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Bursty Transmission and Glue Pouring:
On Wireless Channels with Overhead Costs

Pamela Youssef-Massaad, Lizhong Zheng, and Muriel Médard

Abstract—Power efficiency is a capital issue in the study of
mobile wireless nodes owing to constraints on their battery size
and weight. In practice, especially for low-power nodes, it is
often the case that the power consumed for non-transmission
processes is not always negligible. In this paper, we consider
the channels with a special form of overhead: a processing
energy cost whenever a non-zero signal is transmitted. We show
that under certain conditions, achieving the capacity of such
channels requires intermittent, or ‘bursty’, transmissions. Thus,
an optimal sleeping schedule can be specified for wireless nodes
to achieve the optimal power efficiency. We show that in the
low SNR regime, there is a simple relation between the optimal
burstiness and the overhead cost: one should use a fraction
of the available degrees of freedom at an SNR level of

√
2ε,

where ε is the normalized overhead energy cost. We extend this
result to use bursty Gaussian transmissions in multiple parallel
channels with different noise levels. Our result can be intuitively
interpreted as a “glue pouring” process, generalizing the well-
known water pouring solution. We then use this approach to
compute the achievable rate region of the multiple access channel
with overhead cost.

Index Terms—Low power algorithms and protocols, multi-
media, networks and systems, UWB, transmission technology,
medium access control, multimedia, networks and systems.

I. INTRODUCTION

WHEN minimizing the total energy, it is fundamental
to consider, besides the energy spent on transmission

purposes, non-transmission energies. In this paper, we refer to
such non-transmission energy costs as ”processing energy”,
or simply ”overhead” of transmissions. It is intuitive that a
large overhead cost might change the nature of the optimal
signaling.

In the computer and sensor nodes literature, various tech-
niques have been proposed to reduce the mobile host’s power
consumption during operation. Recognizing the fact that
“when inserted, many wireless communication devices con-
sume energy continuously” and that “this energy consumption
can represent over 50% of total system power for current hand-
held computers and up to 10% for high-end laptops,” Kravertz
et al. proposed in [7] software-level techniques to suspend the
mobile host’s device during idle periods of the communication.
In [14], Chandrakasan et al. studied power-aware techniques
to minimize power consumption of wireless microsensor sys-
tems. At the intersection between the communication theory

Manuscript received February 21, 2008; revised May 30, 2008; accepted
August 17, 2008. The associate editor coordinating the review of this paper
and approving it for publication was X.-G. Xia. This research is supported
by HP, Advanced Concepts in Wireless Networking, Research Alliance
Agreement Award 008542-008 and NSF NRT Award ANI-0335217.

The authors are with the Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technolgy, Cambridge, MA (e-mail:
{pmassaad, medard, lizhong}@mit.edu).

Digital Object Identifier 10.1109/T-WC.2008.070939

and the networking fields, El Gamal et al. proposed an optimal
scheduling algorithm to minimize transmission energy by
maximizing the transmission time for buffered packets, [8]. In
[11], Rulnick and Bambos studied mobile power management
for maximum battery life in wireless communication networks.
In [15], Cui et al. considered wireless applications, where
nodes operate on batteries, and analyzed the best modulation
strategy to minimize the total energy consumption, when error-
control codes are used. In [16], the authors analyzed the best
modulation strategy to minimize the total energy consumption,
while satisfying throughput and delay requirements. Various
other interesting power-aware components and algorithms for
wireless networks can be found in ([10], [9], [12], [13]).

The information theoretic result by Verdú [6] on capacity
per unit cost can be applied to study energy limited systems
with the signal processing energy taken into consideration.
Here, one can view the cost of transmitting a symbol as
the sum of transmission energy and the corresponding non-
transmission energy. Verdú’s result states that the most cost
efficient way of signaling is peaky binary signaling with
position detections.

In this paper, we consider using Gaussian channels with a
special form of processing energy cost, the energy of being
’on’. That is, we model the energy cost of operating the device
as a constant, ε, added to the transmission power, whenever a
non-zero signal is being transmitted. This simplified model is
a reasonable approximation to reality in many applications,
and allows insightful results to be derived. Here, one can
directly apply Verdú’s result, simply letting the cost of sending
symbol x be |x|2 + ε · 1{x �=0}. It is intuitively clear that with
a significant processing energy cost, the optimal signaling
should only transmit in a small fraction, Θ, of the time to
save energy, i.e., to peaky signaling instead of i.i.d. Gaussian
input as for the Gaussian channel with no processing energy
cost.

We derive the optimal burstiness in terms of the LambertW
function. For the low SNR case, we show that there is a
very simple relation between the optimal burstiness and the
processing cost,

Θ∗ ≈ E/
√

2ε

where E is the average energy constraint at the transmitter,
normalized by the noise variance. We also show that it is
near optimal to transmit and receive Gaussian signals in a
prescribed Θ∗ fraction of the time, and thus on-off signaling
is not the unique way to achieve the optimal energy efficiency.
We also observe that there is an interesting similarity of the
optimal signaling as well as the achieved throughput between
this problem and the non-coherent block fading channel stud-
ied in [5]. We thus interpret the lack of channel information in
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the non-coherent channel as equivalently an energy overhead.
We generalize these results to the case when multiple

parallel Gaussian channels, with different noise levels, are
available. We derive the optimal power allocation in this case.
Our result can be intuitively thought as a ”glue pouring”
process, in contrast to the well-known water pouring solution.
The conventional water pouring can be viewed as a procedure
to successively allocate the total signal energy to parallel
channels. During this process, each increment of signal energy
is spent in the sub-channel with the lowest sum of the noise
power and the signaling power already allocated. Thus a new
degree of freedom starts to be used only if its corresponding
noise level is lower than the signal-plus-noise level of the
sub-channels that are already used. When processing cost
presents, this condition becomes more stringent: a new degree
of freedom is used only if the signal plus noise level in the
channels already used is strictly larger than (1 + ν) times the
noise level, where ν > 0 is a constant that we will explicitly
compute. Intuitively, the presence of overhead costs makes it
less profitable to start using a new channel. We further extend
our analysis to the multiple access channel with overhead,
where the optimal achievable rate region by bursty Gaussian
transmissions is found.

The remainder of the paper is organized as follows. In
Section II, we consider the case of a single user when
the energy constraint of an AWGN channel to include the
processing energy. We derive the optimal power allocation and
burstiness of signaling. We also study the power allocation
in parallel Gaussian channels, and generalize the well-known
water-pouring solution to the case with processing overhead.
In Section III, we apply these results to find the optimal
rate region for 2-user Gaussian multiple access channels with
overhead costs. In particular, we show that carefully scheduled
turning off users gives a gain in the achievable rate region.

II. SINGLE USER CAPACITY WITH PROCESSING ENERGY

COST

We consider a single user additive white Gaussian noise
channel. Let i be the time index. The noise samples are inde-
pendent and identically distributed Gaussian random variables
with zero-mean and variance σ2: Zi ∼CN (0, σ2). The output
of the channel at time i is given by

Yi = Xi + Zi. (1)

The capacity of this channel is

C = log(1 +
E
σ2

). (2)

where E denotes the average transmitted signal energy con-
straint, i.e., ∑n

i=1 |Xi|2
n

≤ E , (3)

In what follows, we will set the noise variance to be 1, and
still used E as the normalized energy constraint. We model
the processing cost as a constant amount whenever there is
non-zero signal being transmitted. For convenience, we also
normalize the processing energy cost by the noise variance,
and write it as ε. Now the energy constraint at the transmitter

(3) is replaced by

1
n

n∑
i=1

[|Xi|2 + ε · 1{Xi �=0}
] ≤ E ,

where 1{·} is the indicator function.
This modeling of the processing energy cost is clearly a

simplification from the reality. First, we ignore the energy
cost of transition between the ’on’ state and the ’off’ state
of the device, which can sometime be significant; secondly,
we assume that whenever the transmitter is sending X = 0,
it not only appears silent, but also can turn off the support
circuits immediately to save energy. In cases the signaling
requires frequent and fast turning on and off, such as with
pulse position modulation, our assumption would fall apart.
However, we will show later that it is nearly optimal to use
a signaling scheme that remains in the on and off stages for
long periods of time, (while keeping the ratio between the
”on time” and the ”off time”). Thus, the cost of transition
between the on and off states is amortized over time, making
our simplified model a good approximation to reality.

The capacity of this channel can be computed, numerically
in most cases. The case of interests is the one with very limited
total energy per channel use, or equivalently, the case with
abundant bandwidth. For this limiting case, one can directly
apply Verdu’s result on capacity per unit cost [6], where the
cost of sending a symbol x is simply C(x) = |x|2 +ε ·1{x �=0}.
Note that the symbol x = 0 is a zero-cost symbol to the
channel, and thus the capacity per unit energy is given by the
optimization

x∗ = arg max
x

D(N(x, 1)||N(0, 1))
C(x)

, (4)

where N(μ, σ2) denotes the Gaussian distribution with mean
μ and variance σ2. This data rate can be achieved by using
on-off signaling where the optimal value x∗ is transmitted as
the ”on” signal, and the position of which is used to carry
information.

It is easy to verify that the the optimal signaling is the pulse
position modulation (PPM), with an arbitrarily high peak. The
resulting capacity is linear in the total energy, and the same as
if the processing energy cost is not present. Intuitively, bursty
transmission reduces the processing energy cost by reducing
the number of degrees of freedom used in sending non-zero
signals. At the low energy limit, the signaling is so peaky that
the signal power, whenever transmitted, is much higher than
the processing cost.

This simple result, however, has some limitations when
applied in reality. First, in order to detect the PPM signal,
the receiver has to be on for all the time, resulting in highly
unbalanced duty cycles at the transmitter and the receiver;
secondly, it is often the case that the peak transmission power
is limited by the hardware, thus it is usually unrealistic to
transmit at high enough energy such that the processing cost
becomes ignorable.

To address the above issue, we study a specific signaling
that is sub-optimal in the sense of [6]. Here, we let the
transmitter and the receiver be turned ”on” for a prescribed
Θ fraction of the time, and transmit Gaussian signal in this
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period of time, with a fixed average signal power, ν, satisfying
the total energy constraint. We chose the parameter Θ and ν
by solving the following optimization problem.

max
Θ,ν:Θ(ν+ε)≤E

Θ log (1 + ν) (5)

Remarks:

• In capacity computation, we consider coding over ar-
bitrarily long blocks. Here, even though the time that
the transmitter is on is a small fraction Θ of the overall
coding time, we still assume it is indeed a long period of
time (possibly with multiple segments), over which one
can code to achieve the Gaussian capacity log(1 + ν);

• Using concavity, it is clear that when the transmitter is
on, one should always use a same average signal power
ν, instead of varying ν from time to time;

• When Gaussian signaling is transmitted, strictly speak-
ing, it is possible that a 0 symbol is drawn from the
Gaussian ensemble, at which time it is potentially possi-
ble to turn off the transmitter to save energy. We ignore
this possibility;

• One main difference between the proposed bursty Gaus-
sian signaling and PPM is that the fraction of time when
the transmitter is on is predetermined. Thus no infor-
mation is conveyed by the position of the transmitted
signals. This allows the receiver to be turned on in the
same fraction of time, also makes the signaling more
suitable to multi-user applications;

• At the low energy limit, the capacity result (4) leads
to a data rate that is linear in the total energy, the
bursty Gaussian signaling yields a rate that is strictly
sub-linear in signal energy. The optimization in (5) can
be understood as a tradeoff: on one hand, reducing Θ and
use bursty signaling avoids paying the processing energy
cost, on the other hand, accumulating too much energy
reduces the energy efficiency, as the log(·) function
becomes sub-linear as ν gets large.

The optimization problem (5) can be easily solved. We write
Θ = E/(ν + ε), and set

∂

∂ν

[ E
ν + ε

log(1 + ν)
]

= 0,

which implies

1
1 + ν

=
1

ν + ε
log(1 + ν). (6)

Together with the constraint that Θ ≤ 1, we have that he
optimal values

Θopt = min
{

1,
E ·W (e−1(ε− 1))

(ε− 1)(W (e−1(ε− 1)) + 1)

}
; (7)

and
νopt =

E
Θopt

− ε =
ε− 1

W ((ε− 1)e−1)
− 1. (8)

where we denoted by W the LambertW function, where W (x)
is the solution of W · eW = x. Reviews of the properties of
LambertW function can be easily found on the web and in
[17].
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Fig. 1. Approximation to νopt.

It is interesting to observe that when Θopt < 1, i.e., when it
is optimal to transmit bursty signals, the optimal signal power
νopt does not depend on the total energy E . That is, there is
an optimal power level, depending only on the processing cost
ε. When E > νopt + ε, the total energy is spread out over all
degrees of freedom and the transmission is not peaky; when
E < νopt + ε, it is optimal to transmit only Θopt fraction of
the time, with Θopt = E/(νopt + ε), to maintain the desired
signal power per channel use.

We are particularly interested in the case where both E and ε
are small. In this case, the interaction between the total energy
and the processing cost can be characterized by the following
approximation of (8), for small values of ε. It can be shown
that

lim
t→0

W (e−1(t− 1))−
√

2t = −1, (9)

thus we have an approximation to (8)

νopt ≈
√

2ε.

The approximation is more precise when ε is small, as shown
in Figure II. Note that all notions of signal energy in this paper
are normalized by the unit noise level, and are thus energy
ratios; hence the expression does not cause any contradiction
in the units.

A simple observation to be made is that when transmitting
at the optimal value νopt, the ratio between the processing cost
and the transmission cost, ε/

√
2ε, becomes small as ε→ 0.

In summary, for the system of interest with small values of
total energy E and small processing cost ε, suppose the input is
chosen from the family of bursty Gaussian signaling described
above, it is optimal to use strictly bursty signal, Θ < 1, when
E <
√

2ε. In such cases, the Θ should be chosen as

Θopt ≈ E/
√

2ε (10)

to maintain the desired transmission power.

In the same asymptotic regime, the achieved data rate by
the bursty Gaussian signaling with the optimal choice of Θopt
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can be computed using Taylor expansion as follows:

R(E , ε)
= Θopt log

(
1 +

E
Θopt

− ε

)

=
E√
2ε

log(1 +
√

2ε− ε)

=
E√
2ε
·
[√

2ε− ε− 1
2

(√
2ε− ε

)2

+ O
(
ε

3
2

)]
= E − E ·O(

√
ε).

The key observation is that when E and ε are both small, the
achieved data rate with the proposed signaling scheme is close
to E , which is the best possible energy efficiency, even when
there is no processing cost. Thus we conclude that the bursty
Gaussian signaling used in this asymptotic regime is close to
optimal in the achieved data rate.

Discussion: Connections to Non-coherent Channel Capac-
ity:

In [5], we studied the capacity of non-coherent block fading
channel in the low SNR regime. It is observed that when
the channel state information (CSI) is not available at the
receiver, it is desirable to use bursty signaling. Intuitively,
the burstiness of the transmission is chosen from the tradeoff
between avoiding the cost of estimating the channel and
keeping signal power low (thus energy efficiency high). The
result there has some nice connections to the current paper.
We summarize that result as follows.

Consider the block fading channel

y =
√

SNR · hx + w,

where x,w,y ∈ Cl; h ∼ CN (0, 1) is the scalar fading
coefficient, which is assumed to remain constant through the
block before changing into independent realization in the next
block. The block length l is the coherence time of the channel.
w is the additive noise with i.i.d. CN (0, 1) entries. The power
constraint is also normalized such that each entry of x has
unit average power. We are interested in the low SNR regime
with SNR → 0. The main result of [5] says that the optimal
signaling for this channel is bursty Gaussian signaling, with
joint channel estimation and decoding at the receiver; and the
optimal burstiness depends on the relation between the SNR
and the channel coherence time as follows.

Let the coherence time l satisfy for some α ∈ [0, 1],
limSNR→0

log l
log SNR = −2α. The capacity of this channel can

be written as Cl(SNR) = SNR −Δ(SNR), with Δ(SNR) ≈
SNR1+α. This capacity can be achieved by using Gaussian
signal in δ(SNR) ≈ SNR1−α fraction of the available time
slots. Put it another way, the burstiness of the signaling scales
as δ ≈ SNR · √l.

Compare this result with (10), we observe a clear corre-
spondence between the two different channels.

