters
and four receivers.

i.e., we drop all links among nodes within the same layer. There-
fore, both node A and node B are placed in Layer 1 in Fig. 6,
and the link between A and B is dropped.

The next step is to analyze the layered network as a series
of single-hop networks. The source transmits the file to the first
layer, the first layer transmits the file to the second layer, and so
on, until the file reaches all the sink nodes. Sinks can be in dif-
ferent layers, in which case the layer-to-layer transmission will
end when the file is received by the sink node in the last layer.
Note that packet transmission between two adjacent layers is
identical to the single-hop case described previously, with two
important differences; first, both the transmitting and receiving
layers may have more than one node (i.e., there can be mul-
tiple transmitters and multiple receivers), and second, the pres-
ence of multiple transmitting nodes may lead to collisions at the
receivers. Therefore, before using results from the single-hop
case, we must extend the single-hop case to model multiples
transmitters and multiple receivers. This extension is described
next.

A. Multiple-Transmitter Multiple-Receiver Systems

Consider a single layer with N, transmitters and N, receivers.
Transmissions take place in regularly arranged time slots with
one packet per time slot. Assume for simplicity that each receiver
is linked to arandomly chosen subset of the transmitters, and that
the cardinality of the subset, denoted by L, is the same for each
receiver, i.e., all receivers are connected to an equal number of
transmitters. This is the symmetric case. In the asymmetric case,
each receiver is allowed to be connected to a different number of
transmitters. The channel conditions on each link are identical to
the channel conditions, i.e., each channel is ON with probability
p in each time slot or OFF otherwise. Fig. 7 illustrates the system
topology for Ny = 3 and N, = 4. Here, each receiver is con-
nected to two transmitters.

Initially, all transmitters have the same file consisting of K
packets. Our goal is to minimize the time taken for the file to
be transmitted to all the receivers, and to compare the mean file
transfer completion times for network coding and scheduling in
the presence of multiple transmitting nodes.

Since transmission is successful only if a receiver receives
one packet in a time slot, it does not make sense for each trans-
mitter to transmit in every time slot. In the absence of commu-
nication among transmitters, a better strategy is for transmitter
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S; to attempt transmission with probability ¢; in every time slot.
For simplicity, we restrict our attention to the symmetric case in
which ¢; = ¢ for all transmitters. Since the channel between S;
and, say, receiver R; is ON with probability p, the probability
that R; successfully receives a packet from S; is pc. Recalling
that L transmitters are connected to each receiver, the number
of packets a receiver receives in one time slot X is given by a
binomial distribution with parameters (L, pc). Hence, the prob-
ability that a given receiver successfully receives a packet in
a time slot is P(X = 1) = Lpc(1 — pe)E~1t. This expres-
sion is identical to the probability of a successful capture in the
Aloha system. It is well known that the optimal reception prob-
ability pC must be 1/L, yielding a success probability of ap-
proximately 1/e. Therefore, the number of packets a receiver
receives in one time slot is Bernoulli distributed with a success
probability of 1/e. Thus, the results of Section III directly ap-
plies to find the mean completion times for network coding and
scheduling by replacing p = 1/e and N = N,..

VI. CONCLUSION

In this work, we introduced a key setting where delay perfor-
mance of network coding can be investigated and compared to
the traditional method of scheduling. Under various scenarios,
we identified the optimal policies and derived analytical expres-
sions for the delay expressions. We provided explicit character-
ization of the delay performance achieved by coding and sched-
uling both for moderate and asymptotic values of system param-
eters. Our findings reveal the significant delay gains of coding in
unreliable networks. Moreover, we pointed to ways of extending
our results to cover more general network settings.

These fundamental findings have interesting implications on
the performance of the applications at the higher layer of the net-
work hierarchy. There are numerous problems of interest based
on the findings of this work. For example, how does the delay
gains revealed in this work reflect to a scenario where users have
delay constraints? Also, are there more efficient ways of imple-
mentation in the general network scenario? What is the tradeoff
between delay performance and overhead? We aim to address
some of these problems in our future research.

APPENDIX

A. Dynamic Programming Formulation of the Optimal
Scheduling Rule With CSI

We let 11 denote the set of feasible stationary policies that can
be implemented by the transmitter. Each policy = € II defines
a mapping from the pair (M[¢], ¢[t]) to the set {1,..., K} de-
scribing the packet to be sent at time ¢. Note that the policy is
stationary in the sense that it is only a function of the matrix and
channel conditions at the time. The i.i.d. nature of the arrivals
and departures imply that this is the optimal policy among all
policies, including those that are time dependent.

To characterize the optimal policy we let J™(M, ¢) = E [the
number slots to reach § with policy 7|M[0] = M, ¢[0] = ¢,
where 6 denotes the zero matrix. Then, J*(M,e¢) =
mingerp J*(M, ¢) is the minimum completion time of the
optimal algorithm if it starts from M and the first channel is
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c. Also, 7*(M,¢) £
policy.

