INTEGRATING NETWORK CODING INTO
HETEROGENEOUS WIRELESS NETWORKS

Minkyu Kim*, Muriel Médard*, Una-May O’Reilly’
*Laboratory for Information and Decision Systems
TComputer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, MA 02139
Email: {minkyu@, medard@, unamay@csail. }mit.edu

Abstract—We investigate the problem of integrating network
coding into heterogeneous wireless networks where a number of
coding nodes are to be placed among legacy nodes that do not
handle network coding operations well. In particular, we seek to
understand better the following questions: 1) how many coding
nodes are needed, 2) where should the coding nodes be located,
and 3) how should the coding nodes interact with other non-
coding nodes? To this aim, we apply our previously proposed
evolutionary algorithm that operates as a distributed protocol
and present quantifiable results through various simulations. We
also consider the algorithm’s operation in lossy environments and
show that the temporally distributed structure of our algorithm
offers a significant advantage in overcoming the adverse effect
of packet erasures.

I. INTRODUCTION

Network coding has been shown to offer numerous advan-
tages over traditional routing in terms of multicast throughput
[11-[3], cost of multicast [4], [5], security [6], [7], network
management [8], among many others. However, in order to
have network coding widely deployed in real networks, it still
remains to show that the amount of overhead incurred by
additional coding operations can be kept minimal and often
outweighed by the benefits network coding provides.

While most network coding solutions assume that the cod-
ing operations are performed at all nodes, we have pointed out
in our previous work [9] that it is often possible to achieve the
network coding advantage by coding only at a subset of nodes.
Determining a minimal set of nodes where coding is required
is NP-hard [9], as well as finding its close approximation [10].
We have previously proposed evolutionary approaches [9],
[11]-[14] toward a practical multicast protocol that achieves
the full benefit of network coding in terms of throughput, while
performing coding operations only when required at as few
nodes as possible.

In this paper, we focus on the scenario of heterogeneous
wireless networks where a number of coding nodes are to
be placed among legacy nodes that do not handle network
coding operations well. Many interesting questions may arise
regarding this scenario: How many coding nodes are required?
If performing coding operations only at a subset of nodes is
enough, where should those coding nodes be located? Can we

978-1-4244-2677-5/08/$25.00 © 2008 IEEE

fix their locations despite varying communication demands?
How should those coding nodes interact with other non-
coding nodes? Though providing complete answers for all
such questions is a difficult task, we seek to better understand
those questions based on our previously proposed evolutionary
framework and provide some quantifiable results through
various simulations. We also discuss how our algorithm works
in the presence of packet erasures which may be caused by
delays, collisions, or topological changes. For this purpose,
we revisit the temporally distributed structure of our algo-
rithm [13], whose initial motivation was better utilization of
computational resources over the network. We show that the
temporally distributed algorithm offers a significant advantage
in overcoming the adverse effect of erasures.

In this paper, we primarily focus on the achievability of the
desired multicast rate, assuming that the subgraph selection
has been performed and the resulting subgraph is given a
priori. Note, however, that one may be more interested in
other characteristics of network coding, e.g., error correcting
capability, especially in wireless environments. Though we do
not explicitly consider here those other characteristics, a very
similar method can be utilized to investigate the questions
raised here with a number of different objectives that network
coding may achieve, which we believe will be an interesting
direction for future work.

The rest of the paper is organized as follows. Section II
presents the problem formulation and related work. Section
III describes the main concept and structure of our algorithm.
Section IV applies our algorithm to investigate various issues
in heterogeneous wireless networks. Section V discusses the
effect of packet losses on the algorithm’s operation. Section
VI concludes the paper.

II. PROBLEM FORMULATION AND RELATED WORK
A. Problem Formulation

We model the network by a directed hypergraph G =
(V,A), where V is the set of nodes and A is the set of
hyperarcs. Each hyperarc (¢,J) represents a broadcast link
from node ¢ to a non-empty subset J of V. Hyperarcs
have unit-capacity implying that a unit-size packet can be
transmitted per unit-time in the given direction. Connections
with larger capacities are represented by multiple hyperarcs.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 15:59:57 EST from IEEE Xplore. Restrictions apply.



Only integer flows are allowed, hence there is either no flow
or a unit-rate flow on each link. We also assume that the end-
nodes of a hyperarc can send some amount of feedback data
in the reverse direction to the start-node of the hyperarc.

