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Capacity of Nearly Decomposable Markovian Fading
Channels Under Asymmetric Receiver—Sender Side
Information
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Abstract—We investigate the following issue: if fast fades are
Markovian and known at the receiver, while the transmitter has
only a coarse quantization of the fading process, what capacity
penalty comes from having the transmitter act on the current
coarse quantization alone? For time-varying channels which
experience rapid time variations, sender and receiver typically
have asymmetric channel side information. To avoid the expense
of providing, through feedback, detailed channel side information
to the sender, the receiver offers the sender only a coarse, gen-
erally time-averaged, representation of the state of the channel,
which we term slow variations. Thus, the receiver tracks the fast
variations of the channel (and the slow ones perforce) while the
sender receives feedback only about the slow variations. While
the fast variations (micro-states) remain Markovian, the slow
variations (macro-states) are not. We compute an approximate
channel capacity in the following sense: each rate smaller than
the ‘“‘approximate” capacity, computed using results by Caire
and Shamai, can be achieved for sufficiently large separation
between the time scales for the slow and fast fades. The differ-
ence between the true capacity and the approximate capacity is
O(elog®(e) log(—log(€))), where € is the ratio between the
speed of variation of the channel in the macro- and micro-states.
The approximate capacity is computed by power allocation be-
tween the slowly varying states using appropriate water filling.

Index Terms—Capacity, channel side information, Markovian
models.

I. INTRODUCTION

N order to achieve tractable results, channel models consid-
I ered for capacity computation tend to be very simple. Yet
there are few results concerning to what extent such simpli-
fication affects the validity or channel capacity computations
and of the policies for achieving capacity. Our purpose in this
paper is to investigate, for one example, the validity of a sim-
plified channel model and of capacity-achieving policies based
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upon such a simplified model. We are interested in considering
the effect of imperfect information decoupling when the sender
channel side information (SCSI) is a coarse representation of the
receiver channel side information (RCSI). We explore how the
interplay between, on the one hand, the asymmetry in SCSI and
RCSI and, on the other hand, their relationship, affects capacity.

The long-term state of the channel would generally be re-
lated to the time average, over some recent past, of the observed
signal-to-noise ratios (SNR’s). The receiver and sender do not
know in general the cause of fading, to determine whether shad-
owing effects (usually the cause of slow variations) or multipath
effects (usually the cause of fast variations) are at work. The
sender and receiver will in general only have information con-
cerning the channel state seen at the receiver. The slow varia-
tions may be interpreted as the long-term state of SNR behavior,
while the fast variations are the short-term SNR behavior. A
natural framework is one in which instantaneous good and bad
SNR’s are possible for different slow-fading states, but that tran-
sitions among slow-fading states tend to occur when the recent
history of the channel follows certain patterns. For instance, a
recent history of poor SNR’s would generally indicate that we
are transitioning to a slow fade.

In fading channels, channel side information (CSI) at the
sender and the receiver can be obtained from many sources, for
instance, sounding signals embedded in the communications
signal, out-of-band pilot tones, or measurements from users in
other frequency bands or time slots. Asymmetry in directions of
channels in different bands or directions render perfect knowl-
edge of CSI at the transmitter difficult to obtain without very
detailed feedback from the receiver. In many circumstances,
RCSI and SCSI are asymmetric, although related. In particular,
when the channel is rapidly varying, providing full feedback
from the receiver to the sender regarding the CSI may be
onerous and inefficient. Consider the case of communications
at typical carrier frequencies for commercial wireless systems,
say in the 2-GHz range. For a user traveling at 60 mi/h, the
Doppler spread is of the order of 0.5 kHz. If each update
takes roughly 12 bits, then a 6-kHz channel would be required
for feedback—a bandwidth which may be possibly more ad-
vantageously used for data transmission. For our motivating
example, a more attractive option is to have the sender have
partial SCSI, while the receiver may have full RCSI.

In this paper, we consider a discrete-time finite-state Markov
channel (FSMC). The RCSI, which we term the micro-states, is
a full description of the FSMC. The SCSI, which we term the
macro-states, is a coarser representation of the RCSI states. The
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Fig. 1. Representation of our FSMC and its description of macro-states. The
large circles are the macro-states and the solid circles are the micro-states. The
solid lines represent transitions that occur with (1) probability and the dotted
lines represent transitions that occur with O(e) probability.

sender only knows that the current micro-state is within a cer-
tain macro-state. The macro-states represent the slow variations
of the channel. Fig. 1 illustrates the micro-states and the macro-
states we consider. The detailed states are the RCSI—the re-
ceiver knows the detailed micro-states, for instance, through the
use of sounding signals embedded in the transmission. The SCSI
information may be obtained from feedback from the receiver
and is a coarse quantization of the RCSI. Of course, higher and
lower values of instantaneous SNR may occur within a window
of certain average or quantized values. Note that fades are pos-
sible while we are in a good macro-state and, conversely, SNR
surges are possible while we are in a weak macro-state. Thus,
fast variations which are atypical of the current macro-state do
not necessarily indicate that we have left the macro-state. Our
SCSI is a deterministic function of the RCSI. In our case, if the
detailed states form a FSMC, then the macro states, which are a
partition of the set of micro-states, are not Markov.

Our analysis relies on the fact that the variations of the macro-
state are, on average, much slower than those of the micro-state.
We thus consider a perturbation type of approach to our FSMC.
Returning to our motivating example, let us consider that the
macro-state changes, on average, every 2 s. Then, if we denote
by e the ratio between the speed of change of the macro-state
and that of the micro-state, e ~ 10~3. We make use of the fact
that e is very small to get a handle on the capacity of our channel.
Perturbation approaches for modeling of Markov channels have
been considered in [10]. Approximating channels using finite-
state channels has been done in [9], using results from [8]. How-
ever, those results do not consider CSI and thus cannot be di-
rectly extended to our problem, although the insight from those
results is useful.

The capacity of time-varying channels with perfect or im-
perfect SCSI at the sender and possibly imperfect RCSI has
been considered in a very general framework in [2], which also
provides a thorough overview of relevant work in the area of
Markov channels. The results of [2] apply to the case we con-
sider, and establish a relevant coding theorem. Our work is com-
plementary to the results in [2]. While those results provide the
relevant coding theorems, several important questions remain
when we consider a specific channel model.
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* What is the stochastic characterization of the behavior of a

specific channel?

* How may we compute or approximate capacity, and how

does capacity depend on relevant channel parameters?

* What are simple schemes, for instance power control poli-

cies, that will allow us to approach capacity?

This paper seeks to answer these questions for the type of
channel we have discussed above and for which we provide a
model in the next section. The first question is addressed in Sec-
tion III. Sections I and V address the last two questions jointly,
establishing a power control policy that approaches capacity.
The main channel parameter we consider is e.

Recent work in this area has established simple capacity re-
sults for certain types of SCSI and RCSI. In particular, the ca-
pacity is known for Markov channels when the SCSI is a de-
layed version of the RCSI [12]. The capacity for several general
types of single-user channels where the SCSI is a deterministic
function of the RCSI is given by [1], which also presents a com-
prehensive overview of capacity results for channels with CSI.
In particular, [1] gives an exact, intuitive, and simple capacity
result for the case when the RCSI is perfect; the SCSI state is
a deterministic function of the RCSI state; and the probability
mass function of the channel states conditioned on all the past
SCSI s equal to that conditioned on the current SCSI state only.
It is this last condition, which entails that the SCSI process is
also Markov, that renders the results of [1] not applicable to our
channel model, since the history of all past macro-states gives
information about channel state beyond that contained in the
present SCSI alone.

Although the model of [1] does not apply directly, it is nat-
ural to conjecture that, as e decreases, a simplified model con-
sistent with the results of [1] should yield an increasingly good
approximation to the true capacity. Our results support this intu-
ition and quantify the effect of the spread between the speed of
the slow variations (SCSI) and that of the fast variations (RCSI).
Our results also show, however, that the loss in accuracy due to
assuming that the SCSI and the RCSI are both Markov decreases
sublinearly in €. Using the capacity results for Markovian SCSI,
established by Caire and Shamai in [1], our work seeks to estab-
lish the sensitivity of capacity to particular model differences
(Markovian SCSI versus near-Markovian).

In the next section, we present our model for channel vari-
ations and the main theorem of our paper, relating to the be-
havior of the channel given by our model to capacity. In Sec-
tion III, we analyze the behavior of the channel by creating
an order-¢ perturbation model of the original channel. For this
modified channel, which obeys the conditions of [1], a capacity
can be found, as shown in Section IV. We call this capacity the
approximate capacity of the channel. The difference between
the true capacity and the approximate capacity is shown to be
O(elog?(€)log(—log(e))). In Section V, we discuss our results
and present our conclusions.

II. MODEL AND CODING THEOREM

In this paper, which requires extensive notation, we have at-
tempted to balance, on the one hand, precision and consistency,
which may lead to a surfeit of notation, with, on the other hand,
elegance and simplicity. As a result, we reserve certain indices
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for certain variables, except when we deem ambiguity to be un-
likely, and its risk to be outweighed by the fatigue cumbersome
notation causes in the reader. We indicate matrices and vectors
through underlining. The lower and upper limits of the range of
a vector are given by subscripts and superscripts, respectively,
except when the lower limit is 1, in which case it is omitted.
When confusion is unlikely, we omit the range of a vector al-
together. For instance, =("™), (™) "and ¢(™) are all probability
vectors associated with the micro-states of the macro-state S,y,.
We omit their size, which corresponds to the number, N,,, of
micro-states in S,,,. Whenever practical, we reserve the indices
m and ¢ for the macro-state and micro-state being considered,
respectively. Thus, we generally consider, in macro-state S,,,
the ¢th micro-state, which we denote by ugm). The variables
7, k.1, q,r, s we generally reserve for indices in a vector or ma-
trix, although they may sometimes be used to index states.

We consider a bandlimited system and assume that bandwidth
broadening due to time variations is negligible. The Nyquist
input and output sampling rates are thus taken to be equal. After
sampling, we use a discrete-time model to describe our channel,
C, and its input. The channel is described by an FSMC, whose
states we refer to as micro-states. Let 7'(n) denote the random
variable corresponding to the micro-state at time unit n. To each
micro-state corresponds a single gain value. The mapping from
a state to its gain value we define to be the function ~y. Thus,
(T (n)) is the random variable corresponding to the signal at-
tenuation at time n. The sampled received signal at time n is
given by the random variable

Y(n) =~(T(n))X(n) + W(n)
where X (n) is the transmitted signal and W (n) is the result of
sampling bandlimited additive white Gaussian noise (AWGN).
Thus, the W (n)’s are independent and identically distributed
(i.i.d.), with mean 0 and variance 2. The sender has an average
power constraint P, i.e., codewords of length k are constrained
by

zizlkxzw <7

The sample values of T'(n), Y (n), and X (n) are denoted by the
same letters using lower case.

Let S(n) be the random variable which identifies the macro-
state that the Markov chain is in at the nth time instant. Thus, at
time instant n, the SCSI is S™ and the RCSI is T". Moreover,
S(n) is a deterministic function of T'(n). At time instant n, the
micro-state is ;1\ and the macro-state is Sy, iff 7'(n) = ufm),
which implies S(n) = S,,. The X (n)’s are chosen using the
SCSI, which is causal. Hence,

Prob(z" | s*) = Prob(z" | s"), for alln < k.

The micro-states form a discrete-time Markovian fading
process defined by the stochastic matrix A 4+ ¢B, where A is
block-diagonal with M blocks and the mth block (which is also
a stochastic matrix) is denoted by A(™ Each block A™ is a

stochastic matrix. The (j, k) entry of A is A(™)(j, k), which
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denotes the probability of transition from micro-state /Lj(-m) to
micro-state u,(cm
A,

Let (™) be the stationary probability vector associated with
A(m), ie

) for the set of probabilities corresponding to

l(m)A(m) — E(m)~ 1)

Define an M x M matrix P as follows: the (j, k) entry of P
is given by

—¢ Z Z 7@l (Mz(])

uDes; uPes,

NS

(@)

and P(j,j) = 1 —3,_; P(j, k). Note that P is also a sto-
chastic matrix and let p be its stationary probability vector, i.e.,
p = pP. We can interpret the entries of P as being the long-term
transition probabilities among macro-states and p(m) as ap-
proximating the steady-state probability of being in S,,. In-
deed, as we show in the next section, p.(m) = p(m) + O(e),
where p.(m) is the actual steady-state probability of being in
macro-state S,,,. The channel model we consider for the state
behavior is shown in Fig. 1.
Our main result is the following.

Theorem 1: Define

C(e) := max = pe(m
(€) {P(m)} 2 Z

subject to

Z pe(m)P(m) <P

where P is the power constraint at the sender. Also, define

1
Cirue(€) = lim —

I(X™ Y™ | T).
n—oco m P(X ()| st i 1),1<t<n

Then, there exists €* such that for Ve € (0, €*)

Cirue(€) = C(€) — O(elog?(e) log(—log(e))). ¢

Before proving this theorem in the next sections, we give an
interpretation of it. Ci,yc(€) is the known characterization of
the capacity, with an explicit parametrization in terms of €. The
theorem states that, for sufficiently large time-scale separation
in the variations associated with the micro- and macro-states,
the capacity Ciyue(€) can be approximated by C(e) to within
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O(elog?(€) log(—log(e)). Thus, C(e) is an approximate ex-
pression for capacity which exploits that two time-scale prop-
erty of the Markov channel.

III. CHANNEL BEHAVIOR IN TERMS OF €

In this section, we show that, if C stays in a macro-state .S,,
for at least 7 time units, where 7 = O(—log(e)), then, for
any time instant k£ > 7, the probability that C is in micro-state
/Lgm) € S, conditioned on still being in S,, at time k, is O(¢)
close to (™) (7). Recall that =("™) is the stationary probability
vector associated with block A(m). The motivation for showing
this is as follows. Even if the sender had access to additional
sender side information at the time of each macro-state transi-
tion, the results of this section will show that, after 7 units, the
sender’s estimate of the channel state is nearly independent of
this additional side information. We will make use of this fact
to create an upper bound to the channel capacity in the next sec-
tion. Throughout our discussion, we consider an arbitrary past
T° ;,, and future T .

Define

o{™ (n) = Prob (T( )= 1™ | S(k) = 8.,

vl{, c {1,...771},2(1[/ :tgL’) .

For simplicity, we omit explicit indexing on " ;, for ov. We seek

to show that, if n is sufficiently large, then a( )( ) is approxi-
mately equal to 7(") (i).
To this end, define a new transition matrix as follows:

(uj(-m), u;(cm)) ,

ifj £k (@)

P (j, k) = A (G, k) + B

and
P (5, 5) = A™ (4, §) + B ( (m), V"))

+e€ Z B (ugm),p,;r))

1" ¢S

&)

Note that, for small ¢, ﬁ(m) can be interpreted as the transi-
tion matrix of a new Markov chain defined over the same set of
states associated with the micro-states in S,,,. We have in effect
created a transition matrix for micro-states within macro-state
S such that the weight of transitions out of macro-state S,,, are
reassigned to micro-state self-transitions. Let the vector gfzm) be
defined as follows:

o (2")

where ggm) is the vector whose elements are the values of the
initial probability mass function over the states of the Markov
chain,

~(m) (6)

o™ (0)
= Prob (T( )= ,ufm)

= q5™ (i)

S(0) € S, T2, =12,
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To avoid cumbersome notation, we omit explicit indexing on
T 1 for the q(™)’s. Tt follows from our definition of ggm) that

Z q(m)
JESm
Lemma 1: Foralln > 0
™ () = 4 i) ™

Proof: See the Appendix. &

= O(e).

It now remains for us to show that a( )( ) is also an O(e)
approximation of 7(") (i) for n large enough This is the crux
of the following, central lemma.

Lemma 2: Let g ,,, be the second largest eigenvalue of E(m)

and assume that there is only one eigenvalue with this magni-

tude. Then, there exists ¢* and K, such that Ve € (0, ¢*) and
for all
—log(e) + log K,
—log([A2,ml)
| (™) (7) — a ( )] < e foralli € S,
Proof: See the Appendix. &

We now show that a similar result holds when we consider
both past and future macro-states. The probability of being in a
particular micro-state, conditioned on being in the same macro-
state for many more time samples in the past and future is vir-
tually the same as the approximate steady-state probability ob-
tained when the macro-state is an absorbing state. The following
theorem states this fact in more detail. Note that we again omit
explicit indexing on ¢° ;,, 3. Note also that, in the following,
we consider

—log(e) + log(K,,)
—log(|A2,m(€)])

Theorem 2: Let ul(-m) € Sy, and define

B (n)

=Prob (T(n)= ™ | T8 € 8,0, 10, =1 . Ty =1}

for all n < L. Then, there exists ¢* and K,, such that Ve €
(0,€*) and all

—log(e€) + log(K ) —log(e€) + log(K )

<n<L-
—log(|A2.m(€)[) —log(|A2.m(€)[)
(®)
w(™ (i) — B™ (n)| = O(—¢€log(e)), for all 1{™ € S,y..
Proof: See the Appendix 1. &

IV. CHANNEL CAPACITY USING A REDUCED-ORDER MODEL
AT THE TRANSMITTER

The difficulty in establishing the capacity of the channel lies
in the fact that the macro-state transitions gives us partial infor-
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mation about the current micro-state. This information is dif-
ficult to quantify. However, as we have shown in the previous
section, the longer we stay in a macro-state, the less relevant this
information becomes over most of our stay in a macro-state.

In order to prove our main theorem, we construct channels
whose capacity upper- and lower-bounds the capacity of our
channel. We provide a lower bound by choosing a specific input
distribution, and then show that the difference between the upper
bound and the lower bound is O (e log?(¢) log(— log(€))).

A lower bound on capacity is given by

subject to Zf\gzl pe(m)P(m) < P, where 7("™) (4) is the prob-
ability of being in micro-state j; ~ and pe(m) is, as defined
earlier, the probability of being in macro-state S,,,. The lower
bound holds by virtue of the fact that selecting a particular
distribution for the input cannot yield a better result than max-
imization over all allowable input distributions. Specifically,
we choose the input symbols to be independent zero-mean
Gaussian random variables with variance P(m) in macro-state
Sm.-

We now establish an upper bound to our channel capacity.
Let fimax be the channel micro-state such that |y(may )| is the
largest among all micro-states in J,, 1.  Sm. The upper
bound to the capacity of our channel C is obtalned by con-
structing a new channel Cy as follows. Whenever there is a
transition from one macro-state to another in C, the channel
Cy remains in the state fi,., for time 7 until no macro-state
transitions have occurred for 7 time units in C. After that time,
Cyp reverts to the micro-state that C is in. Thus, under our def-
inition, if a macro-state change occurs % time units after the
last macro-state change and the next macro-state change occurs
more than 7 time units after, then C;; will remain in state fimax
for 37 - time units. At the end of that time, Cy; reverts to behaving
like C, except that the SCSI of C; includes the micro-state at the
time of the last macro-state change. Fig. 2 illustrates a sample
behavior for C and the corresponding behavior for Cy;. The ca-
pacity of Cy is higher than that of C. During the intervals shown
as shaded areas in Fig. 2, the channel C; has perfect RCSI and
SCSI and, moreover, its SNR is the best possible SNR, which is
given by the gain (ptmax ) Of the best micro-state jimayx Over all
sets .S;. Outside those shaded areas, Cyy behaves as C. We call
an interval where Cyy behaves as C an active interval (shown in
white in Fig. 2). We term Ly, the beginning of the kth active in-
terval and A its duration.

Since we do not know how to maximize the mutual informa-
tion in the capacity expression for Cy;, we now seek to obtain an
upper bound to Cy, the capacity of Cy;. In order to upper-bound
Cy, we construct two channels, C}] and C?, with average power
constraints P; and Ps, respectively. We shall later relate these
channels, as well as P; and P», to our original channel, C, and to
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Macro state transitions

Fig. 2. Construction of C; from C.

P. Channel C; is created as follows. For every transition from
one macro-state to another in C, the channel C}J produces no
output for time 7 until no macro-state transitions have occurred
for 7 time in C. At these times, we define the channel C}] to be
in an inactive state. At all other times, which we term active in-
tervals as for Cl1]7 Cllj follows the behavior of C.

Channel C is constructed as follows. Whenever channel C
experiences a macro-state transition, C3 behaves as a simple
bandlimited AWGN channel whose gain is given by .. We
term this behavior the active state of CIZJ. At all other times,
CZ provides no output. We term this behavior the inactive state
of C?]. Note that, because we may have macro-state transitions
within a 7 interval, the times when C?] may be active and the
times when C}; may be active may overlap. Moreover, the total
duration of the active intervals of C{; and C3 we consider may
be greater than the time over which we observe Cys.

Lemma 3: The capacity CF of C# is

7” (Hmax) P

O<%g<e)l°g <1+ ~clog(e)o? ))

= O(elog?(€) log(~ log(e))).

Proof: Let M(k) be the indicator function of macro-state
transitions, i.e., it is 1 if there was a transition at time instant &
and O otherwise. We define

=" M(k)

k=1

(10)

the number of transitions by time . Thus, by time 7, the number
of time samples spent transmitting in C# is 7S(n). Over time n,

the energy per transmitted symbol when we transmit over C7; is
77;2(:) The maximum average mutual information per time unit
between the input and the output of C3 over n time samples is

given by
Pzn
a2r8(n) )’

It now remains to be shown that E[Z(n)] reaches a limit as
n — oo. First, given our Markov model, the M (k)’s decorre-

I(n)= Lﬁl“) log (1 + 97 (Mmax) (11)
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late and we may therefore apply the Law of Large Numbers for
decorrelating random variables to obtain that V6 > 0

lim P(’M—£’>5>:0 (12)
n— 00 n
where £ = lim,, E[%]
Let us define the function v as
2
_TT Y (l‘maX) Py
v(z) = 5 log <1 + — ) . (13)

The function v is continuous, concave, bijective, and increasing
over the positive reals Re**. Note that v( S(”)) Z(n). Thus,
from (12), V6 > 0, Vep > 0, Ing € N7t such that Vn > ng,
where N7 is the set of positive integers.

P(|Z(n)

Expression (14), implies that 3§, > 0, Je(, such thatVy €
0,60), Yeo € (0,€)), Ing € Nt such that Vo > ng
0

—0(§)] > 6) < <o (14)

E[Z(n)] 2 (v(£) = 6)(1 — €o). (15)
Moreover, from Jensen’s inequality
lim E[Z(n)] <o (é). (16)
Thus, lim,,_,, E[Z(n)] = v(&).
Finally, we may select 7 to be —log(O)Floa(x) | 1 where =

— log(e*)

max,, { K., } (see Theorem 2). Then 7 = O(—

lim E[Z(n)] = O <%g(e) log <1 +

n— 00

log(€)). Hence,
'72 (/jlmax)PQ
—elog(e)o? '
7)

Expression (17) yields the statement of our lemma. Moreover,
note that for small €, we may write that

log(e))). ¢

= O(elog (e) log(—
Let us now consider C}; and obtain an upper bound on its
capacity, C;.
Lemma 4: The capacity CJ; of Cf; is upper-bounded by

1 P(m
5 pm(e) log (1 +

+0(—¢ log (18)
subject to Z —1 P(m)pm(e) < Py.

Let us define @ (k) to be the duration of a stay in a macro-state
for the (k — 1)th transition to a macro-state. From our model,
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since the micro-state transition matrix is of the form A + eB,
then Jzo such that Vk

EO()] > —.

we

19)

Furthermore, let us define ©(n) to be the sample mean length
of stay in a macro-state up until time n. Using the Law of Large
Numbers for decorrelating random variables applied to ©(k),
we obtain that

lim P (@(n) > i) =1 (20)

n—oo

Combining (20) and (19), we obtain that, as n — oo, the limit
of the probability that the time we spend transmitting over Cf;
is at least O(1) is 1.

By definition, intervals for which C{; has a nonzero output
satisfy condition (8). Let P represent a vector of power assign-
ments over n symbols. Since we know that to maximize mutual
information, we may use symbols that have a Gaussian distri-
bution and are mutually independent symbol to symbol, we can
simply consider the problem of maximizing mutual information
over the set of power assignments. If we knew, for all the n sym-
bols, what the SCSI is for the past, present, and future, then we
could only achieve a higher maximum. Conditioned on that in-
formation, we can select for a particular realization of the SCSI
over the n symbols a vector P;; which maximizes the average
mutual information for the n» symbols. Note that P;; is a func-
tion of the SCSI realization, but we omit any indexing on that
realization for the sake of simplicity. The components of the
vector P, are Py(n), which is the power used at time sample
n. Let D,,(n) be the indicator function which takes the value
1 iff the macro-state at time n is S,, and O otherwise. Over n
symbols, the maximum average per symbol mutual information
between inputs and outputs, conditioned on the RCSI and sub-

. . Py
ject to the average power constraint Ly Po® — v k) < Py,is S(n)
given by

2¢,,(m)

a

where /3 ( ) i 1s as defined previously, the probability of being
in micro-state ui of macro-state .S,,, at time k, conditioned on
our past, present, and future SCSI over all n symbols. Hence,
from our results in Theorem 2, we may write that

2nZ > YDt

=1 ,(mcg, k=1
P (k (m) m
x log (1 + %) EZ + O (—e€log(e)) (22)
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Pk
subject to the average power constraint Ly Pr® < P1.
For ease of notation, we may perform the followmg bijective
mapping on (1,2,...,n):

g:(1,2,...,n)— (1,2,...,n)

m — g(m) so that if S(k) = S,,, S(j) = Sp, and m < m/,
then g(k) < g(j) andif S(k) = S(j) = S, thenk < j implies
g9(k) < 9(4).

Let g~! be the inverse mapping of g. Let us define the
random variable N, (n) = Y_;_; D,,(k), which takes sample
values n,,. Random variable N, (n) represents the time spent
in macro-state m in time 1 through n. We also define the
random variable Y,,(n) = Z;nzlAfJ(n) and we denote its
sample values by v,,,. Random variable Y,,(n) represents the
time spent in macro-state m or lower in time 1 through n. By
definition, Yo(n) = 0. Note that the realizations of Y, (n) and
N (n) over all m are homomorphic. Using these definitions,
we may rewrlte (22) as

277,2 Z

=lumes,,

(%)
log (1—1—

Um

<
k=v,,_1+1
+ O (—elog(e)) (23)
subject to the average power constraint
M Um 1
m= =uv PU g k
2im=1 2kZv,, 41 Pulg(K) ~ 24
n
for every realization. We may write that
Ol < lim Es[3(n)] (25)

n— o0

where we are still subject to the average power constraint (24)
for every realization of the S’s. We have, from (23) and (25),
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of In(1 4+ z) and Jensen’s inequality, we get (27) also at the
bottom of the page, subject to (24) for every realization of the
S’s. We can rewrite (24) as

n

— < Py. (28)
n

Z i": Py (Z_l(k))

m=1k=v,,_1+1 m

The constraint can be weakened (thus giving a further upper
bound) if we replace (28), which is a constraint for each real-
ization, by its expected value over the S’s, conditioned in the
values of the v,,,’s. The weakened constraint is

M ey |Shlo, o Po (07(0)]

N'm

n
= <Py
n

=1
(29)

for every possible realization of T (n)". Thus, using Jensen’s
inequality, and the relaxed constraint in (29), we may write (30)
at the bottom of the page.

Since power assignments only depend on the SCSI

v;m

>

k=vm_1+1

Egnix(myp Py (g7 (k)

is proportional to n.,, the realization of A/,,,(n) over which we
condition. Thus,

v;m

Esrxm)y [ ke, 41 PU (9‘1(k))]

Nim

is a constant, which we define to be P(m). We may thus modify
upper bound (30) as in (31) at the bottom of the next page, sub-
ject to

(26) at the bottom of the page, subject to the average power con- <Py (32)
straint (24) for every realization of the .S’s. Using the concavity 1 n
M U, (m) |
. Py(g (k)Y (™) _om) :
Ch< lm Bs |53 Y o log (1+ > 7| 40 (~clog(e)  (26)
m=14€S,, k=vmym_1+1 _
2l PO ]
0 < Jim e |55 57 Mg | 14— T | o) @)
m=14€85,,
M Esn N, (n) [ZZZU B PU(gflUf))} 2(,,(m)
Cy < lim By, ) Z > g1+ — — = ! (Z; ) Ty
m=1,mes,, "
+ O(—clog(e)). (30)
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for every realization of /\MT We may, yet again, weaken our
constraint by replacing (n.,,)/(n) by its expectation, yielding
the constraint Efle P(m)pm(e) < Py. This constraint, to-
gether with (31), is the expression given in Theorem 1 by (3), to
within O(—elog(€)) when Py = P. &

We may now use Lemmas 3 and 4 to find an upper bound
t0 Cirue(€). Moreover, we further upper-bound CJ; and C by
allowing P; = P, = P. Combining these upper bounds with
our lower bound (9), we obtain Theorem 1.

V. CONCLUSION

We have shown that the assumption that fast and
slow fades are both Markovian is accurate within
O(elog?(€)log(—log(e))) in the case where the fast fades are
Markovian and the slow fades are quasi-Markovian. Moreover,
the power-allocating policy used in [1] for the case where both
slow and fast fades are Markovian achieves this approximate
capacity. Our results show that, as expected, the policies and
capacity computations for the case when slow and fast fades
are Markovian are approximately accurate when the slow fades
are quasi-Markovian. However, the rate of convergence is
much slower than e.

Our results only consider one aspect of the question of the
robustness of capacity computation and capacity-achieving
policies to channel models. Many simplified models, such as
block-fading channels, are attractive from the point of view
of tractability but are clearly very simplified. The sensitivity
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of the results obtained by using such models is an interesting
question to justify the applicability of results obtained through
simple models.

APPENDIX

Proof of Lemma 1: Consider the elements of ggm): see (33)
at the bottom of the page, where we have used the fact that the
denominator in the last line of that equation is equal to one.
Next, note (34) at the bottom of the page. Comparing the ex-
pressions in (33) and (34), for a\" (1) and ¢{" (i), we may
readily see that

1™ (i) — ai™ (1)] = O(e).

In general, we have the first equation at the top of the fol-
lowing page and we have (35) also at the top of the following
page, where we have made use of the fact that the denominators
in (35) are all equal to 1.

Now, by induction, the proof follows.

Proof of Lemma 2: Let (™) be the stationary probability
vector associated with the stochastic matrix E (m). The vectors
j(m) and E(m) are the left eigenvectors of E(m) and A(m), re-
spectively, corresponding to the eigenvalue of 1.

Note, from (4) and (5), that the elements of P and A(m)
differ only by O(¢). In general, eigenvectors are not continuous
functions of the elements of the matrix ([7, p. 373]. However,

(m)

2(,,(m)
b < Jim Py |10 ¥ (1+ — )>7ré>> +0 (~clog(e)
m=1,meg,,
M (m)
1 ; m
=13 Z pm(€) log <1+ (m)ny( . ))ng)) + O (—elog(e)) 31)
m=1 Hgm)esm o
i)=Y PUGe™ )

ugm)esm
= > (A(m)(j,i)+eB(ug»m),uﬁm)))qém)(j)ﬂ > (§m> §’">) o™ (4)

uim) €Sm

Eugm)esm (A(m)(j i)+ eB (u] s 1

(m)

w7 ¢S,

§0) + € 0gs, B (1™

n (r)

7/’1’1

) a0

)

- IR (m) (m)
Zui"”,uﬁ"”esm (A( )(j, k) +eB (

(r)

)

g )) (m )( >+GZ (m)GSm,u r)¢s B(uém)’ul ) (m )(]i})
(33)
(m) 1) = Prob(T(1) = u{™|S(0) = S, T, =1° )
‘ " Prob(S(1) = Su|5(0) = S, T° ., =17 )
IS (™) (j,i) + eB m™Y)) a8 ()
_ €Sm ( (] )) 34

2o pmes, 4™ ()

(m)

u (m)

(A(m)J k) +eB( N

))
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oi™ (n) =

2 umes,, (A(m)(j,i) + eB( §m)7u5m))) ol
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'(n—1)

2 () W(Mes,, (A(m)(j7 k)+eB (Mg_m)7

)

S umes,, WP
wmes,, "y ()P, k)

S mes,, A1) (AT G) + B (1™,

ugm))) +ed mgs, B( o )) N0

i imes,, () (AGE) +eB (1™ 1)) + e X pimes, irgs, B (17 1™ ) @240

(35)

we have that, for stochastic matrices and the type of perturba-
tion that we consider, the stationary probability is not only a
continuous function of the elements of the matrix, but in fact
the following relationship holds:
;r(m)(z') — 7r(M)(Z') -

O(e), Vi (36)

To show that (36) is true, we first note that 7 N(m) is the solu-
tion of P™ 7™ = ¢, where P(™) is the matrix (I — P(m))
whose N, th row is replaced by a column vector of 1’s and e =
(0,0,...,0,1)". Thus, 7(™)(3) can be obtained from Cramer’s
rule as

det(P™ —, ¢)

~ (m) o\
7™ (i) =
( det(P™)

(37

where, following [7, p. 21], B(m) «—; e denotes a matrix whose
ith column is e and the rest of the columns coincide with those of
B(m). From the structure of B (m) , we see that the numerator and
denominator of (37) are O(¢) perturbations of the corresponding
expressions for the elements of (™), thus establishing (36).
Next, we show that there exists a constant K such that

13 (n) —

for any n > N,,. We first note that, by the Cayley-Hamilton
theorem [7], for n > N,,

#M| < K)3,, (38)

s\ RS m)
(27) = 3 am@™y
1=0
for some constants ¢;(n). Furthermore, the above equation is

also satisfied if E(m) is replaced by any of its eigenvalues. De-
noting the eigenvalues by 1, A2 1., ..., AN, ,m, We have

1 1 1
Ao A Ayt
ANy Apm oo /\%:‘1
(ZS()(TL) 1
¢1(n) )‘g,m
X . = ) (39)
éN,,—1(n) AN m

m

Using Lagrange’s interpolation formula [7], we can write

N,.—1

>

=0

if’n Tl

where Ay, = 1 and

H] 1]761()\ )\] m)

£ ) = (Aim)"

Nom :
Hj:l,j;éi()‘i,m - )‘j,m)
Thus,
(m) Ak n m n
(™) =2 (27) i)
where
T (ptm
i ("™ = xmI)
npim)y _ (y. \n d=LiF
Fi (P ) - ()‘z,m) N, .
[T Nim = Ajm)
i=1,j#i
Since E(m) 18 a stochastic matrix, |)\i,m| < 1forz > 1. Since

Q(m)(n) — Q(()m)(ﬂ(m))” N i(m)

asn — oo, we have that p(™)(0) (B(m)) = 7™ Thus,

(m)

1§ (n) — ] < |A2m|"2 |Fi(P (40)

where | F;(P (m) )| denotes a matrix whose elements are the mag-
nitudes of the elements of F; (E(m)). Since A + ¢B must be a

stochastic matrix, € is constrained to lie in a compact set around

zero. Further, owing to the fact that Fi(E(m)) is a continuous
function of e (which is a consequence of the fact that the eigen-
values of a matrix are continuous functions of the elements of
the matrix), each element of | F; (B(m))| can be upper-bounded.
Thus, from (5), (40) implies that there exists a K such that
(38) holds. Now the statement of the lemma follows from (38),
Lemma 1, and (36).
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Proof of Theorem 2: We first note 4™ (n) defined in (41) REFERENCES

at the bottom of the page. Let us define p( m) to be as shown in ) o ) )
Y [1] G. Caire and S. Shamai (Shitz), “On the capacity of some channels with

(42) and continue the proof with (43 ) (45 ) at the bottom of the channel state information,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp.
page. 2007-2020, Sep. 1999.

o™ (n)Prob (L1} € S, Ty = t3T(n) = u{™ I} € S, 01 =21

(m)
™) () = (41)
pin) Prob (LE71 € Sy, Ty = 13|17 € S, I° 1 =12 )
) A" (n)
] ﬂ(m)(n)
(m)(n)PrOb (TE5) € S Ty = t31T(n) = ™, T € Sy, 101 =10,
o™ (n)Prob (L1 € S, T5 = t3|T(n) = ™, T7 € 80, 101, = 12,
using Bayes s rule
agm)(n)Prob (ZSL =t5|T(n) = (m) 0 €S8, T, =10 L,Tﬁﬂl m)
a{™ (n)Prob (z; = t3|T(n) = ™, T7 € Sy, 01, = 101, 511 € S, )
Prob (TE1 € SulT(n) = u{™., T} € S, 101 =2,
X : (42)
Prob (T{; 1€ S| T(n) = u{™, T} € S, T 1 = 1° L,)
Consider
Prob(T} = t3|T(n) = l\™, T7 € 8, T, = 1%, TET1 € Si)
by Markovicity
= Prob(T3 = t3|T(n) = p{™, TE L € S,
rob(L'7, = t7|1'(n) = p; n+1 € Sm)
 Prob(I5 =t3,Tp_1 € SulT(n) = 1§, TE 2 € S,)
Prob(Tp—1 € S |T(n) = p{™, T,LLJ €S,)
_ ymes,, Prob(T} = 1, o = = p™ T (n) = p{™ TE7} € S,)
s, Prob(Toy = uT(n) = ™, Ti53 € Sm)
Y umes, Prob(Ls = t3 |11 = u2m>)Prob<TL_1 = " T () =™ T2 € 8,n)
S mes,, Prob(Tioy = u™ [ T(n) = u™ TITF € S,)
using Lemma 2
S s, Prob(Ls = | To—1 = u™ ) (™) (k) + O(c))
Symes, 7 0) + 000
Prob(T5 = 13)
_ 43
14+ O(e) “43)
by a similar argument
-1 (m) o _ 0 Prob(L71 € Su)
PrOb(Tn—l—l € Sm|T( ) - /1’] Il € S’m7sz’ = th’) = 1 + 0(6) (44)
hence
(m) (;
(m) _ 7™(1)
Pii’ = 2 (5) +0(e). )
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