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Abstract

We consider the issue of confidentiality in multicast
network coding, by assuming that the encoding matri-
ces, based upon variants of random linear network cod-
ing, are given only to the source and sinks. Based on
this assumption, we provide a characterization of the
mutual information between the encoded data and the
two elements that can lead to information disclosure:
the matrices of random coefficients and, naturally, the
original data itself. Our results, some of which hold
even with finite block lengths, show that, predicated
on optimal source-coding, information-theoretic secu-
rity is achievable for any field size without loss in terms
of decoding probability. It follows that protecting the
encoding matrix is generally sufficient to ensure confi-
dentiality of network coded data.

1. INTRODUCTION

We are intrigued by the inherent security proper-
ties of Random Linear Network Coding (RLNC) [1], a
fully distributed method for performing network cod-
ing, in which each node in the network independently
and randomly selects a set of coefficients and uses them
to form linear combinations of the data symbols it re-
ceives. If the coefficients are chosen at random from a
large enough field, it is very likely that this matrix will
be invertible, which explains why this approach is ca-
pable of achieving the multicast capacity of a network.
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Each symbol or packet is sent along with the global
encoding vector [2], which, provided that the received
matrix has full rank, enables the receivers to decode
the original data using Gaussian elimination.

If one assumes that the global encoding vector is
hidden from any node in the network other than the
sinks and the source nodes, then all that intermediate
nodes have access to is the encoded data in the pay-
load of packets, to which the fact that the encoding is
performed uniformly at random adds a natural degree
of secrecy. One scheme that relies in this concept is
SPOC [3] (Secure Practical Network Coding). SPOC
is a lighweight security scheme to ensure confidential-
ity in network coding, which leverages the inherent se-
curity provided by RLNC to reduce the overhead in
comparison to end-to-end encryption of the entire data
flow, as explained in detail in the next section.

Assuming that the full payload of all encoded pack-
ets in the network is available to an eavesdropper, there
are two natural ways of attack: (1) deduce the source
coefficients from the payload and decode the data reg-
ularly, and (2) deduce the original data directly from
the payload. We thus analyze the mutual information
between the payload and the two elements that we aim
to protect: the encoding matrix (because it leads to the
recovery of the original data), and the original data it-
self. We consider a generic setting with optimal source
encoding and devise several coding strategies that pro-
vide RLNC with information-theoretic security. Our
main contributions are as follows:

• We show a general result for the mutual infor-
mation between the payload and the encoding
matrix, which goes to zero with the size of the
field;

• We show that, according to the coding scheme
used at the source, it is possible to achieve zero
mutual information, either between the payload
and the encoding matrix or between the payload



and the original information. Furthermore, the
mutual information between the payload and, re-
spectively, the original information or the encod-
ing matrix tends to zero with the size of the field;

• We evaluate the impact of the reuse of the same
set of source coefficients in the security of RLNC
based protocols;

• We illustrate our analytical results through the
use of numerical simulation for finite block length
and small field sizes.

We believe that these contributions can help pave
the way for highly efficient cryptographic schemes for
network coding.

2. SECURITY ISSUES IN PRACTICAL
NETWORK CODING

A framework for packetized network coding (Prac-
tical Network Coding, PNC) is presented in [4]. The
packet format consists of the global encoding vector
(kept in the header) and the payload, which is di-
vided into vectors according to the field size (28 or 216,
i.e. each symbol has 8 or 16 bits, respectively). Each of
these symbols is then used as a building block for the
linear operations performed by the nodes. PNC also
includes a buffering model which divides the stream of
packets into generations of size h, such that packets in
the same generation are tagged with a common genera-
tion number. When there is a transmission opportunity
at an outgoing edge, the sending node generates a new
packet, which contains a random linear combination
of all packets in the buffer that belong to the current
generation.

SPOC (Secure Practical Network Coding) [3] is
a lightweight security scheme for confidentiality in
RLNC, which provides a simple yet powerful way to
exploit the inherent security of RLNC in order to re-
duce the number of cryptographic operations required
for confidential communication. This is achieved by
protecting (or “locking”) only the source coefficients
required to decode the linearly encoded data, while al-
lowing intermediate nodes to run their network cod-
ing operations by way of “unlocked” coefficients which
provably do not compromise the hidden data. In this
case, the threat model is one in which the attacker has
access to all the information being transmitted in the
network, with the exception of the secret keys shared
among the legitimate parties in the network. A sum-
mary of the protocol operation is presented in Table 1.