We consider the single multicast scenario in which a single
source s € V wishes to transmit data at a given rate R to a
set T C V of sink nodes, where |T'| = d. Rate R is said to be
achievable if there exists a transmission scheme that enables
all d sinks to receive all of the information sent. We consider
only linear coding, where a node’s output on an outgoing link
is a linear combination of the inputs from its incoming links.
Linear coding is sufficient for multicast [2].

Let us recall that we are interested in heterogeneous wireless
networks where a number of coding nodes and the legacy non-
coding nodes coexist. The coding nodes that need to be placed
among the legacy nodes are assumed to have some built-in
mechanism for network coding operations, which makes the
cost of coding negligible. On the other hand, we assume that
the legacy nodes can provide only limited support for network
coding at the application layer and that such emulated coding
operations are computationally expensive.

Suppose that the target multicast rate R is given such that
it is achievable when network coding is allowed at all nodes.
We present our algorithm whose objective is to minimize
the number of the legacy nodes that have to emulate coding
operations in order to achieve the desired multicast rate,
assuming first that the locations of the coding nodes are given.
We then investigate the issue of where to put the coding
nodes and how they should interact with non-coding nodes,
by applying our proposed algorithm in various simulations.

B. Evolutionary Algorithms for Network Coding

Let us give a brief introduction to Genetic Algorithm (GA)
on which our algorithm is based. GAs operate on a set
of candidate solutions, called a population, which improves
sequentially via mechanisms inspired by biological evolution
[15]. Each candidate solution is typically represented by a bit
string, called a chromosome. Each chromosome is assigned a
fitness value that measures how well the chromosome solves
the problem at hand, compared with other chromosomes in
the population. From the current population, a new population
is generated typically using three genetic operators: selection,
crossover and mutation. Chromosomes for the new population
are selected randomly (with replacement) in such a way that
fitter chromosomes are selected with higher probability. For
crossover, survived chromosomes are randomly paired, and
then two chromosomes in each pair exchange a subset of
their bit strings to create two offspring. Chromosomes are then
subject to mutation, which refers to random flips of the bits
applied individually to each of the new chromosomes. The
above process is iterated with the newly generated population
successively replacing the current one. For further details of a
standard simple GA, the reader is referred to [9], [15].

For the problem of network coding resource optimization,
we have proposed in [9] a GA-based evolutionary approach,
demonstrating its benefits over other existing approaches in

terms of the solution quality and the applicability to a variety
of generalized scenarios. Along the same direction, [11] has
developed a novel representation method and the associated
operators, which were shown to lead to a substantial gain in
the algorithm’s performance, as analyzed more in depth in
[12]. Furthermore, we have presented distributed versions of
the algorithm, both spatially [11] and temporally [13], where
the resource optimization can be done on the fly integrated
into a decentralized network coding framework. In [14], we
have investigated the issue of the tradeoff between the cost of
link usage and that of network coding.

III. DESCRIPTION OF ALGORITHM

Our algorithm operates largely the same way as the dis-
tributed algorithm in [11] except that it should now be im-
plemented in wireless networks and also that the legacy non-
coding nodes and a number of coding nodes coexist. Thus,
here we only describe the algorithm’s main concept and overall
structure, highlighting the changes that need to be made from
the previous algorithm, while the reader is referred to [11] for
details of the algorithm.

A. Assumptions

We assume that the hypergraph representing the given
wireless network is acyclic. Note that cycles can be avoided
by carefully selecting a subgraph that does not contain a
directed cycle, for instance using the distributed algorithm in
[16] or simple heuristics [17]. If minimizing the link cost is
of concern, we may choose to run our algorithm on top of
the minimum cost subgraph calculated as in [4]. The resulting
subgraph should be acyclic provided that the cost of each link
usage is positive.

We assume that each interior node operates in a burst-
oriented fashion; i.e., each node starts updating its output only
after an updated input has been received from all incoming
links, similarly as in the generational approach in [18]. For
the time being, we do not explicitly consider the effect of
lossy transmission or the issue of collision, assuming that
the algorithm operates on top of appropriate mechanisms that
handles those; those losses due to either erasures or collisions
may in fact be resolved eventually through network coding.
Later we will discuss how the algorithm works in the presence
of the losses. Even if there is no need for any node to know the
whole topology, each node is assumed to know its neighboring
nodes, i.e., upstream and downstream nodes. We assume that
the mobility of the nodes is limited or at least slow that there
is no change in the neighboring relations among nodes during
the iteration of the algorithm.