Observe that once we solve J*(M, ¢) for all ¢, we can com-
pute J*(M) = E.[J*(M, €)], where the expectation is over the
channel realizations. Thus, .J*(M) denotes the mean comple-
tion time of the optimal algorithm starting from M. Hence, we
are interested in J*([1]nxx ) Where [a]nxx denotes the all-a
matrix of dimensions N X K. Before we write the recursion for
J*(M, ¢), let us define the function f( - ) where M = f(M, ¢, k)
implies that

arg mingemr J™ (M, ¢) gives the optimal

Mir =M —M;xC; Vie{l,...,N},
M,j:Mi,ja VZE{I,N},j#k
This function describes the next state of the memory matrix
given that Packet-k is served and the channel matrix is ¢ in the
current slot. Then, we can write the following recursion:

.....

where 1¢ 4y is the indicator function of the event A.

The monotone nature of the f( - ) function enables us to com-
pute J*(M, ¢) and 7*(M, ¢) recursively starting from the base
state J*(#) = 0 (cf. [4]). This DP formulation characterizes
the optimal policy and its performance, and can be computed
starting from a 1 X 1 matrix and increasing /N and K succes-
sively.

B. Proof of Proposition 4

We outline the proof of mlfBC which is due to [7]. In the
sequel, let us use Z and Y; as shorthands for Z®BC(N, K) and
YRBC(N, C) for convenience. Also, we use F,( -) generically
to denote the cumulative distribution of the random variable
in the subscript.

Since {Y;} are i.i.d. Pascal random variables of order K, we
have

’ K—1 K-1
cwom(y) s e

with 3 := (%)K’1 (Kil)! and « := (K — 1). The last approx-
imation is accurate for m > K since the last term of the sum
dominates, and (Z) ~ T for n > k. Then, we can write

mP = 3 (1 -

m>0

=Y (1= (1=g(m)g™").

m>0

1:1max7 Y; (m))

Notice that the final expression is in the form of Proposition 3.
The proof is complete when we apply the result of Proposition
3 with g(m) = Bm* as defined above.
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Next, we prove the expression for mXBC. Note that

mfBC = E[77

=) (1—Fz(k))
k

Vv
<}

I
™

(1= Fuax, v (LVED)
<1 _ [FY(WED]N)

(1-(-avit)’) o

>
Vv
<]

I
™

>
Vv

0

[
™

k

v

0

where |z is the largest integer that is less than or equal to x.
Note that following the arguments in (5), we can approximate
(4) by replacing g(m) with Sm® as argued above. In order to
simplify the | /-] in (5), we make a change of variable, and write

mzPC =3 "(2r+1) (1 - (1= g(r)g")").

r>0

We split the sum in (6) into two as
myC = By + 2B )
where
By 2) (1= (1-g(r)g)")
r>0

B 2Y r(1-(1—g(r)a)N).

r>0

Notice that £; = m{B€, which is already studied above. Next,
we derive a similar expression for Fs. To that end, we define

E,:= Zr (1 —exp(—=NpBr®q"))

r>0
Ey: = Zr(l —exp(=T4q"))
r>0
where T' := NBIqQ*N = N(%)K_l%. Then, we can
write . } R R
Ey = (Fy — E3) + (Fy — Ea) +Fs. (3
— Y
A A

We first derive an asymptotic expression for E as a function
of T. We then show that A and A lead to negligible terms
(asymptotically in terms of N and K), and E5 dominates. Our
derivation for E’g is based on taking its Mellin transform, and
then using Mellin inversion to find an explicit expression for its
asymptotic form (see, for example ,[17]). The Mellin transform,
E3(s) of Ey(T) is given by
E3(s) = / Ey(T)T*1dT = T(s) ——
Jo (¢° — 1)
for R(s) € (—1,0), which uses the fact that

/000(1 —exp(=T))T*YdT = —T'(s), for R(s) € (=1,0).
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Mellin inversion yields

Eo(T) = i/jﬂw _T(s)—L

T s,
2mi —1i00 (qs - 1)2 °

1
2

Shifting the line of integration to the right gives the asymptotic
behavior of Eo(T) for T — oo

- B log? ¢ 4 6log® T — 127 1log(T) — % — 642

Eo(T) 121og® ¢
q° —s
+ Z Ress:%(—F(S»WT
lez\{0} !
1 M +ioco s
L —T(s) ——T"ds
278 Jpr—ioo (qs - 1)

for any M > 0. The remaining integral is O(7T~*) for any
M > 0, and the sum of residues gives g1 (1qT)lqT" + g2(1qT")
with two periodic C*°-functions of period 1 and mean value
0. Using these results together with our lq( - ) notation, we can
rewrite the expression for Fy(T) as

- 1
Bam) = 9L 4 (g (aT)aT + 5

2
(672 + 72)
Sl A N 1qT 1).
17087 ¢ + 92(1qT) + 0(1).  (9)

Next, we study A introduced in (8). We start by dividing the
sum into two parts, while replacing ¢(r) by its approximation
Br®, as follows:

A= Z r [exp(—N,Braqr) —(1- ,Braqr)N] (10)
r<lqN
+ Z exp —Npgreq") — (1 - ﬂr“qT)N] . (11)
r>lqN

In the range when r < lqN, we have ¢" > 1/N. Therefore, we
get

1< y v [exp(—ﬂr“)—(l— %Q)N}

r<lqN

= 3" rexp(—pr7) [l—exp (—57"“ (ﬁ*o(zlﬁ))}

r<lqN
which follows from the fact that

(1-5) =e (= (1455 +0(5))):

Next, using the approximation (1 —e~Y) = y for small y, which
holds for large N, we can further simplify the previous sum to

5 e exp(=rt) (g + o)

r<lqN
1
< BlgetIN =
Ala 2N +olx)

which proves that as N tends to infinity, (10) tends to zero.
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To find a bound on (11) we use the Taylor expansions for e*V

and (1 — )" to obtain

N — (1 —2)N = O(Nz?).

Substituting z = Sr® in (11) yields

(11)20 N[))2 Z r2a+1q2r

r>1qN

o)

for some positive integer m that can be computed using the poly-
logarithmic function based on .. This shows that Ais negligible
asymptotically as N —oo.

Next, we focus on A that was introduced in (8). We begin by
splitting the sum as

A= 3 per ¥ (em@NI ) 1)
r<lgN
+ > e T (1m e ) )
r>lqN

where T = NSlq® N. We study these sums separately. Note
that (12) < 0, since in this range » < lq/N. Next, we focus
on (13): Calculus shows that the summand of (13) is positive
and increasing in the range where r € (IqN,lgN + alqlqN],
and is upper-bounded by alqlqN/lq® N. Therefore, we have
the summation in this region which we further split into two
as follows: For r € (IqN,1qN + alqlqN], we have

D

IqN <r<lqN+alqlqN

re—NBla"Nq" (1 _ e—N,B(ra—lan)qT)

2
<0 (alqglgN)
- Iq" N

which tends to 0 as NV tends to infinity. Next, we focus on the
range when r > 1qN + alqlq/N. For notational convenience,
we let x := r — 1q/V, and rewrite the sum in this range as

Z [($ + IQN)e*/ﬂqo‘qu (1 — e*ﬁ((erqu)"flan)qx)}
z>alqlqN
S Z (ZU + qu) (1 — e_ﬂ((fE-quN)a—]q&N)qz)
z>alqlqN
(2) )
~ Y (z+laN)g N(( NN 1)
z>alqlqN
=5 > (z+1qN) lanZ ( )I:ZLN )
z>alqlqN q
=0 Z < Q > lq(a*m)N Z (Q;m+1 + quxm)qx
m=1 m .
< lqlgN (1 4+ 1gN
© 0 (atge-» y'9aN0 +1gN)
Iq" N
= O(alqlgN)
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where the approximation (a) is due to the fact that (1 —e™Y) =
y for small y; (b) follows from binomial expansion; and (c)
follows from the equality » - ,jq1qn 270" = O(%) and
the fact that the dominant term occurs when n = 1. Combining
this result with (9) and the finding that Ais negligible, and then
substituting these into (6) yields the expression for m&BC stated

in the proposition. O

C. Proof of Proposition 5

The upper bound of 1 for + is due to the fact that k < K. The
lower bound of 1/2 follows from stochastic coupling arguments
and heavily relies on the symmetry of the channel distributions.
In particular, consider a sample path of the channel state process,
w = (c[1],¢[2],---). We use i(w) to denote the receiver that
was the last to complete the file, and k(w) to denote the index
number of the last packet that Receiver-i(w) received. With our
earlier notation, Y (w) gives the completion time of the file at
Receiver-i(w) under the given sample path. Also, notice that
we have Y (w) = X ;((:)) (w)K + k, for some integer X ;((f))) that
depends on w.

Next, for each sample path w that leads to k(w) €
{1,...,|K/2]|}, we will construct another sample path @
that has the same probability of occurrence as w, but leads to
Y (@) = X, (@)K + (K — k(w)). This implies that
(K+1)

E[Y] > —

+ K[E[II}&kXX]i]. (14)
The construction of @ =
lowing rule:

(€[1],¢[2],- - -) follows the fol-

it r = X;() (w),

Cj[TK + (K - l)],
=3 , _ = Z(w)
Cj[rK +1] le{k(w), K — k(w)}

C;lrK +1] otherwise.

It can be seen that under symmetric conditions, this sample
path has the properties listed above.

Next, we would like to find the second term in (14). Due to
i.i.d. assumptions, X} are also i.i.d. with distribution P(X} =
m) = q™ 'p,m = 1,2, --. Since this distribution is indepen-
dent of 7 and k, we can compute

oo

Elmax Xi] = > [1 = (1-¢")""].

t=1

(15)

The first part of the proof is complete once (15) is substituted
into (14).

To prove the asymptotic expressions, we note that X} is a
Pascal distributed random variable of order 1. Therefore, the
derivation of mPBC in Proposition 4 applies for computing
E[max; x X}c] with N replaced with KN, and K replaced
with 1. To obtain m5® we simply use Jensen’s inequality:
mBR > (miR)2, O
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