3. MODEL AND ABSTRACTIONS

Let A = (aij) be the n × n encoding matrix used
for performing coding at the source. Each of the coeffi-

Table 1: Summary of SPOC Protocol

Initialization (source nodes):
• A key management mechanism is used to exchange

shared keys with the sink nodes, which are used for
the encryption of the locked coefficients.

• The source node stores the message packets
w1, w2, ..., wh in its memory;

• The source node forms a random linear combination of
the h packets in its memory (the current generation)
and puts it in a packet to be sent;

• The coefficients corresponding to a distinct line of the
h × h identity matrix are added to the header of each
coded packet. These correspond to the unlocked coeffi-
cients;

• The packet’s global encoding vector is encrypted with
the shared keys and also placed in the header of each
packet. These correspond to the locked coefficients.

Operation at intermediate nodes:

• When a packet is received by a node, the node stores
the packet in its memory;

• To transmit on an outgoing link, the node produces a
packet by forming a random linear combination of the
packets in its buffer, modifying both the unlocked and
locked coefficients without distinction, according to the
rules of standard RLNC based protocols.

Decoding (sink nodes):

• When sufficient packets are received:

– Using the unlocked coefficients, which store the
operations performed upon the locked coefficients
throughout the network (see also [3]), the receiver
reverts those operations thus obtaining the orig-
inal locked coefficients;

– The receiver then decrypts the locked coefficients
using the shared keys;

– The receiver determines the decoding matrix by
computing the product of the unlocked coeffi-
cients and the corresponding locked coefficients;

– Gaussian elimination is then performed to recover
the original packets.

cients aij is uniformly distributed over all elements of a
finite field Fq, q = 2m, and mutually independent. Let
the original data, or plaintext, be b = (b1, b2, . . . , bn)T ,
uniformly distributed over all elements of Fq, mutu-
ally independent, and independent of A. The case in
which the data, that is, b, is not perfectly uniformly
distributed is beyond the scope of this paper. The pay-
load of the packets is represented by γ = (γ1, . . . , γn)T ,
where γi =

∑n
j=1 aijbj . Without loss of generality, we

abstract the network structure and consider the pay-
load of all packets together. An algorithm for the con-
sidered setting is presented in Algorithm 1.

We denote the fact that a vector v has x zeros by
Z(v) = x. The following lemma follows from the results
in [1] and shall be useful in the proofs for our results.

Lemma 1 (From [1]): In Random Linear Network
Coding, the conditional entropy of the payload γ given
the encoding matrix A is lower bounded by:



Algorithm 1 Abstraction of the SPOC Protocol
1: Alice: Through the use of a source coding algorithm,

transform sequence xk into a uniform random sequence
b1, . . . , bl according to the specifications in the following
sections;

2: Alice: Divide b1, . . . , bl into 1 × n vectors bK =
(b1, . . . , bn);

3: Alice: Generate a n× n encoding matrix A = (aij) in
which P (aij) = q−1,∀i, j;

4: Alice: Compute γ = AbK , where bK = (b1, . . . , bn)T ;
5: Alice: Send the encoding matrix A through the secret

channel and γ through the public channel;

6: Bob: Compute A−1bK to obtain bK ; repeat for each
AbK received.

7: Bob: Concatenate b1 . . . bl and reverse the source cod-
ing algorithm to obtain xk.

H(γ|A) ≥ n log(q) (1− f(q))) ,where O(f(q)) = O

(
1
q

)
.

4. SECURITY ANALYSIS

The following theorem provides a general bound for
the mutual information between the encoding matrix
and the payload.

Theorem 1: The mutual information between the
payload γ and the encoding matrix A is upper bounded
by:

I(γ; A) ≤ f(n, q)

where f(n, q) is a function such that O(f(n, q)) =

O
“

n log(q)
q

”
.

Proof: The result follows from considering that
I(A; γ) = H(γ) − H(γ|A), where H(γ) is upper
bounded by n log(q) and H(γ|A) is lower bounded by
the expression given by Lemma 1.

The following corollaries provide tighter bounds for
the case in which only invertible matrices A are con-
sidered.