B. Main Concept

It is clear that no coding is required at a node with only
a single input since it has nothing to combine with. For a
node with multiple incoming links, which we refer to as a
merging node, if the linearly coded output on a particular
outgoing link weights all but one incoming message by zero,
then no coding occurs on that link. (Even if the only nonzero

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 15:59:57 EST from IEEE Xplore. Restrictions apply.



coefficient is not identity, there is another coding scheme that
replaces the coefficient by identity [10].) Thus, to determine
whether coding is necessary on an outgoing link at a merging
node, we need to verify whether we can constrain the output
on that link to depend on a single input without destroying
the achievability of the given rate.

Consider a merging node with k(> 2) incoming links and
[(> 1) outgoing links, each of which is represented by a
hyperarc. To each pair of the i € {1,..., k}-th incoming link
and the j € {1,...,l}-th outgoing link, we assign a binary
variable a;; which is 1 if the input from incoming link :
contributes to the linearly coded output on outgoing link j
and 0 otherwise; we call these the active and inactive link
states, respectively. For the j-th (1 < j < [) outgoing link,
we refer to the associated binary variables a; = (ai;)ic{1,....}
as a coding vector (see Fig. 1 for an example). Then, network
coding is required over outgoing link j only if two or more
link states are active in the corresponding coding vector.

.
3. r1 T2 I3
H

1 z2 I3 Zr & T2

v y2
ar=[1 o[ ]as{o] 1]

coding vector for y1 ¢ coding vector for y2

y1 Y2

(a) Merging node v (b) Coding vectors for outgoing links

Fig. 1. Node v with 3 incoming and 2 outgoing links is associated with two
coding vectors a1 = (@11, az21,a31) and a2 = (a12, az2,as2).

Note that whether a particular node must code depends
on which other nodes are coding, thus deciding which nodes
should code in general involves a selection out of exponentially
many possible choices of coding vectors. We employ a GA-
based search method to efficiently address the large and
exponentially scaling size of the space.

In our problem, a chromosome (i.e., a candidate solution)
is simply the collection of all those coding vectors. Hence,
each chromosome indicates which inputs will contribute to
which outputs at each of the merging nodes. Note that, given
a chromosome, it is easy to count the number of coding nodes.
For the feasibility test of a chromosome (i.e., whether the
target rate is achievable with the transmission scheme given by
the chromosome), we employ random linear coding at interior
nodes. The fitness value F' of chromosome z is defined as

number of legacy nodes
F(z) =

if z is feasible, (1)
if 2 is infeasible,

having coding links,
w’
which is to be minimized through the algorithm’s iteration.

C. Overall Structure

The overall flow of our distributed algorithm is shown in
Fig. 2 with the location of each procedure specified. The

main idea of the distributed implementation is that because
each merging node only needs to refer the relevant portion
of the chromosome (i.e., the coding vectors that indicate the
operations at that node), the whole population can be managed
in a distributed manner over the network.

[D1] initialize population; (merging nodes)

[D2] run forward evaluation phase; (all nodes)
[D3] run backward evaluation phase; (all nodes)
[D4] calculate fitness; (source)
[DS] while termination criterion not reached (source)
{
[D6]  calculate coordination vector; (source)
[D7]  run forward evaluation phase; (all nodes)
[D8] perform selection, crossover, mutation; (merging nodes)
[D9]  run backward evaluation phase; (all nodes)
[D10] calculate fitness; (source)

Fig. 2. Flow of distributed algorithm

Another key idea enabling the algorithm’s efficient opera-
tion over the network is that a large number of chromosomes
can be handled together by a single packet transmission. In
most network coding solutions (e.g., [18]), a global encoding
vector consisting of the coefficients that indicate the overall
effect of network coding relative to the source data is typically
assumed to be carried in the packet header, while the payload
conveys the actual data encoded using the coefficients. Here,
we only need to transmit the set of such coefficients, which we
refer to as pilot vector, for fitness evaluation without the data to
be encoded. Hence we can fill the payload with as many such
coefficients as can be accommodated within a single packet.

The only change that needs to be made in the wireless
case, compared with the algorithm in [11], is the backward
evaluation phase ([D3, D9] in Fig. 2). To calculate the chro-
mosome’s fitness value, two kinds of information need to be
gathered: 1) whether each sink can decode data of rate R
and 2) how many legacy nodes perform coding operations.
For the feedback of this information, each node transmits
a fitness vector consisting of N components, where N is
the total number of chromosomes in the population. Each
component indicates whether the corresponding chromosome
is feasible and if so, carries the current count of the number of
coding legacy nodes which is to be updated as the backward
evaluation phase proceeds as follows:

e After the feasibility test of the N chromosomes, each
sink generates a fitness vector whose i-th (1 < i < N)
component is zero if the i-th chromosome is feasible at
the sink, and infinity otherwise. Each sink then initiates
the backward evaluation phase by broadcasting its fitness
vector to all of its parents.

e Each interior node calculates its own fitness vector
whose i-th (1 < ¢ < N) component is 1 if it is non-
coding legacy node and coding was done for the i-th
chromosome and 0 otherwise, then adds to it the sum of
all the i-th components of the received fitness vectors
destined for that node. Each node then transmits the
calculated fitness vector to only one of its active parents

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 15:59:57 EST from IEEE Xplore. Restrictions apply.



which we define as the nodes that have transmitted
nonzero pilot vectors during the forward evaluation
phase. Note that all other parent nodes will still overhear
the fitness vector but only use it as an acknowledgment
rather than adding it to their own fitness vectors.

Note that, since the network is assumed to be acyclic, each
coding node contributes exactly once to the corresponding
component of the source node’s fitness vector, and thus the
above update procedure provides the source with the correct
total number of coding nodes.

IV. ALGORITHM’S APPLICATION IN VARIOUS
SIMULATIONS

In this section, we investigate various issues regarding
the questions we posed in Section I through simulations.
The simulations were performed based on random wireless
networks generated as follows. Nodes are placed randomly
within a 10 x 10 square with radius of connectivity 3. A unit-
rate hyperlink is originated from each node toward the set of
nodes that are within the connectivity range and have a higher
horizontal coordinate than the node itself. The source node
was chosen randomly among the nodes in the left half and the
receiver nodes in the right half. The source node is allowed
to transmit R times where R is the desired multicast rate.

The GA parameters used for the experiments are as follows.
Population size is 200 and tournament size for selection is 10.
Crossover and mutation rates are 0.2 and 0.02, respectively.

We randomly generated networks having 20 and 40 nodes
with different number of sinks and desired multicast rates
as shown in Table I. For each set of the parameters, we
collected 100 random topologies whose multicast capacity for
the chosen source and receiver nodes is the same as the desired
multicast rate. That is, in each network tested, we tried to find
a transmission scheme that achieves the maximum possible
multicast rate while performing network coding only when
required.

A. Number of Coding Nodes

First, in order to find how many coding nodes are required,
we ran our algorithm without distinguishing coding nodes and
non-coding legacy nodes; i.e., there were no nodes where
network coding is free. Table I shows the distribution of the
calculated number of coding nodes for 100 random topologies
for each parameter set. We notice that, though the multicast
capacity can only be found assuming network coding first, to
achieve the multicast capacity coding operation is often un-
necessary at all. Even when network coding is needed, coding
operations are required only at a small subset of the nodes.
One may also observe the trend that more network coding
becomes necessary as the network resources are more heavily
used, i.e., the number of sinks and desired rate increase.

B. Location of Coding Nodes

Though it is hard to provide general guidelines regarding
where to put the coding nodes because it is highly dependent
on the topology and communication demands, our algorithm

TABLE I
DISTRIBUTION OF THE CALCULATED MINIMUM NUMBER OF CODING
NODES IN 100 RANDOM TOPOLOGIES FOR EACH PARAMETER SET

. Number of Coding Nodes .
Nodes | Sinks | Rate ) 1 T3 74713 Fixed
4 4 9% | 3 1 - 1.00
6 713 T1-1T-1-1- 1.00
4T T -17-1-1-1 067
L O S 10 2 N B I R
8 4 9% | 4 [ -1 -1-1-1 040
6 oT | 7 [2-1-1-1 044
4 117 [1]-1-1-71 029
4 6 | 9|45 T1T]T]-T1 054
8 [8 [ IT[2]T1T]-1-1 040
4 7A1T197e6e 1T -1-71042
6 6 [66 2271411 -1030
40 8 B NR2[4][1]-1-71 032
4 68126 S5 T7]-1-1 038
8 6 62 2773 [11]-1 033
8 65 257121 -1171 043
4§ T nT21fe 1] -1-71 076
10 6 STT3[S5]15121 171 040
8 68 20 [ 92T -1 024

allows us to do some interesting analyses that would reveal
more insights on the problem. Let us first consider the flex-
ibility of the location of coding nodes, which we define as
follows: A coding node is said to be flexible if there exists
another network code that is feasible but does not employ
network coding at that node, and otherwise, it is called fixed.
For each topology that was found to require at least one coding
node, we now run our algorithm assuming that the above found
coding nodes are treated as legacy nodes and at all other nodes
network coding is free. That is, if some of the above found
coding nodes are fixed, those nodes would still remain as
coding nodes despite the penalty imposed, and otherwise, other
coding nodes would emerge instead. The last column in Table I
shows the ratio of the fixed coding nodes to the whole number
of coding nodes in 100 topologies for each parameter set. The
ratio of fixed coding nodes shows a decreasing trend as the
network resources are used more heavily, which is intuitive
in the sense that heavy link usage may tend to create more
alternative mixing opportunities among flows. Suppose that the
coding nodes are randomly placed, which is likely to happen
in mobile networks. Our result suggests that as the network
traffic becomes heavy, the location of the coding nodes may
become more flexible, hence it is more likely that the randomly
placed coding nodes may become useful.

On the other hand, we may be able to place coding nodes in
a more planned manner, for instance, when the given network
is more static. Then, how can we find the good candidates for
the location of the coding nodes? Suppose that we sampled
some traffic patterns and found a number of common coding
nodes. Are they likely to be useful for other traffic requests? To
answer this question, we picked two representative topologies,
denoted by network G and H, out of 100 random networks
above with 40 nodes, 6 sinks and multicast rate 4. Network
G requires 3 coding nodes ({15, 17, 19}) that are all fixed.
However, network H needs 2 flexible coding nodes, hence
we ran our algorithm 30 times to find 7 different coding
node pairs involving a total of 7 nodes: {13, 18, 19, 24,

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 15:59:57 EST from IEEE Xplore. Restrictions apply.



28, 32, 34}. Then, for both networks, we randomly chose
30 different sets of a source and 6 sinks such that multicast
rate 4 is achievable, and ran our algorithm again (once for
each source-sinks pair). For network G, in 16 cases out of 30,
network coding was found to be necessary with the number of
coding nodes varying from 1 to 3 and the union of all 16 sets
of coding nodes was {15, 17, 19, 21, 24, 26}. For network
‘H, one to three coding nodes were found to be necessary
in 26 cases and the union was {13, 22, 24, 28, 32, 34}.
It is interesting to note that in both networks G and H, at
least half of the coding nodes were in common with different
communication demands. That is, if the latter experiments
(sampling 30 different source-sinks pairs) had been performed
first and the coding nodes had been placed accordingly at
the union of the found locations, the original communication
demands would have been met without requiring additional
coding nodes (or emulated coding operations at legacy nodes).
Though the experiment is based on a very limited number
of cases, it may indicate that deploying coding nodes in the
common locations for a number of sampled traffic patterns
may actually work well in practice for small to moderate size
wireless networks.

C. Interactions among Coding and Non-Coding Nodes

Our algorithms is based on GA which is a direct search
method, hence at any stage of the algorithm a set of working
network codes is available. In our algorithm’s distributed
setup, this means that each merging node stores /N actual
coding schemes, where N is the population size, and if the
i-th (1 < i < N) chromosome indicates one or less active link
states, the corresponding coding scheme is routing. Note that,
at the end of the algorithm, all the source node has to do is
to transmit the index, say j, of the best chromosome (out of
N chromosomes in the last population) with the data. Then,
each downstream merging node simply operates according to
the j-th chromosome stored at the node, whether it is routing
or coding.

Therefore, the interaction problem is already dealt with
implicitly within the framework of our algorithm, whether the
algorithm is used to find the potential location of the coding
nodes or to minimize the number of legacy nodes that requires
coding while the locations of the coding nodes are already
fixed.

V. OPERATION IN LOSSY ENVIRONMENTS
A. Built-In Robustness of GA

So far we have assumed that the losses are controlled by
other appropriate mechanisms. Though such losses may be
resolved eventually through network coding, the operation of
our algorithm is certainly affected when the packets carrying
control signals are dropped. First of all, the flow of the
algorithm may halt since each node expects the inputs from all
of its neighboring nodes to proceed. We thus need to employ
an expiration mechanism such that if some inputs are not
received until the timer expires, each node just proceeds to
the next stage without indefinitely waiting for those inputs.

There are further problems remaining even if we can prevent
the halt of the algorithm at the expense of some possible
delays. In particular, if packets are lost (and thus ignored)
during the forward evaluation phase, feasible solutions may
appear infeasible, hence the fitness values of the affected
chromosomes may get mistakenly worse. On the other hand,
packet losses in the backward evaluation phase may lead
to incorrectly better fitness values because the signals for
infeasibility may not be delivered to the source node or some
coding nodes may be missed out during the counting process.

However, the built-in robustness of GA can significantly
reduce the negative effect of such incorrect fitness values.
First, GA operates on the set of candidate solutions (pop-
ulation), rather than a single one. Second, in search of the
optimal solution, GA iteratively reconstructs and re-evaluates
the population after mixing and perturbing high-performance
solutions. Hence, even if the population may have corrupted
fitness values at a particular generation, the algorithm may
operate without much disruption because the affected chro-
mosomes can be re-evaluated and corrected in the subsequent
generations. It is worth to point out that the same argument
also applies to the effect of slight topological changes.

Moreover, GA may become even more robust by employing
the temporally distributed structure introduced in our previous
paper [13]. Though the main purpose in [13] was to improve
convergence time of the algorithm via more efficient use of
network resources, we will show here that the temporally
distributed structure leads to much more robust operation of
the algorithm in the presence of losses.

B. Temporal Distribution of Algorithm

In the distributed implementation presented in Section III,
the population as well as the most part of GA was distributed
spatially over the network nodes. Let us denote by N the
population size, i.e., the total number of chromosomes in the
population. Note that once each generation is initiated at the
source (procedure [D6] in Figure 2), the fitness values of N
chromosomes become only available after the forward and
backward evaluation phases are done, i.e., when the last fitness
vector arrives at the source. Our initial motivation for the
second, temporal, distribution is to make more efficient use
of the computational resources in the network by reducing
such idle period during the iteration of GA.

Let us assume that the time required for each node to
calculate its outgoing pilot vectors based on the received
ones is negligible compared with the time required for packet
transmissions. If we denote by 2! the time lag in terms of
time units between the initiation of the generation and the
termination of the backward evaluation phase, then only N
fitness evaluations are performed during 2! time period in the
algorithm in Section III (see Fig. 3(a)).

For better efficiency, we may still utilize the network
resources, while waiting for the fitness vectors to return to
the source, to evaluate more chromosomes. Suppose that, after
initiating the forward evaluation phase of the n-th generation
at time ¢, we initiate additional k— 1 forward evaluation phases

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 15:59:57 EST from IEEE Xplore. Restrictions apply.



IPilot Vedtors

Sy iomr it

zm.] b

ETSIEETIS R R TR L

Network T

(a) Timing diagram of only spatially distributed algorithm

N

1%1@!%@ I

\@

4 4[‘1 4I+2

BEE
i

Network

(b) Timing diagram of both spatially and temporally distributed algorithm

Fig. 3. Comparison of algorithms via timing diagrams

at times t + 1, ..., t + k — 1 (see Figure 3(b)). We regard each
of those k sets of N chromosomes as a subpopulation which
occasionally exchanges individuals with other subpopulations.
We refer to such process of exchanging best individuals as
migration. We assume that migration is done at every f
generations such that, before selection, each subpopulation
replaces its worst k£ — 1 individuals with the collection of k— 1
individuals, one from each of the other k — 1 subpopulations.

