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Abstract— Network coding substantially increases net- robust to packet losses and network failures [10], [25].
work throughput. But since it involves mixing of informa-  Furthermore, recent implementations of network coding

tion inside the network, a single corrupted packet genera® ¢, \yired and wireless environments demonstrate its
by a malicious node can end up contaminating all the . .
practical benefits [18], [8].

information reaching a destination, preventing decoding. - . o
This paper introduces distributed polynomial-time rate- But what if the network contains malicious nodes?

optimal network codes that work in the presence of Byzan- A malicious node may pretend to forward packets from
tine nodes. We present algorithms that target adversariessource to destination, while in reality it injects corrupte
with different attacking capabilities. When the adversary packets into the information flow. Since network coding

can eavesdrop on all links and jam zo links, our first makes the routers mix packets’ content, a single corrupted
algorithm achieves a rate of C — 2zp, where C is the P ' g P

network capacity. In contrast, when the adversary has paCket_Can_ end up corrup_timﬂ the infofmation reaching

limited eavesdropping capabilities, we provide algorithns a destination. Unless this problem is solved, network

that achieve the higher rate ofC' — zo0. coding may perform much worse than pure forwarding
Our algorithms attain the optimal rate given the jn the presence of adversaries.

strength of the adversary. They are information- . . . .
theoretically secure. They operate in a distributed manner The interplay of network coding and Byzantine adver

assume no knowledge of the topology, and can be designed@fies has been examined by a few recent papers. Some
and implemented in polynomial-time. Furthermore, only the detect the presence of an adversary [12], others correct
source and destination need to be modified; non-maliciousthe errors he injects into the codes under specific condi-

nodes inside the network are oblivious to the presence ofjgng [9], [14], [22], [31], and a few bound the maximum

adversaries and implement a classical distributed network . . .
code. Finally, our algorithms work over wired and wireless achievable rate in such adverse environments [3], [29].

networks. But attaining optimal rates using distributed and low-
Keywords: Byzantine adversaries, Distributed network complexity codes was an open problem.
error-correcting codes, eavesdroppers, information thexget- This paper designs distributed polynomial-time rate-

ically optimal, list decoding, polynomial-time algorithms.  gptimal network codes that combat Byzantine adver-
saries. We present three algorithms that target adver-
saries with different strengths. The adversary can inject
zo packets per unit time, but his listening power varies.
Network coding allows the routers to mix the inyhen the adversary is omniscient, i.e., he observes trans-
formation content in packets before forwarding theRissions on the entire network, our codes achieve the rate
This mixing has been theoretically proven to maximige ¢ — 2., with high probability. When the adversary’s
network throughput [1], [23], [21], [15]. It can be dongnowledge is limited, either because he eavesdrops only
in a distributed manner with low complexity, and i§n a subset of the links or the source and destination
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I. INTRODUCTION



the destination distill out the source’s information frothe absence of network coding, Dolev et al. [5] consider
the received mixture. To do so, the source’s informatithe problem of communicating over a known graph
has to satisfy certain constraints that the attacker’s daiataining Byzantine adversaries. They show that for
cannot satisfy. This can be done by judiciously addihgadversarial nodes, reliable communication is possible
redundancy at the source. For example, the source wray if the graph has more th&i+1 vertex connectivity.
add parity checks on the source’s original data. TBebramaniam extends this result to unknown graphs [27].
receiver can use the syndrome of the received packetBdlr et al. address the same problem in wireless networks
determine the effect of the adversary’s transmissions. Bigemodeling malicious nodes as locally bounded Byzan-
challenge addressed herein is to design the parity cheiclkesfaults, i.e., nodes can overhear and jam packets only
for distributed network codes that achieve the optinialtheir neighborhood [26].
rates. The interplay of network coding and Byzantine adver-
Conceptually, our proof involves two steps. We firsaries was examined in [12], which detects the existence
analyze standard network coding in the presenceobtin adversary but does not provide an error-correction
Byzantine adversaries (without adding additional redgeheme. The work of Cai and Yeung [2], [29], [3]
dancy at the source). In this setting, as expected, deggheralizes standard bounds on error-correcting codes to
nation nodes cannot uniquely decode the source’s daéaworks, without providing any explicit algorithms for
however we show that they cdist decode this data. achieving these bounds. Our work presents a constructive
Namely, receivers can identify short list of potential design to achieve those bounds.
messages that may have been transmitted. Once this ishe problem of efficiently correcting errors in the
established, we analyze the effect of redundancy at ghesence of both network coding and Byzantine adver-
source in each one of our scenarios (omniscient or limitgglies has been considered by a few prior proposals.
adversaries). Earlier work [22], [9] assumes a centralized trusted
This paper makes several contributions. The alg@thority that provides hashes of the original packets
rithms presented herein are distributed algorithms wigheach node in the network. Charles et al. [4] obvi-
polynomial-time complexity in design and implementates the need for a trusted entity under the assumption
tion, yet are rate-optimal. In fact, since pure forwardifigat the majority of packets received by each node is
is a special case of network coding, being rate-optimaicorrupted. Recently [32] demonstrate error detection
our algorithms also achieve a higher rate than any &pthe public key cryptographic setting. In contrast to
proach that does not use network coding. They assuhee above schemes which are cryptographically secure,
no knowledge of the topology and work in both wirgdl a previous work [14], we consider an information-
and wireless networks. Furthermore, implementing @héoretically rate-optimal solution to Byzantine attacks
algorithms involves only a slight modification of theor wired networks, which however requires a centralized
source and receiver while the internal nodes can contigiggign. This paper builds on the above prior schemes to

to use standard network coding. combine their desirable traits; it provides a distributed
solution that is information-theoretically rate optimalda
Il. RELATED WORK can be designed and implemented in polynomial time.

Work on network coding started with a pioneering purthermore, our algorithms have new features; they
per by Ahlswede et al. [1], which establishes the valueassume no knowledge of the topology, do not require
coding in the routers and provides theoretical boundsasy new functionality at internal nodes, and work for
the capacity of such networks. The combination of [28pth wired and wireless networks.

[21], and [15] shows that, for multicast traffic, linear The work closest in spirit to our work is that of
codes achieve the maximum capacity bounds, and Htoetter and Kschischang [19], who also studied the
design and implementation can be done in polynonpagsence of Byzantine adversaries in the distributed net-
time. Additionally, Ho et al. show that the above igork coding setting. They concentrate on communicating
true even when the routers perform random linear opeagainst an omniscient adversary, and present a distributed
tions [10]. Researchers have extended the above resultsheme of optimal rat€’ — 2zo. The proof techniques

a variety of areas including wireless networks [25], [17f [19] differ substantially from those presented in this
[18], energy [28], secrecy [2], content distribution [8fyork. In a nutshell, [19] reduce the model of network
and distributed storage [16]. For a couple of nice survepsling to a certain point-to-point channel. They then
on network coding see, e.g., [30], [7]. construct generalizations of Reed-Solomon codes for this

A Byzantine attacker is a malicious adversary hiddemannel, which enables the authors to construct determin-
in a network, capable of eavesdropping and jammistic network error-correcting codes as mentioned above.
communications. Prior research has examined such atWe would like to note that the abstraction used in
tacks in the presence of network coding and without it.[l®] (although very elegant) comes at a price. It does



n — packet size

the hyperedge is a simple point-to-point link. For wireless
IB—Batch Size networks, each such hyperedge is determined by instan-

5n_redundmsymbo,s taneous channel realizations (packets may be lost due
n — packet size . to fading or collisions) and connects the transmitter to
7= |‘ IT] 1, - No. of packets all nodes that hear the transmission. The hypergraph is

°” Calvin inject - : ‘aai
avin iieets unknown to Alice and Bob prior to transmission.

n — packet size

Source: Alice generates incompressible data that she

Y —> T IC—Network Capacity wishes to deliver to Bob over the network. To do so,
Alice encodes her data as dictated by the encoding
Fig. 1. Alice, Bob and Calvin’s information matrices. algorithm (described in subsequent sections). She divides

%ne encoded data into batchestopackets. For clarity,

no_t encapsula;e the gddltlonal Byzantine scenarios Wak,cus on the encoding and decoding of one batch.
arise naturally in practice and are addressed in our curren .
packet contains a sequenceroymbols from the

paper (i.e., adversaries of limited knowledge, discus§e

: . o jnite field IF,. All arithmetic operations henceforth are
in Sections VI and VIII). More specifically, our protocodone over symbols frorff,. (See the treatment in [20])
enables us to attain the higher rate @f— zp, albeit y a ’

only under the (weaker) requirement of list decoding. L%Pt of then symbols in Alice’s packetjn symbols are
L : — . ¥ Tredundancy added by the source.

decoding in the setting of network communication is' &

central ingredient in our proofs for limited adversarie - . \th

To the best of our current knowledge, the abstraction; fas shown in Fig. 1. We denote the ;)™ element

. - " : .
[19] (although based on Reed Solomon like codes) dweéhe matr.|t>; byx(l“]).' The i row n the matrix X
not allow efficient list decoding. IS just the:*" packet in the batch. Fig. 1 shows that

similarly to standard network codes [10], some of the
redundancy in the batch is devoted to sending the identity
I1l. M ODEL & DEFINITIONS matrix, I. Also, as in [10], Alice takes random linear

We use a general model that encompasses both wa@ubinations of the rows of to generate her transmitted
and wireless networks. To simplify notation, we considegickets. As the packets traverse the network, the internal
only the problem of communicating from a single sournedes apply a linear transform to the batch. The identity
to a single destination. But similarly to most networkatrix receives the same linear transform. The destination
coding algorithms, our techniques generalize to multicdisicovers the linear relation, denoted by the maffix
traffic. between the packets it receives and those transmitted.
This is done by inspecting how was transformed.

Alice organizes the data in each batch into a matrix

A. Threat Model Adversary: Let the matrixZ be the information Calvin

There is a source, Alice, who communicates ovelnigcts into each batch. The size of this matrixisx n,
wired or wireless network to a receiver Bob. There is al¥§€€ 2o i the number of edges controlled by Calvin
an attacker Calvin, hidden somewhere in the netwddternatively, one may definep to be the size of
Calvin aims to prevent the transfer of information froffje min-cut from Calvin to the_dt_astmanon). In SOme
Alice to Bob, or at least to minimize it. He can obser94 OUr adversarial models we limit the eavesdropping
some or all of the transmissions, and can inject his ogAPabilities of Calvin. Namely, we limit the number of
When he injects his own data, he pretends they are gqumltted papkets Calvin can observe. In such cases,
of the information flow from Alice to Bob. his number will be denoted by;.

Calvin is quite strong. He is computationally urReceiver: Analogously to how Alice generate¥, the
bounded. He knows the encoding and decoding schereesiver Bob organizes the received packets into a matrix
of Alice and Bob, and the network code implement&d Thei'" received packet corresponds to e row of
by the interior nodes. He also knows the exact netwdfk Note that the number of received packets, and there-
realization. fore the number of rows oY, is a variable dependent on
the network topology. Bob attempts to reconstruct Alice’s
information, X, using the matrix of received packets

As mentioned in the Introduction, conceptually, Bob
Network Model: The network is modeled as a hyperecovers the information of Alice in two steps. First,
graph [24]. Each transmission carries a packet of datb identifies a set of linear constraints which must
over a hyperedge directed from the transmitting nodebt satisfied by the transmitted informatigh of Alice.
the set of observer nodes. The hypergraph model captliteés set of constraints characterizes a linear subspace of
both wired and wireless networks. For wired networkew dimension in whichX must lie. We refer to this

B. Network and Code Mode



low dimensional subspace asliaear list decoding of | Yariable [ Definition _ |
Network capacity.

X. Once list decoding is accomplished, unique decodi Number of packets Calvin can Trject
. . . . . 1 20 .
follows by (_:on3|der|ng addmonal mforma‘uo_n Bob thI Number of packets Calvin can hear.
on the matrixX (such as its redundancy, or informatigny Number of packets in a bateh
transmitted by Alice over a low rate secret channel). [, Length of each packet.

0 Alice’s redundancy.

Network Transform: The network performs a classicat
distributed network code [10]. Specifically, each packetthroughout this work is defined ag” — zo.
transmitted by an internal node is a random linear com-

bination of its incoming packets. Thus, the effect of the TABLE |
network at the destination can be summarized as follows. Terms used in the paper.
Y=TX+T7Z. Q)

) ) IV. SUMMARY OF RESULTS
This can be written as

X We have three main results. Each result corresponds
v=rr| |,

A @) toa distributed, rate-optimal, polynomial-time algonith
) . that defeats an adversary of a particular type. The opti-
where X is the batch of packets sent by Alicg, refers ity of these rates has been proven by prior work [2],
_to the packets Calvin injects into Alice’s batch,_al’(d 3], [29], [14]. Our work, however, provides a construc-
is the received batch. The matr refers to the linearyon o gistributed codes/algorithms that achieve optimal
transform from Alice to Bob, whild"” refers to the I'“earrates. To prove our results, we first study the scenario
trf/;msform from Calvin to Bob. Notice that neith€rmor ¢ pioh rate list decoding in the presence of Byzantine
1" are known to Bob. Rather, as shown in Figure 1, BQR ersaries. In what follows, 67 denote the number

receives the matri’, which cannot be directly used tqy receivers, and€| denote the number of (hyper)-edges
recoverX. in the network.

Notice that in our model the error imposed by the) ghared Secret Model: This model considers the
Byzantine adversary Calvin is assumed todneled 10 y5nsmission of information via network coding in a
the original information transmitted on the network. ORgyyork where Calvin can observe all transmissions, and
can also consider a model in which these eroveswrite . jniect., corrupt packets. However, it is assumed that

the existing information transmitted by Alice. We Stré$Sice can transmit to Bob a message (at asymptotically

that if Calvin is aware of transmissions on links, these tWQingibIe rate) which is unknown to Calvin over a
models are equivalent. Overwriting a message Wit gonarate secret channel. In Section VI we prove the
equivalent to adding- X z + Z on the links controlled byfollowing

Calvin, whereX ; represents the original transmissions

. Theorem 1: The Shared Secret algorithm achieves an
on those links.

optimal rate ofC' — zp with code-complexityO(nC?).

Definitions: We define the following concepts. (2) Omniscient Adversary Model: This model assumes
an omniscient adversary, i.e., one from whom nothing is
« The network capacity, denoted byC, is the time- higden. As in the Shared Secret model, Calvin can ob-
average of the maximum number of packets th@kve all transmissions, and can injegtcorrupt packets.
can be delivered from Alice to Bob, assuming nigowever, Alice and Bob have no shared secrets hidden
adversarial interference, i.fe., the max flow. It cgym Calvin. In Section VII we prove the following.
be also expressed &be min-cut from source 10 Thegrem 2: The Omniscient Adversary algorithm

destination. (For the corresponding multicast casgehjeves an optimal rate 6f—2z with code-complexity
C is defined as the minimum of the min-cuts OVBS((n()?)

all destinations.) o . -
« The error probability is the probability that Bob's(3) Limited Adversary Model: In this model, Calvin is

reconstruction of Alice’s information is inaccuratdiMited in his eavesdropping power; he can observe at

« The rateR is the number ofinformation symbols mostz; transmitted packets. Exploiting this weakness of
that can be delivered on average, per time step, fityg adversary results in an algorithm that, like the Om-
Alice to Bob . RateR is said to be achievable if fofiscient Adversary algorithm, operates without a shared
anye; > 0 ande; > 0 there exists a coding schemeecret. In Section VIII we prove the following.

probability < ;. algorithm achieves an optimal rate 6f— zo with code-

complexity O(nC?).
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Linear List Decoding Model: A key building block in matrix . Bob can computé” as (Y*) ™' Y. Therefore
some of our proofs is dinear list decoding algorithm. Y can also be written as

The model assumes the Omniscient Adversary of Model XSF
(2). We design a code that Bob can use to output a Y = [T|1] { g5 E }

3)
linear list (of low dimension) that is guaranteed to contain ) ) ) )
Alice’s messageX . The list in then refined to obtain th&°mparing (2) and (3), and again using the assumption

results stated in Theorems 1, 2, and 3. In Section Vv gt [7|7"] is invertible (with high probability) gives us
prove the following. X = X°F, (4)
Theorem 4: The Linear List Decoding algorithm g g5p )
achieves a rate of' — zp and outputs a listl. that is '
guaranteed to contaiX. The list L is a vector space ofin particular, (4) gives a linear relationship ghthat can
dimensionb(b + z0). The code-complexity i€)(nC?). be leveraged into a list-decoding scheme for Bob (the
corresponding linear relationship from (5) is not very
V. LINEAR LIST DECODING IN THE omniscient — USeful). The number of variables iX* is b(b + z0).
ADVERSARY MODEL Therefore the entries of the matriX® span a vector

space of dimensiob(b + zp) over F,. Bob's list is

~ Here we assume we face an omniscient adversg{¥, corresponding(b + 2o )-dimensional vector spade
i.e., Calvin can observe everything, and there are dManned byx > F.

shared secrets between Alice and Bob. We design a codgpe only source of error in our argument arises if
that Bob can use in this scenario to output a linear gt intersection of the column-spans®fand7” is non-

(of low dimension) that is guaranteed to contain AlicqﬁviaL i.e., if [T|T"] is singular. But as shown in [11],
messageX . Our.algorithr.n achievesargter: C—zo.. as long ash + zo < C, this is at mosy7T||E|q~" for
The corrupted informatio” Bob receives enables himyny fixed network. Since Calvin can choose his locations
to deduce a system of linear equations thasatisfies. j, 5t most('g‘) ways, the total probability of error is at
This system of equations ensures tiatlies in a low ost(‘5|)|7f|o|5|q*1. The computational cost of design
dimensional vector space. We now present our algoritg]modzo ’

in detail. Th hout thi q . tiohS ing and decoding is dominated by the cost of
:‘inxede:slb Loug out this and upcoming Sectionsis computing F' and thereby a representation 6f This
— 0.

takesO(nC?) steps.

Alice’s Encoder: Alice’s encoder is quite straightfor- Note: In the Linear List Decoding scheme described
ward. She simply arranges the source symbols into &#iv@ve, Alice appends an identity matrix to her source
b x n matrix X, appended with &-dimensional identity symbols to obtain the matri¥X, causing (an asymptot-
matrix. She then implements the classical random rietlly negligible) loss in rate. This is also the standard
work encoder described in Section 1lI-B to generate Ipgotocol of [10]. We note that our scheme works just
transmitted packets. as well even if Alice does not append such an iden-

Bob'’s Decoder:Bob selects + zo linearly independentfity matrix, and X' consists solely of source symbols.
columns of Y, and denotes the corresponding matfiowever, the appended identity matrix is used in the
Y*. Here we assume, w.l.0.g., that the column ramedel of Section VII. We now solve (4) under different
of Y is indeedb + 2. The column rank cannot b@&ssumptions on Calvin's strength.

larger thanb + zp by (2). If the column rank happens
to ber < b+ zp, Bob selectsr independent rows VI. SHARED SECRETMODEL

of Y and continues in a procedure analogous to that'n the Shared Secret model Alice and Bob have use
described below. We also assume tiatcontains the lastOf @ strong resource, namely a secret channel over which
b columns ofY” (corresponding to Alice’s-dimensional Alicé can transmit a small amount of information to
identity matrix). This is justified due to (2) and thEOb that is secret from.CaI\{ln. The size of Fhls secret
assumption (discussed below) that the intersectioniSo@Symptotically negligible inn. Note that since the
the column-spans of’ and 7" is trivial, i.e., [T|7"] is internal nodes mix corrupted and uncorrupted packets,
regular (with high probability over the random choicéYice cannotjust sign her packets and have Bob check the
of internal nodes in the network). The remaining Signature and throw away corrupted packets — in extreme

columns of Y* are chosen arbitrarily so that* is Cases Bob may not receiagy uncorrupted packets.
invertible. The columns ofX and Z corresponding to  Alice uses the secret channel to send a random hash of

those inY® are denoted(® and Z* respectively. By (2), her datg to Bob. Bo_b first uses the _Iist-decoding scheme
y* = [T[T] X Also. sinceY™ acts as a basis forOf Se(_:tl_on V to obtain a Iow-dlr_nen5|onal vec'gor-spzlce

- zs | ' containing X. He then uses Alice’s hash to identify
the columns ofY, we can writeY = Y*F for some from L.



Let « be a parameter defined below. Let ..., r, information as follows. Alice writes her informatioX
be o elements offF;, chosen at random by Alice (anth the form of a lengttbn_column vectorX. The vector
unknown to Calvin). LetD = [d;;] be ann x o matrix X is chosen to satisiDX = 0. Here, D is adn x bn
in which d;; = (r;)*. Let XD = H. Alice sends to Bobmatrix defined as theedundancy matrix. The matrix D
a secrefS comprising of the symbols,, ..., r, and the is obtained by choosing each element as an independent
matrix H. The size of this secret is thuga + 1), which and uniformly random symbol from the finite fielf,,
is asymptotically negligible im. andén > n(zp + ¢) for arbitrarily smalle. This choice
Claim5: For any X’ # X the probability (overof parameters implies that the number pafrity checks
1,...,1re) that X’D = H is at most n “ DX = 0 is greater than the number of symbols in the
Proof: We need to prove thatX — X’)D # 0 with 20 packets that Calvin injects into the network. We show

high probability, where is the zero matrix. As¥ # X' that this allows Bob to uniquely de_code, implying a rate
there is at least one row aX which differs from x’. ©f ¢ —2zo0. The redundancy matri®) is known to all

Assume w.l.0.g. that this is the first row, denoted herePg&ties — Alice, Bob, and Calvin — and hence does not

the non-zero vectofz1, ..., z,). The j'th entry in the CONstitute a shared secret. , o

first row of (X — X')D is F(r;) = S0, art. As F(r;) Alice encodes as in Section V. Bob’s decoding is as
1= iy

is not the zero polynomial, the probability (ovey) that ©lOWS.

F(r;) = 0 is at most™. This holds for all entries of the Bob first runs the Linear List Decoding algorithm

first row of (X — X')D. Thus the probat()yility that thd® obtain Equations (4) and (5). We denote the matrix

. . . comprising of the firstzo rows of F' by Fi, and the
entire row is the zero vector is at m % ~ 7 matrix comprising of the lagi rows of F' by F». By the
Leta = b(b+ z0) + 1. Let L be a list (containingconstraints specified in Section V, the lastolumns of

X) of distinct matrices. Let the size & be ¢*~". X# form an identity matrix. Thus (4) transforms into
Corollary 6: The probability (overry,...,ry) that

there existsX’ € L such thatX’ # X but X'D = XD X =X{F + F3, (6)

is at mostn®/q. , , where X{ comprises of the firsto columns of X*.

Proof: We use Claim 5, and the union bound on all pecal thatX is a vector corresponding to the matrix

elements ofl. that differ from X, _ ® X. Upon receivingy’, Bob computest” and solves the
Note: The secret channel is essential for the foIIOW|g95tem:

reason. If the symbolsy,...,r, werenot secret from

Calvin, he could carefully select his corrupted packets so X = X{F+Fy, (7)

that Bob’s listL. would indeed contain aX’ # X such DX = 0 (8)

that X'D = X D.

Bob is able to decode the original informatigh of Here, onlyD and " are known to Bob. Our goal is now
Alice. Namely, Corollary 6 establishes that the systéPnShOW that with high probability over the entries of the
XD = X*FD = H has a single solution. This solutiofatrix D, no matter which matrix” was obtained by
can be found using standard Gaussian elimination. BODP. there is a unique solution to Equations (7) and (8).

The above implies a scheme that achieves@ate. The _matrixF depends on the error8 Calvin injects_,.
The optimality of this rate is shown in prior work [14]C@lvin can choose these to depend onWe take this

The probability of error is at most®/q +[71|£|('%)) /q. into consideration below. _ _
Here a = b(b + 20) + 1. The computational cost of The_system of linear equations (7)-(8) can be written
design, encoding, and decoding is dominated by the d8dpatrix form as
of running the Linear List Decoding algorithm, which AR — { A(Fy) } X—B
takes timeO(nC?3). D ’
where A comprises of the submatrice$(F;) and D,
VII. UNIQUE DECODING IN THE OMNISCIENT A(Fy) is abn x bn matrix whose entries depend df,
ADVERSARY MODEL andB is a lengthr(b-+4§) vector. It holds that the system
We now consider unique decoding. Our algorithf)-(8) has a unique solution if and only & has full
achieves a rate aR = C'— 2z, which is lower than thatcolumn rank. However, Calvin has partial control over
possible in the list decoding scenario. Recent bounds [2],and his goal is to design his errdr so this will not
[3] on network error-correcting codes show that in fdot the case.

C — 2zp is the maximum achievable rate for networks In what follows, we show that Calvin cannot succeed.
with an omniscient adversary. Namely we show, with high probability over the entries
To move from list decoding to unique decoding iof D, thatno matter what the value off’ is, the system
the omniscient model, we add redundancy to Alic€®)-(8) has a unique solution. Our proof has the following



structure. We first show that for a fixdd , the matrixA probability). Settingd = zo + ¢ suffices for our proof.
has full column rank with high probability ovep. We The computational cost of design, encoding and decoding
then note that the number of possible different matrigeslominated by solving the system of Equations (7)-(8),
Fy is at mostg#o™ (this follows from the size off}). and thus equal®((nC)?).
Finally, applying the union bound we obtain our result.

We start with some notation. Assume th&t is VIIl. L IMITED ADVERSARY MODEL
arranged by stacking the columns &f one on top of
the other, where the columns &f; appear on the top of In this Section we combine the strengths of the
X. Also, we fix the(i, j)'th entry of Fy to be f;;. Then, Shared Secret and the Omniscient Adversary algorithms
the matrix A — { A(Fy) of Sections VI and VII respectively. We then achieve

D the higher rate of” — zp without the need of a secret

channel. The caveat is that Calvin is more limited — he

] has the following form:

(- fl’l)l _f?’ll o _fz_o’ll can only eavesdrop on part of the edges in the network.
: : : : 0 Specifically, the number of packets he can transmjt,
—frzol  —freol .. (A= fan20)] and the number he can eavesdrop op, satisfy the
—fizorl —fazonl ... —fozon] technical constraint
—fm —fé,nl N —fz;),nl I 2z0 + 21 < C. (9)
D We call such an adversarylamited Adversary.

The main idea underlying our Limited Adversary
The matrix A is described by smaller dimensionalgorithm is simple. Alice uses the Omniscient Adversary
matrices as entries. Namely, the identity matricesalgorithm to transmit a “short, scrambled” message to
appearing above have dimensibnthe identity matrix Bob at rateC' — 2z0. By (9), the ratez; at which Calvin
I has dimensiorb(n — zp). and the zero matriX has eavesdrops is strictly less than Alice’s rate of trans-
dimensionzpb x b(n — zp). We now analyze the colummnission C' — 2z. Hence Calvin cannot decode Alice’s
rank of A. message, but Bob can. This means Alice’s scrambled
Clearly the lasth(n — zo) columns of A are inde- message to Bob contains a sec$ethat is unknown to
pendent. Thus any set of dependent columnsiahust Calvin. OnceS has been shared from Alice to Bob, they
include at least one of the firékp columns. LetV = can use the Shared Secret algorithm to transmit the bulk
{ut, ... upzp3 01, .. Vpn—z0) } DE the set of columnof Alice’s message to Bob at the higher rdte- zo.

of A (here the{u;} vectors correspond to the leftmog{jice’s Encoder: Alice’s encoder follows essentially
bzo columns ofA). We break the{u;} and{v;} vectors the schema described in the previous paragraph. The
into two parts. The components of tHe.;} and {v;} informationS she transmits to Bob via the Omniscient
vectors in the topn rows of A are denoted, respectiveIy@\d\,er%lry algorithm is padded with some random sym-
as {u;} and {vj}. The components of thgu;} and pols. This is for two reasons. First, the randomness in
{v;} vectors in the bottondn rows of A are denotedthe padded symbols ensures strong information-theoretic
respectively, as{u;} and {v}}. The matrix A is rank- secrecy ofS. That is, we show in Claim 7 that Calvin's
deficient if and only if there exisfa;} and{/3;}, not all hegt estimate ofiny function of S is no better than if he
zero, such thad_; cu; + 3, Bjv; = 0. Note that thereangomly guessed the value of the function. Second, since
is a one-to-one correspondence between the vdlugs the Omniscient Adversary algorithm has a probability of
and the valueg3;} in the above equality. Namely, fogror that decays exponentially with the size of the input,
each setting offa;}, there is a unique setting df;} it isn't guaranteed to perform well when only a small
for which 3°; auj + >, Bjv; = 0. Further, for every megsage is transmitted.
setting of the value$a; } (and a corresponding setting for  pjice divides her informationX into two parts
{8;}) the probability overD that >, azul + 3°, B0} = [X1 X,]. She uses the information she wishes to transmit
0 is at mostg—?". This implies that the probabilityg Bop (at rateR = (C — zp)(1 — A)) as the input to
i + 355 Bv; = 0 is asymptotically negligible.the encoder of the Shared Secret algorithm. The output
Then, an additional use of the union bound ongH® of this step is theb x n(1 — A) sub-matrixX;. Here A
possible values of;} suffices to obtain our proof.  js a parameter that enables Alice to trade between the
All in all, Bob fails to uniquely decode with probprobability of error and rate-loss.
ability gzomgb?0¢=9" (the first term corresponds to the The second sub-matriX,, which we call thesecrecy
union bound over the values df, = [f;;], the secondmatrix, is analogous to the secrBtused in the Secret
term corresponds to the union bound over the val@wsring algorithm described in Section VI. The size of
of {a;}, and the third term corresponds to the failugé, is b x nA. In fact, X, is an encoding of the secret



S Alice generates in the Shared Secret algorithm. The é?r‘gsti”a' Rate | Complexity
= (b(b+z0)+1)(b+1) symbols corre.:sponding.to the —shared 2o <gC7 o OnC?)

parity symbols{r;} and the hash matri¥/ are written Secret 21 = network

in the form of a lengthy column vector. This vector [ Omniscient zo < C/2, C —2z0 | O((nC)®)

is appended with symbols chosen uniformly at randon) 21 = network

from T, to result in the length' — zo — §)nA vector | Limited | 214220 <C | C—z20 [ O(nC?)

U’. Alice multiplies U by a random square matrix to TABLE Il

generate the inpdf. This vectorU functions as the input COMPARISON OF OUR THREE ALGORITHMS

to the Omniscient Adversary algorithm operated over a

packet-sizenA with a probability of decoding error that

is exponentially small imA. The output of this step isalgor|thm§ V\_’h'Ch are _|nformann-theoretlcaIIy secure
X, and rate-optimal for different adversarial strengths (as

The following claim ensures that is indeed secretS"OWn in Table 11). When the adversary is omniscient,
from Calvin. we show how to achieve a rate 6f— 2z, wherezp is

Claim7: Let v = (b(b + z0) + 1)(b + 1). The the number of 'packets the adversary injects énig the
probability that Calvin guessé&scorrectly is at mosy—?, ne_twork capam_ty. If the a_dversar_y cannot observe every-
i.e., S is information-theoretically secret from Calvin. thing, our algorithms achieve a higher rate;- zo. Both

The proof of Claim 7 follows from a direct extenrates are optimal. Further, our algorithms are practical;

sion of the secure communication scheme of [6] to Japy are distributed, have polynomial-time complexity
and require no changes at the internal nodes.
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