Corollary 1: The mutual information between the
payload γ and the encoding matrix A, given that A
is invertible and that bi ∈ Fq\{0}, 0 ≤ i ≤ n, is upper
bounded by:

I(γ; A|{det(A) 6= 0}, {bi ∈ Fq\{0}})

≤ n(log(q)− log(q − 1))

Corollary 2: The mutual information between the
payload γ and the encoding matrix A, given that A is
invertible and that bi ∈ Fq, 0 ≤ i ≤ n, is equal to 0:

I(γ; A|{det(A) 6= 0}, {bi ∈ Fq}) = 0

4.1. Case-by-case bounds for I(A; γ) and I(b; γ)

Since the derivation of a general bound for the mu-
tual information between the payload and b is infeasible
without further assumptions, we consider the following
restrictions on coding: (1) source encoding of the plain-
text where the source symbols exclude the codeword
zero and (2) traditional source encoding, with random
matrices that do not include the coefficient 0. Ref-
erence [5] contains an analysis on the impact of 0’s in
diagonalization properties of partial matrices in RLNC:
in fact, the distribution of 0’s in the payload of RLNC
is not uniform, since 0 is the absorbent element for
the multiplication. This introduces some dependencies
on the result, which we evaluate next. The following
lemma will be useful.

Lemma 2: The probability of the sum Sk =∑k
i=0 σi, where σi ∈ Fq\{0} and P (σi) = (q − 1)−1∀i

yielding the result φ ∈ Fq, can be recursively charac-
terized by:

z0 = 0, z1 = (q − 1)
P (Sk = 0|(σ1, . . . , σk), σi 6= 0) = p0

P (Sk = φ|(σ1, . . . , σk), σi 6= 0)∀φ 6=0 = pφ

(p0, pφ)k =
(

(q−1)k−1−zk−1
(q−1)k , (q−1)k−zk

(q−1)k+1

)
Proof: See Appendix.

4.1.1. Source coding on b

In what follows, we consider the quantities of our
interest in the case where source coding is performed
such that b excludes the zero codeword.

Theorem 2: The mutual information between the
payload γ and the plaintext b for the case in which bi
is uniformly i.i.d and bi ∈ Fq\{0} is:

I(γ; b) = 0

Proof: See Appendix.

Theorem 3: The mutual information between the
payload γ and the encoding matrix A, for the case in
which bi is uniformly i.i.d and bi ∈ Fq\{0} is upper
bounded by:

I(γ; A)

≤ n

(
log(q)−

n∑
i=0

(
n

i

)
(q − 1)(n−i)

qn
H(γi|Z(ai) = i)

)

whereH(γi|Z(ai) = i) = −p0i log p0i−(q−1)pφi log pφi,
and the values for (p0, pφ)i are given by the expression
in Lemma 2. It follows that limq→∞ I(γ; A) = 0.

Proof: See Appendix.



4.1.2. Variants of the encoding matrix

The following results consider the quantities of our
interest in the case where the entries of the encoding
matrix A are chosen uniformly i.i.d among the non-zero
elements of the finite field, Fq\{0}.

Theorem 4: The mutual information between the
payload γ and the plaintext b, for the case in which bi
is uniformly i.i.d and aij ∈ Fq\{0} is bounded by:

I(γ; b)

≤

(
n log(q)−

n∑
i=0

(
n

i

)
i(q − 1)(n−i)

qn
H(γi|Z(b) = i)

)
whereH(γi|Z(b) = i)) = −p0i log p0i−(q−1)pφi log pφi,
and the values for (p0, pφ)i are given by the expression
in Lemma 2. It follows that limq→∞ I(γ; b) = 0.
Sketch of Proof: The proof uses the same arguments as
the ones in Theorem 3.

Theorem 5: The mutual information between the
payload γ and the encoding matrix A, for the case in
which bi is uniformly i.i.d and aij ∈ Fq\{0} obeys to:

I(γ; A) = 0
Sketch of Proof: The proof uses the same arguments as
the ones in Theorem 2.

4.2. Impact of reuse of the coding matrix

We now consider the impact of the reuse of the cod-
ing matrix, that is, the information that a possible
attacker could obtain by observing (γ

1
, γ

2
, . . . , γ

n
) =

(Ab1,Ab2, . . . ,Abn), where A is a matrix generated
once at random according to the cases considered so
far. This analysis is relevant to allow the reuse of en-
coding matrices at each generation. Due to lack of
space, we only include the results referring to the cases
considered in Theorems 2 and 4. The results for the
remaining cases are similar.

Theorem 6: The information obtained about A
given (γ

1
, γ

2
, . . . , γ

w
) = (Ab1,Ab2, . . . ,Abw), for the

case in which bi is uniformly i.i.d and aij ∈ Fq\{0} is
given by:

I(γ
1
, γ

2
, . . . , γ

w
; A) = 0

Sketch of Proof: The result follows by considering stan-
dard entropy inequalities.