Typically in the GA context, subpopulations are handled at
separated processors, so the main constraint on migration is
the connectivity among those processors. On the other hand,
having no constraint on the (spatial) connections between the
subpopulations, here we can freely choose to assume and
exploit the complete connectivity between subpopulations. Our
algorithm imposes a different kind of constraint on migra-
tion, which is regarding the time synchronization between
subpopulations. Let us assume that delay is negligible, so the
backward evaluation phase of a particular subpopulation ends
exactly 2! time units after its forward evaluation phase started.
Suppose now that migration is about to happen at time ¢ + 1
while constructing the first subpopulation for the (n + 1)-th
generation. At that time, only the first subpopulation has the
fitness values for the n-th generation, while all other £ — 1
subpopulations still wait for their fitness values for the n-
th generation to become available. Similarly, at time ¢ + j
(1 < j < k), only the first j subpopulations have their fitness
values for the n-th generation, while the remaining k — j
subpopulations do not. We collect the best individuals from
the other k — 1 subpopulations of the most recent generation
for which the fitness values are available. For instance, when
we renew the j-th (2 < j < k—1) subpopulation at time ¢+ j,
we take the best individual from each of the 1,...,(5 — 1)-
th subpopulations at generation n, and from each of the
( +1),..., k-th subpopulations at generation n — 1. Along
the same dlrectlon, we may consider various (sub)population
management schemes [13].

Note that the adverse effect of packet losses appears mainly
in the form of delayed convergence of the algorithm, or

failure to converge in case of excessively severe losses. Given
that the main idea of the temporal distribution is to employ
multiple subpopulations that are managed independently, we
may intuitively expect that the negative effect of independent
packet losses would be mitigated by employing the temporally
distributed structure, which we will verify through simulations.

C. Experiments on the Effect of Packet Erasures

Let us denote by “Algorithm S™ the spatially distributed
algorithm in Section III, and by “Algorithm S + 7™ the algo-
rithm with both spatial and temporal distribution as described
in Section V-B. For network G in Section IV-B, we compared
the elapsed time, in terms of generations of GA, until the
optimal solution 3 is found by algorithms S and S + T'. For
algorithm S+ T, we let k = 5, i.e., there are 5 subpopulations
of size 200, and migration frequency is set to 5 (generations).
In fact, the longest path from the source to a sink in G is
22 hops, so if we assume that a single transmission takes a
unit time, the end-to-end delay is at least 44(= 2l). For a
completely pipelined operation we may set k = 44, which
may result in more collisions in practice due to more frequent
transmissions, but instead we experimented a moderate value
k=5.

Due to the stochastic nature of GA, the number of gener-
ations until the desired solution is found varies for each run.
We repeated the experiments 30 times for both algorithms
with varying erasure rates from 0 to to 5% as shown in
Table II. We assumed that erasures happen independently for
each transmission both in the forward or backward evaluation
phases and that the affected packets are simply dropped
and never retransmitted. When erasures are introduced, the
calculated fitness values are not guaranteed to be correct at
each generation. We used a criterion such that the fitness value
was assumed to be correct when it appeared the same in two
consecutive generations, which happened very rarely if the
fitness value was actually incorrect within the erasure levels
we tested. For higher erasure rates, one may need to have a
stricter criterion.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 15:59:57 EST from IEEE Xplore. Restrictions apply.



TABLE 11
NUMBER OF GENERATIONS REQUIRED TO FIND THE KNOWN OPTIMAL
SOLUTION IN THE PRESENCE OF PACKET ERASURES

Loss Avg Std Min | Max
0 3210 | 1735 | 19 90
1% | 47.13 13545 ] 25 153
S 2% 51.00 | 3858 7 30 [ 249
3% 6483 [ 18351 [ 40 113
4% 1054 | 6724 [ 32 378
5% [ 163.97 ] 8828 | 58 389
0 19.78 1.92 16 27
1% | 2400 | 229 21 30
S+T [ 2% | 29.17 360 [ 23 37
3% 37.87 733 20 60
4% | 46.87 9.09 20 60
5% 6433 | 2149 | 26 122

~a~- Algorithm S
250 —e— Algorithm S+T

N
3
3

&
3

=]
3

Time to Find Known Optimal Solution

501

2 3
Erasure Rate (%)

Fig. 4. Mean and standard deviation of the time to find the optimal solution

First of all, both algorithms were able to operate without
much disruption up to 5% of erasure rate. In addition, we
observe the general trend that the higher the erasure rate, the
larger the number of generations required, as depicted in Fig.
4 where the range shows the standard deviation around the
mean value.

Let us first look at the no-loss case. Algorithm S + T
finds the (known) optimal solution roughly 1.62 times faster
than algorithm S on average. Much more remarkable is the
difference in their standard deviations. Hence, if the optimal
solution is not known and the algorithm is run until some
fixed number of generations, which is the case in practice,
the temporal distribution scheme may lead to better solutions
much more reliably.

It is very interesting to note that the advantage of the
temporal distribution becomes more pronounced in terms of
the mean and standard deviation of convergence time, when
erasures are taken into account, especially at higher rates (see
Fig. 4). From this observation, we can conclude that having
multiple subpopulations that are subject to independent era-
sures and periodic migration (i.e., exchange of best solutions)
offers a significant advantage in overcoming erasures, or more
generally various kinds of losses in the network.

VI. CONCLUSIONS

For the problem of integrating network coding into het-
erogeneous wireless networks where a number of coding

nodes are to be placed among legacy nodes that do not
handle network coding operations well, we have proposed a
distributed algorithm that employs evolutionary mechanisms
to find out a minimal set of legacy nodes where deploying
network coding is required. We have applied our algorithm
in various simulations to investigate the issues of the number
of coding nodes, placement of coding nodes and interaction
among coding and non-coding nodes. We also have discussed
the effect of packet erasures on the algorithm’s operation.

As mentioned earlier, one may be interested in other char-
acteristics of network coding than the achievability of the
desired multicast rate on a given subgraph, which we have
focused on. An interesting direction for future work may be
to utilize a similar approach to investigate the questions raised
here with a number of different objectives that network coding
may achieve.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204-1216,
2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” /EFE
Trans. Inform. Theory, vol. 49, no. 2, pp. 371-381, 2003.

[3] Z.Li, B. Li, D. Jiang, and L. C. Lau, “On achieving optimal throughput
with network coding,” in Proc. IEEE Infocom, 2005.

[4] D. Lun, N. Ratnakar, R. Koetter, M. Médard, E. Ahmed, and H. Lee,
“Achieving minimum-cost multicast: a decentralized approach based on
network coding,” in Proc. IEEE Infocom, 2005.

[5] Y. Wu, P. A. Chou, and S. Kung, “Minimum-energy multicast in mobile
ad hoc networks using network coding,” IEEE Trans. Commun., vol. 53,
no. 11, pp. 1906-1918, 2005.

[6] T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, and D. R.
Karger, “Byzantine modification detection in multicast networks using
randomized network coding,” in Proc. IEEE ISIT, 2004.

[7] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Médard,
“Resilient network coding in the presence of byzantine adversaries,” in
Proc. IEEE Infocom, 2007.

[8] T. Ho, M. Médard, and R. Koetter, “An information-theoretic view of
network management,” IEEE Trans. Inform. Theory, vol. 51, no. 4, pp.
1295-1312, 2005.

[9] M. Kim, C. W. Ahn, M. Médard, and M. Effros, “On minimizing

network coding resources: An evolutionary approach,” in Proc. NetCod,

2006.

M. Langberg, A. Sprintson, and J. Bruck, “The encoding complexity

of network coding,” IEEE Trans. Inform. Theory, vol. 52, no. 6, pp.

2386-2397, 2006.

M. Kim, M. Médard, V. Aggarwal, U.-M. O’Reilly, W. Kim, C. W. Ahn,

and M. Effros, “Evolutionary approaches to minimizing network coding

resources,” in Proc. IEEE Infocom, 2007.

M. Kim, V. Aggarwal, U.-M. O’Reilly, and M. Médard, “Genetic repre-

sentations for evolutionary minimization of network coding resources,”

in Proc. EvoWorkshops, 2007.

, “A doubly distributed genetic algorithm for network coding,”

in Proc. ACM Genetic and Evolutionary Computation Conference

(GECCO), 2007.

M. Kim, M. Médard, V. Aggarwal, and U.-M. O’Reilly, “On the coding-

link cost tradeoff in multicast network coding,” in Proc. MILCOM, 2007.

M. Mitchell, 4n Introduction to Genetic Algorithms. MIT Press, 1996.

T. Ho, B. Leong, R. Koetter, and M. Médard, “Distributed asynchronous

algorithms for multicast network coding,” in Proc. NetCod, 2005.

J.-S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Médard, “Codecast: A

network-coding based ad hoc multicast protocol,” IEEE Commun. Mag.,

vol. 13, no. §, pp. 76-81, 2006.

P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. An-

nual Allerton Conference on Communication, Control, and Computing,

2003.

(10]

[11]

[12]

(13]

(14]

[15]
[16]

[17]

(8]

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 15:59:57 EST from IEEE Xplore. Restrictions apply.