E ←→ SNR
ε ←→ 1

l

Θopt ≈ E/
√

2ε ←→ δ ≈ SNR · √l

Exchanging the parameters on the left from the problem of

communication with overhead costs with the ones on the right
from [5], we found that the optimal signaling and the achieved
capacity of the two problems are very similar, except that in
the current paper, the results are more precise. For example,
the factor of 2 in the above expression cannot be captured by
the asymptotic analysis used in [5]. The general approach in
the current paper can be used to study non-asymptotic cases.
On the other hand, in [5], it is shown that at the low SNR
limit, bursty Gaussian is near optimal: not only is the low SNR
capacity limit achieved but also is that limit approached at the
fastest rate. This result can indeed be extend to the problem
in the current paper. It can be shown that bursty Gaussian
signaling is capacity achieving at the limit that both E and ε
approach 0, with log E/ log ε remains constant. The analysis
is however rather repetitive to [5], and is thus omitted.

The correspondence between the two papers gives more
insights to both problems. Intuitively, for a non-coherent block
fading channel, there is an implicit cost of obtaining channel
knowledge, 1 which can be amortized over the block of l
symbols corresponding to one channel realization. In effect,
this cost is equivalent as an extra energy cost of ε ∼ 1/l per
symbol time. The optimal signal peakiness Θopt and δ are
thus chosen by the same tradeoff between the efforts to avoid
the overhead cost by transmitting over fewer channels, and
to improve energy efficiency by spreading signal energy over
more channels.

It is interesting to generalize the above results into the case
with multiple parallel Gaussian channels. It is well known that
water-pouring gives the optimal power allocation and thus the
capacity over parallel Gaussian channels. The water-pouring
solution in the case with processing energy is, however,
slightly different.

It is instructional to understand the water-pouring solution
as a process of differential power allocation. In brief, it is
capacity optimal, for Gaussian channels, to break the total
signal energy into, say K , small pieces, each used to carry
a sub-message. At the receiver, each sub-message is decoded
in turn, viewing the yet-not-decoded sub-messages as inter-
ference, and then subtracted from the received signals before
decoding the next message [3]. In a single Gaussian channel,
this process can be mathematically written as

log
(

1 +
P

N

)
=

K∑
j=1

log

(
1 +

ΔPj

N +
∑j−1

i=1 ΔPi

)

with
∑K

j=1 ΔPj = P . In the case with parallel channels,
this differential power allocation process always allocate in-
crements of signal energy in the channel with the lowest
interference level, and thus keep the signal plus noise level
at all channels balanced.

In the presence of processing energy, the differential power
allocation process is somewhat different. This can be best
understood reexamining equation (6), which is rewritten below
for convenience.

1
(1 + νopt)

=
1

ε + νopt
log(1 + νopt).

1Note we emphasize that this cost of channel knowledge is implicit, since
the capacity results in [5] do not assume any explicit channel estimation.
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To interpret this equation, suppose there are many parallel
Gaussian channels with noise variance N = 1, and suppose
only a fraction of them are used. Let the signal to noise ratio in
these used channels be ν. Now suppose we have an increment
of signal power ΔP . We can use this power in either or the
combination of the following two ways:

• We can spend ΔP in a channel that is already used.
This does not incur an extra cost of processing energy,
but the transmission has an interference level of 1 + ν,
and the increase in data rate is

dR1 = log(1 + ν + ΔP )− log(1 + ν) ≈ ΔP

1 + ν
.

• Alternatively, we can spend ΔP in some unused chan-
nels. Suppose we use these channels at the same SNR
level of ν. Counting the processing cost, we can use
ΔP/(ν + ε) channels, and obtain a rate increase of

dR2 =
ΔP

ν + ε
log(1 + ν).

Equation (6) states that the optimal SNR to use a channel
with processing energy cost is νopt that balances these two
options, satisfying dR1 = dR2. Intuitively, if there is any
channel used at an SNR level lower than νopt, then it is more
profitable to put more signal power in this channel before
using a new one, with the extra overhead. On the other hand,
if there is any unused channel, there is no point to use any
channel at an SNR level higher than νopt. For the case that
the noise variance of all channels are N , (instead 1), (6) can
be rewritten as

1
N · (1 + νopt)

=
1

ε + N · νopt
log(1 + νopt). (11)

Clearly, the optimal signal-to-noise ratio νopt depends on the
relation between the overhead cost ε and the noise level N .
Now the water-pouring problem is simply a generalization
where channels have different noise levels.

The simplest case for water-pouring is for two parallel
channels. However, to facilitate our discussion on the multiple
access channels in the next section, we consider a slightly
more general case. Let there be K parallel channels. It will
be clear that the number K does not affect the result, and can
be thought as the channels used over multiple time slots. Let
α1K channels have noise level of N1, and the other α2K of
N2, where α1 + α2 = 1, and N2 > N1, w.l.o.g.. Suppose
that the total signal power is K · E , and the access overhead
is ε for all channels. It is clear that within each sub-group of
channels with the same noise level, it is always optimal to send
Gaussian signals over Θi ∈ [0, 1] fraction of the channels with
the same SNR level νi, for i = 1, 2. Thus the optimal signal
can be described as a power allocation function between the
two groups. For convenience, we denote

(Θ1, ν1, Θ2, ν2) = F (E , ε, α1, α2, N1, N2). (12)

We also define, following (11), νopt,i, i = 1, 2 to satisfy

1
Ni · (1 + νopt,i)

=
1

ε + Ni · νopt,i
log(1 + νopt,i),

which can also be written as

νopt,i =
ε

Ni
− 1

W (( ε
Ni
− 1)e−1)

− 1

or appoximately at low SNR, νopt,i ≈
√

2 ε
Ni

,
Now using the idea of differential power allocation, we can

determine F as follows.
• If E ≤ α1 · (νopt,1 ·N1 + ε),

F =
( E

α1(νopt,1 ·N1 + ε)
, νopt,1, 0, 0

)
.

That is, only a fraction of the channels with noise N1 are
used at an SNR level of νopt,1, and other channels are
not used. Note this is different from the normal water-
pouring solution in that a peaky signaling is used even
among the good channels.

• If E ∈ (α1 · (νopt,1 ·N1 + ε), α1 · (νswitch ·N1 + ε)) with
νswitch satisfying

1
N1 · (1 + νswitch)

=
1

ε + N2 · νopt,2
log(1 + νopt,2). (13)

This means that when all the signal power used in group
1, it is not enough to have SNR level of νswitch. In this
case, all the signal energy should be used evenly over
group 1, i.e.,

F =
(

1,
E/α1 − ε

N1
, 0, 0

)
.

Here, (13) is a straightforward generalization of (11):
only when the channels in group 1 have SNR level of
νswitch, it starts to become more profitable to use extra
signal power in the channels in group 2, whose noise
level is higher.

• If E ∈ (α1 · (νswitch ·N1 + ε), α1 · (νswitch ·N1 + ε) +
α2 · (νopt,2 ·N2 + ε)),

F = (1, νswitch, Θ2, νopt,2) ,

where Θ2 fraction of the channels in group 2 are used at
SNR level of νopt,2, and the expression of Θ2 is omitted.

• If E > α1 · (νswitch · N1 + ε) + α2 · (νopt,2 · N2 + ε)
As all the channels are used, the problem reduces into a
normal water-pouring problem, with total power of E−ε
per channel. Notice that (13) and the definition of νopt,2

imply that

N1(1 + νswitch) = N2(1 + νopt,2),

thus when Θ2 increases to 1, the signal plus noise level
of all channels are equal.

Now to summarize, when there is an overhead of using a
new channel, the water-pouring process uses a new channel
only if the signal plus noise level of the channels already used
is strictly higher than a certain threshold. The overhead makes
it less profitable to start using a new degree of freedom. This
process can thus be better phrased as ”glue pouring”.

The above solution can be readily used in a multiple access
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channel with processing energy.

III. MULTIPLE ACCESS CHANNELS WITH PROCESSING

COST

The capacity region for Gaussian multiple access channel
is well known. For simplicity, we will focus on the case with
only 2 users. Let Ei denote the total power constraint for user
i, the capacity region is determined by the inequalities

Ri ≤ log(1 + Ei), for i = 1, 2;
R1 + R2 ≤ log(1 + E1 + E2).

It is well-known that any point in the capacity region can be
achieved by using time-sharing or rate-splitting [2], [3], and
successive cancelation receivers.

Most of the points on the frontier of the capacity region
are only achievable if both users are transmitting all the
time. TDMA approach, allocating times slots to individual
users, is in general sub-optimal. The only exception is that
the maximum sum-rate in the capacity region can indeed be
achieved by time sharing.

In the presence of processing overhead, the time sharing
approach, with one user turned off at sometimes, saves in
the overhead cost, and thus is more profitable. Consider the
achievable sum rate for example. If we, like in the conven-
tional case, use constant signal power levels for both users,
the signal powers are Ei − ε, and the achievable sum rate is

R1 + R2 = log(1 + E1 + E2 − 2ε).

The entire rate region achieved this way is reduced accord-
ingly, as shown in Figure III. In contrast, we can let user i be
turned on only in Θi fraction of the time, and set Θi = Ei

E1+E2
for i = 1, 2, a higher sum rate is easily achievable.

R1 + R2 =
∑

Θi log
(

1 +
Ei
Θi
− ε

)
= log(1 + E1 + E2 − ε).

For a general 2-user multiple access problem, one can easily
imagine a slight generalization of the time-sharing approach,

specified by parameters Θ1, Θ2, and Θ12. Here, Θi denotes
the fraction of time that only user i is on, and Θ12 denotes the
time that both users are transmitting. Now, the achieved rate
for user 1 is simply the rate transmitted in the Θ1 time period,
plus a part in the Θ12 period, depending on the decoding order
and the time-sharing factor.

Similar to the single user case, the above scheme in con-
cerned only with power allocation, and ignores the possibility
to convey information by the randomness of users being on
and off. Thus strictly speaking, we will describe only an
achievable performance in the sequel, where the focus is on
the allocation of degrees of freedom in the channel and signal
power.

The power allocation optimization, including the choice of
Θ1, Θ2, and Θ12, together with the signal power in each period
of time. The solution to this problem can be explicitly written
out, although cumbersome. In the following, we will describe
this solution using the water-pouring result in the previous
section.

First, we know that even if there is only one user in the
system, due to the overhead cost of accessing a channel, it is
sometimes optimal to use only a fraction of the channels. Let
Θopt,i be the single user optimal fraction for user i given in
(7). In the case that Θopt,1 + Θopt,2 ≤ 1, it is obvious that
each user should operate exactly the same as the single user
case. The achievable rate region is thus a rectangle, specified
by the two single user rates.

The more interesting case is when the two users compete
for the available degrees of freedom, i.e., Θopt,1 +Θopt,2 > 1.
Suppose that user 1 is decoded first and subtracted from the
received signal. Now from user 2’s point of view, he occupies
the channel all by himself. We use an extra parameter α2

as a tradeoff factor. That is, we assume that user 2 uses α2

fraction of the degrees of freedom, instead of Θopt,2. By doing
this, while user 2’s data rate is reduced, it can be potentially
beneficial to user 1’s throughput. The achieved rate region, in
terms of the tradeoff of the data rates of the two users, can
thus be parameterized by α2.

Now it is optimal for user 2 to simply spread the signal
power in these available channels. The resulting SNR per d.o.f.
is

ν2 =
E
α2
− ε,

and achieved data rate is

R2(α2) = α2 log (1 + ν2) .

Viewing the signals from user 2 as interference, user 1’s
channel is precisely the parallel Gaussian channel studied in
the previous section, where α2 fraction of the channels have
noise level of N2 = 1+ν2, and the other α1 = 1−α2 fraction
of channels have noise level of N1 = 1. The power allocation
for this case is fully solved. Let

(t1, ν1, t2, ν2) = F (E1, ε, α1, α2, N1 = 1, N2 = 1 + ν2),

for F (·) defined in (12). We can directly compute Θ1 = t1α1,
and Θ12 = t2α2, as well as the optimal SNR levels. The
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resulting data rate is thus

R1 = Θ1 log(1 + ν1) + Θ12 log(1 + ν2).

The above scheme always decodes user 1 before user 2,
we can switch the positions of the two users and allow time-
sharing between different schemes, which gives the entire rate
region, as plotted in Figure III. It is clear from the example
that as overhead cost reduces the capacity region, carefully
allocating the degrees of freedoms yields better achievable
rates, especially the sum rate.

IV. CONCLUSION

In this paper, we studied the channel capacity with a
processing energy overhead. We show that bursty transmission
is optimal in the case with large overhead. We interpret the
bursty transmission in terms of “glue pouring”, and thus
described the optimal power allocation for the case of parallel
channels with different noise levels. We also used this result to
find the optimal rate region of multiple access channels with
overhead.
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