Theorem 7: The information obtained
about (b1, . . . , bw) given (γ

1
, γ

2
, . . . , γ

w
) =

(Ab1,Ab2, . . . ,Abw), for the case in which bi is
uniformly i.i.d and bi ∈ Fq\{0}, satisfies:

I(γ
1
, . . . , γ

w
; b1, . . . , bw) = 0,

Sketch of Proof: The result follows by considering stan-
dard entropy inequalities.

4.3. Discussion

Figure 1: Mutual information in function of field size, for
several coding strategies for RLNC and n = 4.

The results, illustrated in Figure 1, provide funda-
mental insights with respect to the confidentiality of
the information secured by protecting the code used in
RLNC. One remarkable consequence is that, indepen-
dently of the encoding matrix, and as long as source
coding is optimal, benefits are achieved simultaneously
in terms of security and in terms of decoding probabil-
ity. In fact, both the mutual information between the
payload and the original plaintext or the coefficients
and the decoding error probability decrease as the field
size increases [1].

Another interesting observation from our results is
the dichotomy between including the zero symbol in A
or b. In fact, one can achieve zero mutual information
either between the payload and the original informa-
tion – by performing source-coding that excludes the
codeword zero – or zero mutual information between
the coefficients of the encoding matrix and the origi-
nal information – by generating random matrices with
coefficients chosen among the non-zero elements of the
finite field under consideration.

This trade-off suggests some implications on the
number of reutilizations of the encoding matrix in se-
cure practical protocols. This number is typically pro-
portional to the size of the generation and of the pack-
ets in practical RLNC based protocols, and should be
carefully chosen if bi’s are chosen to belong to Fq\{0},
since some information is leaked about the encoding
matrix in each reutilization. On the other hand, if one
chooses bi among all the elements in the finite field and
the encoding matrix not to include zeros, there is leak-
age of information about each b, but not about A, and



the size of the generation is no longer relevant in terms
of security.

5. NUMERICAL SIMULATION

Figure 2: Evolution of H(γ) and H(γi), 1 ≤ i ≤ 2, with the
size of the field, for n = 2. Full lines represent the entropy
of γi (that is, the entropy of the resulting symbols), while
dashed lines represent the entropy of γ (that is, the entropy
of the resulting vectors).

With the goal of verifying both the impact of the
invertibility of A and the impact of the choice of 0’s
in the coefficients of A and b in the entropy of γ, we
consider several scenarios for the evolution of the en-
tropy with the size of the field, as shown in Figure 2.
Due to computational complexity, we restrict ourselves
to 2 × 2 matrices, yet we consider several field sizes.
We determine the entropy numerically, both on a se-
quence basis (H(γ), for all possible γ) and on a symbol
basis (H(γi), for all possible γi) , and compare it to
the theoretical entropy of the uniform distribution for
both.

The results presented in Figure 2 show that both
quantities approach maximum entropy very fast with
the size of the field, even for small fields. Both entropies
show a similar behavior. As predicted, most cases are
far from maximum entropy for m = 1 (since in a field
with 2 elements, many matrices are not invertible, and
the results are thus far from uniform) and approach
maximum entropy very fast from m = 2 onwards. No-
tice that in the cases we consider, both H(γi) and H(γ)
are maximum, for all field sizes considered.

6. CONCLUSIONS AND FURTHER WORK

We obtained bounds for the mutual information be-

tween the payload of packets encoded with RLNC and
either the coefficient matrix or the original plaintext,
for several choices of source coding and matrix restric-
tions. Our bounds indicate that it is possible to guar-
antee information-theoretic security for the payload by
compressing without the zero symbol. Alternatively,
we can exclude the zero symbol from the encoding ma-
trix and achieve the same goal. Provided that the
source coding stage offers optimal compression, pro-
tecting the code is generally sufficient. This observa-
tion is likely to have a strong impact on the design of
secure RLNC protocols, most strikingly with respect to
the choice of generation size and security constraints.

As part of our ongoing work, we are considering the
evaluation of the impact of non-uniformities caused by
imperfect source coding and modes of encryption for se-
cure network coding protocols, using both information-
theoretic tools and state of the art cryptanalysis tech-
niques.
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APPENDIX

Sketch of Proof for Lemma 2

Let Si represent the result of the sum of i elements.
We represent all the possibilities of results by a q-ary
tree, in which each the ith level of depth represents the
possibilities for Si. By using this representation, we
consider the probabilities for obtaining each symbol in



Fq at each “step” of the sum, that is, Si+1 = σi+1 +
Si, where σi+1 6= 0. Let Zi represent the number of
zeros at level i of the tree. It is clear that Z1 = 0,
since σ1 ∈ Fq\{0}. At each step i > 1, each non-
zero element contributes to the tree with one 0, while
each zero element contributes to the sum tree with no
zeros. This can be easily representable by a recursive
expression:

• The number of zeros at step i is the subtraction
of the number of elements at level i of the tree by
the number of non-zeros from the last iteration,
that is, Zi−1(q − 1) and hence Zi = (q − 1)i −
Zi−1(q − 1);

• The number of non-zeros at step i is simply the
subtraction of the total number of elements of the
level i of the tree with Zi.

The result follows. �

Sketch of Proof for Theorem 2

We start by noting that since H(γ) ≤ n log(q), then
I(b; γ) ≤ n log(q)−H(γ|b). We now consider H(γ|b) in
detail.

We analyse the result γ = Ab first by considering
the multiplication operation, since it precedes the sum
operation. We introduce an auxiliary matrix C = (cij),
where cij = aijbj . Since aij and bj are chosen indepen-
dently of one another, it is clear that each column in
C is independent of each other.

To analyse the dependency among the elements in
the same column, that is, aljbj and akjbj , we note that

∀bj , P (aijbj = α|bj = β, bj 6= 0) =
1
q
,

because of the properties of the multiplicative group of
a finite field.

Also, since each aij is independent of the others, it
is clear that cij is independent of clj , ∀i 6= l, that is,
there are no dependencies among the elements of the
same column.

We now consider the sum operation. At each inter-
mediate sum operation, cil+

∑l−1
j=1 cij , l ≤ n, cij is uni-

formly i.i.d. with P (cil|bl) = 1
q . By an induction-like

argument, with the inductive basis P (cl1+cl2 = τ) = 1
q ,

we reach the final result, that is, P (γl = τ) = 1
q , and

H(γl) = log(q). Since each element in the vector γ is
independent of one another, it follows that

H(γ|b) = nH(γl|b) = n log(q),

and I(γ|b) = 0. �

Sketch of Proof for Theorem 3

The proof uses the same arguments as in Theorem 2.
We start by noting that I(A; γ) ≤ n log(q) − H(γ|A)
and consider H(γ; A) in detail, by analysing one ele-
ment γi of γ at a time.

We consider beforehand the multiplication opera-
tion and use the auxiliary matrix C = (cij), where
cij = aijbj and γi =

∑n
j=1 cij . By using the same ar-

guments as in the proof for Theorem 2, we note that
each column of C is independent of each other.

We now consider, without loss of generality, c1j =
a1jbj . It is clear that P (c1j = 0|a1j = 0) = 1. If
c1j 6= 0, then

P (c1j = θ|a1j = α1j)θ,α1j 6=0 = (q − 1)−1.

By using the same arguments as in the proof for
Theorem 2, it follows that the lines of C are mutually
independent of each other.

We now consider the addition operation, by consid-
ering c1. Let Si =

∑i
j=1 c1i and γ1 = Sn. Since the

multiplication of a number by a zero always yields the
zero result and zero is the neutral element of addition,
we can rearrange c1 and a1 in the following way:

P (Sn = φ|Z(a1) = l))

= P (Sn = φ|a1 = (α1, ..., αl,

n−l︷ ︸︸ ︷
0, ..., 0))αj 6=0,∀j

= P (Sl = φ|a1 = (α1, . . . , αl))αj 6=0,∀j

The probability P (Sl = θ|a1 = (α1, . . . , αl))αj 6=0,∀j

is given by Sl =
∑l
i=0 c1i, where αi, c1i ∈ Fq\{0} and

P (c1i) = (q − 1)−1, which are given by Lemma 2.
We now subdivide the computation of H(γ1|a1) in

sets, each corresponding to a1 having i zero elements:

H(γ1|a1)

= −
n∑
i=0

(
n

i

)
(q − 1)(n−i)

qn
((q − 1)f(φ, a1) + f(0, a1)) ,

where f(θ, v) = p(γ1 = θ|v) log p(γ1 = θ|a1) and
a1 = (α1, . . . , αn−i, 0, . . . , 0).

Since each line of C is mutually independent of the
others, H(γ|A) = nH(γ1|a1) and it follows that

I(γ; A)

= n

(
log(q)−

n∑
i=0

(
n

i

)
(q − 1)(n−i)

qn
H(γi|Z(ai) = i)

)
,

where
(Hγi|Z(ai) = i) = −p0i log p0i − (q − 1)pφi log pφi,

and the values for (p0, pθi) are given by the expres-
sion in Lemma 2. �


