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Abstract—We study different notions of capacity for time-slotted
ALOHA systems. In these systems, multiple users synchronously
send packets in a bursty manner over a common additive white
Gaussian noise (AWGN) channel. The users do not coordinate
their transmissions, which may collide at the receiver. For such
a system, we define both single-slot capacity and multiple-slot
capacity. We then construct a coding and decoding scheme for
single-slot capacity that achieves any rate within this capacity
region. This coding and decoding scheme for a single time slot
combines aspects of multiple access rate splitting and of broadcast
codes for degraded AWGN channels. This design allows some bits
to be reliably received even when collisions occur and more bits to
be reliably received in the absence of collisions. The exact number
of bits reliably received under both of these scenarios is part of the
code design process, which we optimize to maximize the expected
rate in each slot. Next, we examine the behavior of the system
asymptotically over multiple slots. We show that there exist coding
and decoding strategies such that regardless of the burstiness of
the traffic, the system is stable as long as the average rate of the
users is within the multiple access capacity region of the channel.
In other words, we show that bursty traffic does not decrease the
Cover–Wyner capacity region of the multiple access channel. A
vast family of codes, which includes the type of codes we introduce
for the single-slot transmission, achieve the capacity region, in a
sense we define, for multiple-slot transmissions. These codes are
stabilizing, using only local information at each of the individual
queues. The use of information regarding other queues or the use
of scheduling does not improve the multiple-slot capacity region.

Index Terms—ALOHA, broadcast, bursty data, capacity,
coding, multiple access, rate splitting.

I. INTRODUCTION

THE flexibility of ALOHA systems, which were first pro-
posed in 1970 by Abramson [1] makes such systems an

attractive option for wireless applications, such as data transfer
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for nomadic computing. In the original ALOHA system, users
transmit packets without any knowledge of other user’s cur-
rent transmissions. If a collision among packets occurs at the
receiver, those packets are discarded and the users retransmit.
The capacity of ALOHA systems and related collision systems
has generally been considered in terms of packet throughput [7],
[41], [49]. The stability region of the ALOHA system has been
extensively studied. For an infinite number of users, the system
is unstable for any input rate [19]. For a finite number of users,
there exist bounds and some exact results only for the two-user
case or particular arrival processes [6], [51]. Several different
control mechanisms have been established to stabilize the op-
eration of the ALOHA system [30], [54] or to perform conflict
resolution [19], [27], [32], [34], [37], [40], [45], [48], [65].

In order to avoid total loss of packets to collisions, several
coding schemes have been proposed for ALOHA packets [14],
[15], [17], [18], [33], [36], [46], [50], [52], [61]. The purpose of
such coding is to allow at least part of the data in the packets to
be received correctly despite collisions. One example is spread
ALOHA in which users appear as interference to each other
in the event of a collision. However, when careful considera-
tion is given to the dimensions required to spread users, spread
ALOHA has been shown in [62] to be detrimental to capacity (as
compared to coding without spreading). Bursty multiple-access
communications have been considered in [57], but the purpose
there is to avoid retransmissions altogether.

The paper is organized as follows. In Section II, we de-
scribe a simple time-slotted packetized ALOHA-style model.
In Section III, we consider the issue of how to code over a
single time slot. We propose a coding scheme that combines
multiple-access rate splitting concepts and broadcast codes for
degraded additive white Gaussian noise channels. This scheme
was presented in part in [42] and [43]. In effect, we create from
each user several pseudo-users. Rather than discard all data
received during a collision or code sufficiently to receive all
the data even in the event of a collision, our scheme enables a
tradeoff between the rates obtained in the event of a collision
and those obtained when no collision occurs. In the case of no
collision, the data from all the pseudo-users corresponding to
the single transmitting user is correctly received. In the case of
a collision, only a subset of the transmitted data from a user
corresponding to the data for a subset of his pseudo-users can
be received correctly. The manner in which the energy of each
user is split among its corresponding pseudo-users determines
the tradeoff between the rates achievable under collisions and
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Fig. 1. M -user ALOHA model.

under no collisions. We examine how to optimize the rates
allocated to the pseudo-users when we seek to maximize the
total expected rate at the receiver for a given traffic arrival
distribution in a single slot. We show that the rate benefit of
splitting one user into several pseudo-users arises mainly in the
case of users with highly asymmetric energies.

In Section IV, we consider the long-term behavior of the
system, using a particular definition of capacity for the case of
an arbitrarily large number of slots. We show that there exists a
family of codes for which the system is stable as long as the av-
erage rates of the users are within the multiple access capacity
region (the Cover–Wyner rate region [23]). Thus, despite the
burstiness of the system, the capacity of the ALOHA system is
the same as that of a multiple-access system in which both users
transmit continuously. Moreover, the use of information by
users or by any other entity, such as a controller or scheduler, of
the state of other users’ queues does not improve the achievable
rate region. We present our conclusions and directions for
further research in Section V.

II. MODEL AND BACKGROUND

We consider a multiple-access system, as illustrated in Fig. 1,
where users transmit to a single receiver. The model is time
slotted, and each time slot is of length time units. All the users
share a single channel with no multiplicative attenuation but
which is corrupted by additive white Gaussian noise (AWGN).

Data arrives at a given user for transmission in the form of
fixed-length packets, where different users may have different
packet lengths. We define to be the number of bits that
arrive at user in the th time slot, . We assume that
at most one packet arrives for transmission in each time slot.
Thus, equals or zero, where is the number of bits
in the th user’s packet. The arrival of packets for transmission
at a user is determined by a Bernoulli process in which, at the
start of each time slot, a user receives a new packet with prob-
ability and no packets with probability . The arrival
streams of the various users are mutually independent processes.
In particular, the sequence is i.i.d. with mean

, , and the average rate of bits to
user is (bits per second). The vector is the -di-
mensional vector of arrival rates, .

Moreover, we assume that the moment generating function is
finite in a neighborhood of the origin; there exists , and

, such that

(1)

for all , . We discuss in Section VI relax-
ations of these assumptions.

Let be the number of bits in buffer at the beginning
of time-slot , and let denote the
vector of buffer levels. Each user sends data from his buffer.
Once a user receives a packet for transmission, the data in that
packet is queued at the user and that data is transmitted ac-
cording to certain policies, which we describe later. Each user
knows the traffic awaiting transmission in its own queue. More-
over, user may possibly have information at time re-
garding the contents of the queues of other users. A user’s queue
contains all of its data that has not yet been successfully trans-
mitted, i.e., data that was never transmitted or that was trans-
mitted and received in error due to collisions. Each user has an
infinite queue to hold data awaiting transmission.

At the start of a time slot, a user decides whether to transmit
over that time slot, and, if he transmits, what data to transmit and
how to encode that data. Packets may be transmitted as whole
packets or partial packets. Coding is subject to the following
constraints.

1) For each transmission over a time slot, user is restricted
to using a certain maximum energy over that time slot.

2) User , if he transmits, must transmit over the whole time
slot and use codes of length .

3) At the th time slot, user bases his transmission strategy
on the contents of his own queue ( ) and, if known,
on information about other users’ queues.

4) To ensure synchronization at the receiver, we assume that
the receiver has perfect timing information.

5) The receiver knows for each user, at each time slot,
whether or not that user is transmitting, for instance
through identifying tags on the packet transmissions.
The absence of a tag for a user indicates the absence of
that user. We do not explicitly include such tags or their
associated overhead in our model.

Assumption 5) is reasonable if the tags are sufficiently coded,
so that they will withstand interference from all users simulta-
neously. Moreover, our model assumes there is no cost, in terms
of time and energy, associated with tag transmission. This is rea-
sonable if the length of a time slot is very large and the number
of users is moderate, so that the bits required for encoding the
user identifiers are negligible with respect to the total number
of bits in a time slot.

Detailed information regarding queue lengths is typically im-
portant in network design [10]. This is particularly important for
scheduling, but we do not consider scheduling in this paper. In
Section IV, we find that the th user cannot improve capacity
by using information ( ) about other users’
queues.

We do not make here explicit assumptions about what infor-
mation the senders have about the success of their transmis-
sions. These assumptions are not necessary in Section III, where



488 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 2, MARCH 2004

a single slot is considered. They become relevant in the case
of several slots, as discussed in Section IV. The main issue to
consider is whether users are aware of what data was lost to
collisions at the receiver. The affect of different assumptions
regarding the knowledge of the data lost to collisions will be
discussed in Section IV.

We may now present our model for the transmitted and
received signals. The receiver receives the sum of the transmis-
sions of the users and the AWGN. The signal transmitted by
user is .

The output of the system at the receiver is , given at time
unit by

(2)

where the s are i.i.d. Gaussian and are independent of the
processes . The common variance of the is denoted

.
At each time unit the are mutually independent, condi-

tioned on queue information at the different users. We term col-
lision the event where more than one user transmits in a single
time slot.

We may now describe the notion of capacity we consider in
this paper to analyze the behavior of our system. We assume the
time slots to be long enough that rates arbitrarily close to ca-
pacity may be achieved over a single time slot. The specific def-
inition of this capacity for our ALOHA channel is given below.
The notion of long time slots is the same as for a single user,
where rates arbitrarily close to the single-user Shannon capacity
can be achieved for codes with a sufficiently long block length
(which corresponds to one time slot in our model). User in
time slot sends one codeword each from a set of code-
books , . We denote the single-slot ca-
pacity for user in slot , defined below, as , and let

. The ordered set of codebooks is

called the codebook for user in slot . We say that the code-
book ( ) achieves the single-slot capacity in slot
for slot-length and error probability (is ( ) single-slot
capacity achieving) if for some sets

known to both the transmitter and receiver there
exists a decoding policy such that:

1) every codeword from a codebook where is
decoded with probability of error or less;

2) the rate associated with that codeword transmission
equals the single-slot capacity, thus for

A codeword that was decoded with probability or less
is considered to have been reliably received. We say that a
codebook satisfying the conditions outlined above is ( )
single-slot capacity-achieving. Note that this definition differs
from the standard capacity definition in that on slot each user
need not send any codeword in its codebook with arbitrarily
small probability; he need only send a subset of his codewords

with arbitrarily small probability. This subset corresponds to a
rate below the maximum associated with the full codebook, to
allow for a lower rate to be reliably received in the event of a
collision.

We now define multiple-slot capacity based on this single-slot
capacity definition. Assume we now transmit over slots. For
a given and , a coding and decoding policy is ( )
capacity-achieving if , that is ( ) single-slot ca-
pacity achieving and

(3)

This notion of capacity is related to other formulations of ca-
pacity with a delay constraint or probability of failed transmis-
sion, such as delay-limited capacity [31], -capacity [66], ca-
pacity versus outage [16], [47], [59], [60] and expected capacity
[24], which itself may be viewed in the context of compound
channels [13], [67]. Our own model can be viewed in terms of
a compound multiple-access channel. Overviews of these other
types of capacities can be found in [10] and [13].

The meaning of capacity-achieving policies as defined above
is clear in the context of error exponents. Suppose that for every
coding strategy in the policy and every possible arrival pattern in
a slot, every user has an error exponent, bounded by . Error
exponents [26] for multiple access channels [39] can be used to
find, for large enough , a lower bound to possible values of

of the form . Averaging over multiple time slots
would yield better error probabilities, similar to those obtained
for fading channels, where the coding exponent reflects aver-
aging over several fades.

Under the assumptions spelled out in this section we may
obtain strict bounds on the set of achievable rates. Let us suppose
that for . We are then in the case where
users always have traffic to transmit and each user is aware of
whether the other user has traffic to transmit. Then, as long as the
vector of arrival rates for the users is strictly
inside the multiple access achievable rate region [5], [39], we
expect the rates to be achievable. This is the basis of the coding
schemes considered in the next section.

III. CODING OVER A SINGLE TIME SLOT

In this section, we examine coding over a single time slot.
We illustrate the two-user case where each buffer is known to
be empty at the previous time slot. For the analysis in this sec-
tion, any traffic to be transmitted at the current time slot can only
come from the arrival of new packets in the previous time slot.
In the rest of this section, we refer to the rate over a single slot
of length . We assume that each user receives packets/bits to
transmit at a rate corresponding to its single-slot capacity. This
assumption can readily be relaxed by placing an additional con-
straint on the capacity of a given user.

We combine concepts from multiple-access communications
[5], [39]; broadcast channels [20]–[23]; and rate splitting
[28], [53]. The basic idea behind this approach springs from
the following observation. In multiple-access channels, ca-
pacity is achieved through rate splitting. This involves first
constructing virtual users that share available power and that
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transmit independently. The receiver then decodes the received
signals consecutively, so that some users are regarded as noise
to other users during decoding. After a user is decoded, the
user’s contribution to the signal is eliminated, and the noise
for the remaining undecoded signal is reduced. A similar
approach is taken to achieve capacity in the degraded AWGN
broadcast channel. For broadcast AWGN channels, we su-
perimpose two codes, a low-resolution and a high-resolution
code. The low-resolution code is decoded by considering the
high-resolution code as noise. Once the low-resolution code
is decoded, its contribution is eliminated. Hence, there is a
similarity between the decoding mechanism used to achieve
capacity in multiple-access channels and that used in degraded
broadcast channels. In the system, we consider a user code to
transmit over two possible channels: a channel with the other
user present and a channel without the other user. Thus, our
problem bears some traits of both degraded broadcast channels
and of multiple-access channels.

For the model considered here, rate splitting is used to map
out all points in the single-slot capacity region by splitting the
signal of a given user into two signals corresponding to two dif-
ferent pseudo-users. Let us consider a specific example, where
user 1 is split into two independent pseudo-users, and ,
which send sequences of independent Gaussian signals with
variance and , respectively. In this example, we
assume that there is no rate splitting for user 2, which maps to
a single user . As in broadcast channels, each of the users we
have constructed sends two messages on two separate signals.
That is, sends a low-resolution signal and a high-res-
olution signal , which are independent Gaussian i.i.d. se-
quences with variance and , respectively.

sends low-resolution signal and high-resolution signal
, which are independent sequences of i.i.d. Gaussian sig-

nals with variance and , respec-
tively. sends low-resolution signal and high-resolution
signal , which are independent sequences of i.i.d. Gaussian
signals with variance and , respectively. Each

, , lies in [0, 1]. These values can be optimized, which
we do in the next section, to maximize average rate. Fig. 2 il-
lustrates this coding scheme, including the rate splitting into
pseudo-users and the multiple resolution signaling for each user
or pseudo-user. The notations and are the abbreviations
of the low and high resolution, respectively, since we are in ef-
fect using a broadcast code within our multiple access scheme.

We decode signals one after the other in the following order:

First then and finally (4)

If one of the six signals is not present, the receiver proceeds to
the next one. Each signal is decoded so that all signals not yet
decoded are considered noise, and signals that have been de-
coded and reconstructed are cancelled. Here, we assume every
low-resolution codeword can be decoded with arbitrarily small
probability of error regardless of collisions. The error associated
with the high-resolution codewords will depend on whether or
not there are collisions.

We may now present the three possible cases that arise and the
corresponding decoding rules. Each signal of the and

Fig. 2. Representation of the coding scheme.

type has a rate such that it can be decoded within the required
probability of error if the SNR is at least

for

for

for

for

for

for

Our coding and decoding scheme is defined so that all
signals above will always have a sufficiently large SNR. These
signals are, therefore, always received reliably. For the s,
they will not have sufficient SNR if user 1 and user 2 send at the
same time. If the minimum SNR is not met for any one of the
signals, that signal is not decoded. We consider the following
cases.

Case 1) Only user 2 transmits.
• First, we decode , which yields a rate

whose maximum is

• Next, we decode signal , which
yields a rate whose maximum is

.
The total rate is the sum of the above two rates.

Case 2) Only user 1 transmits.
• First, we decode , which yields a rate

whose maximum is

• Second, we decode signal , which yields a
rate whose maximum is
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• Third, we decode the signal , which yields
a rate whose maximum is

• Finally, we decode , yielding a
rate whose maximum is

.
The total rate is the sum of the above four rates.

Case 3) User 1 and 2 both transmit.
• First, we decode , yielding a

rate whose maximum is
.

• Second, we decode , which yields a rate
whose maximum is

• Third, we decode signal , which yields a
rate whose maximum is

The total rate for user 1 is the sum of the rates of
and . The total rate for user 2 is the rate .

Case 4) Neither user transmits, so the total rate is zero.
We define the rate variable as follows: refers to the cases

enumerated above, and refers to the users. Thus, is the rate
for user 2 when there is no interference, and is the rate for
user 2 when there is interference. We have an achievable rate
for user 1 when there is no interference and another achievable
rate when there is interference.

Note that our arguments can easily be extended to more
than two users. Suppose that we have users. Every possible
set of users is associated with a scenario that corresponds to
only those users being present. There are
possible such scenarios. We first split the users into
virtual users. Each of these virtual users is then encoded using
a -level coding strategy. For each possible scenario, a
particular set of codes will be decoded. If there are users
present, then for each present virtual user codes
will be decoded. Our results demonstrate achievability of the
proposed coding scheme but not its optimality, which would
require showing some fashion of coding converse, possibly
similar to the broadcast channel converse [9]. Shamai [60]
has applied a broadcast approach, which generalizes [59] to
the multiple-access case, to a general class of channels that
subsumes our channel. His optimization yields the same results
as our optimization. Our results show a particular coding and
decoding scheme to achieve the results of [60] and provide an
explicit means of achieving a tradeoff for the rates achievable
in the absence or presence of a collision. The following section
explores that tradeoff in the context of expected rate. An alter-
nate approach, in which broadcast splitting is performed before
multiple-access splitting, is given in Appendix A.

A. Maximizing the Total Expected Rate

From the above discussion, we see that determining a coding
scheme to achieve capacity is equivalent to determining the
values of , , , and . Given these parameters, it suffices

to select random codes satisfying WGN-like statistics. In this
section, we seek to find , , , and to maximize the
expected rate, given by

(5)

Note that we can optimize without finding the parameters
, , , and explicitly [59]. We carry out explicitly the

optimization in terms of , , , and because our goal is
not only to maximize mutual information for a certain coding
approach, but also to show explicitly how to design this optimal
coding strategy.

We define the following two variables:

means we put all the signals of user in , and
means we put all the signals in . Let us consider all the pos-
sible cases for and . When , we have im-
mediately that . We present the case in detail for

, and a similar analysis yields the solution when
, . Although these cases reduce to a single user

channel, since one of the two users transmits with zero proba-
bility, the solutions illustrate the manipulation in the more gen-
eral case where and . The solutions for these more
general cases, which requires significantly more manipulation,
are derived in Appendix B.

Let us examine in detail the boundary point
with . By the general expression for the total expected
rate in (5), we obtain

Then we have the following:

• If , then .
• If , then

and we achieve equality when .
Hence, the optimal total expected rate for this case is

(6)

where the maximum is achieved when one of the following con-
ditions is satisfied:

• , , , can be any value in [0,1];
• , , and can take any value in [0, 1].

In other words, all information from user 1 will be decoded
first (see Fig. 2). Since user 1 does not send in this case, user
2 codes its message assuming user 1 does not exist. Expression
(6) can be seen to be the value we would expect, since it is the ca-
pacity for an AWGN channel with noise variance and signal
variance .
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In a similar way, we may verify that, for , , the
optimal total expected rate is

(7)

where the maximum is satisfied when one of the following con-
ditions is satisfied:

• , , , ;
• , , , can be any value in [0, 1];
• , , can take any value in [0, 1].

In other words, all information from user 2 will be decoded first
(see Fig. 2). Since user 2 does not send in this case, user 1 codes
its message assuming user 2 does not exist.

Theorem 1: For any , such that , there
exists a single coding policy for two users which is ( )
single-slot capacity-achieving for user over slot when-
ever, for any

i) and
or

ii) and
or

iii) and .
The constructive proof of this theorem follows immediately

from our discussion. Note that the analysis in this section can
readily be extended to the case where the queues are known to
have some arbitrary contents at the beginning of the time slot.

B. Numerical Results

We conclude this section with a brief description of some
numerical results in which values of and were computed
which maximize the total expected rate . We consider the
special case where . The optimal values and
are functions of the probability .

In each experiment the noise power was fixed, , but
the signal powers , were varied to show the affect of
varying SNR. The most interesting cases are found in the highly
asymmetric case, with very different SNRs for different users.

Fig. 3 shows results in the symmetric case in which both users
have the same transmission power, i.e., . In each
symmetric example considered we found that the best policy
is either or for each . In each
example, the coding policy switches at some value of . Note
that, as the SNR increases ( increases from 0.1, 10, 10 , 10 ,
and then 10 ) this switching point tends to . Thus,
when the users have equal transmission probabilities and equal
transmission powers, no rate splitting between and is
required.

For highly asymmetric SNRs, for some region of , it is nec-
essary to split at least one user to and to achieve the
maximum total expected rate. Fig. 4 shows five examples with
highly asymmetric SNRs to approximately symmetric SNRs. In
each of the first three examples there is a region of values of
for which is strictly between 0 and 1.

IV. STABILITY

Here, we establish stability of the model, as viewed as a dis-
crete-time-controlled stochastic system. We restrict ourselves to

Fig. 3. k and k which maximize E(R) in several symmetric cases: � =
� = 0:1, 10, 10 , 10 , and 10 , with � = 1.

the special case of two users, although more general situations
can be readily obtained by similar methods.

Since we use coding to allow some bits to be transmitted even
in the event of a collision, our analysis of stability is very dif-
ferent than traditional stability analysis of packetized ALOHA
systems where collisions entail the loss of all packets involved
[8], [25], [29], [30], [38], [55], [56], [58], [63], [64].

In regard to the dynamic model that includes bursty arrival
stream to each user, there are two issues to be considered.

A. Impact of Variability

Burstiness is captured by , the probability, at each user, that
traffic arrives for transmission in a slot. Simple constructs show
that no form of burstiness can improve the total rate. Specifi-
cally, consider first a two-user system with no burstiness, i.e.,
where for all . In that case, the system can be re-
duced to a system with burstiness if each user holds back trans-
missions in a probabilistic manner, thus mimicking the affect
of bursty arrivals. Hence, burstiness cannot improve the total
achievable rate , where the achievable rate vector is
considered using the definition of Section II.
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Fig. 4. k and k which maximize E(R) in several asymmetric cases. User
2 has power � = 1; 3; 5; 7; and 9. In all cases, User 1 has power has power
� = 10 and the noise has power � = 1.

We next find that burstiness cannot reduce the achievable rate,
since users could average their arrivals over many time slots.

B. Role of Information

Consider a two-user system where, at each time slot, each
user has perfect knowledge of the other user’s queue state, in
terms of bits awaiting transmission, as well as of his own. We
obtain a bound on the achievable rate as follows.

Consider the maximum expected total achievable rate over
any time slot, subject to the constraint that the probability
of error in that time slot is upper bounded by . Standard
converse coding theorems establish upper bounds to the
attainable rate. If both users transmit, and if is suf-
ficiently small, then this maximal rate is upper bounded by

. Suppose that only one user,
say user 1, transmits in a given time slot. In this case, the
maximal achievable rate (for this user, over any individual time
slot) is upper bounded by for all

sufficiently small. Similarly, if only user 2 transmits, the
maximal achievable rate (for this user, over any individual time

slot) is upper bounded by for all
sufficiently small. Thus, for small enough, the single-slot

capacity region is upper bounded by the Cover–Wyner mul-
tiple-access rate region. Hence, the same converse holds for the
multiple-slot capacity region, as stated in Theorem 2.

Theorem 2: There exists such that for all
, there exists such that if there exists for some a

coding and decoding policy that is ( ) multiple-slot ca-
pacity-achieving, then

(8)

for all subsets of .
In conclusion, we find that neither burstiness nor queue in-

formation can make the achievable rate region larger than the
multiple-access Cover–Wyner rate region when is small.

In order to prove a coding theorem that shows that the rates
strictly in the interior of the Cover–Wyner region are feasible,
it is necessary to show that the queue length process is stable
whenever lies within the Cover–Wyner region. Theorem 3
below establishes stability.

Theorem 3: Suppose the vector of arrival rate is inside the
multiple-access capacity region. Then, for some ,

, and any

(9)

Proof: We first establish the following version of Foster’s
criterion (see [44]). Let the Lyapunov function

be defined as , . Let
. We will show that for

some , , and a bounded set

(10)

where , and denotes
the information, in terms of past contents of the buffers, about
our system up to time slot .

In order to establish (10), we consider three cases, corre-
sponding to varying backlog at the two queues.

Case 1) . In this case, the bound is obvious for
some under (1) [just take an expectation on
both sides of the inequality (10)], regardless of .

Case 2) , for . Given our definition of
, both users have enough bits to send in the next

time slot. Because is inside the capacity region,
(10) holds.

Case 3) , but only one component, or
, exceeds the threshold . In these cases, the

maximum of and decreases even faster
than it does in Case 2, so we preserve the drift in-
equality (10).

We now set , where . In
view of (10) and Lipschitz continuity of , it can been shown,
as in [44, eqn. 16.28], that the following geometric drift holds
for some ,
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This implies that for all

Because lies in the multiple-slot capacity region, the system
is stable, so the vector of rates is achievable.

There are two other cases to consider.

i) If on a boundary of the multiple-access capacity region,
we cannot determine the stability of the system.

ii) If is outside the multiple-access capacity region, then
for , as , the system is not stable in
the strongest sense.

The arguments in this section can readily be extended to the
case where we have more than two users. In effect, we have
shown that the bursty nature of the data does not affect the re-
liably received rate, even though the transmitted rate may be
affected.

To illustrate the implications of Theorem 3 we consider the
following simple policy. When a user, say user 1, empties his
buffer, he backs it up very significantly, according to the specific
policy. Then, he transmits using a coding scheme that achieves a
maximum total rate when both users transmit continuously over
all time slots. User 2 follows the same scheme. For any ,
any , for all large enough , we may find a policy of this
form such that

In effect, if we back up for long enough, the time spent trans-
mitting when users are backed up dominates, and the time spent
artificially backing up queues becomes negligible. Thus, this
policy is optimal according to our definition of optimality, al-
though it clearly is a poor choice in terms of delay.

We can immediately find that a policy where users transmit at
all times as though they were in multiple access mode is optimal
and trivially exhibits better delay characteristics than the family
of policies mentioned above.

We have not yet discussed the information users need about
past collisions. In the family of schemes described above, the
information about past collisions is irrelevant, since collisions,
which almost always occur, are taken into account in the coding
when transmissions occur. On the other hand, for a scheme such
as the one presented in Section III, the knowledge of past colli-
sions allows retransmission of the components which may
have been lost. This is in effect some form of automatic re-
transmission request (ARQ), albeit very different from the case
where complete loss of data occurs in the case of a collision.
In particular, let us assume each user knows the type of colli-
sions that have occurred in the past, i.e., each user knows which
users transmitted in past slots. The knowledge of past collisions
provides not only ARQ but also partial knowledge of the queue,
since the users know how many bits were not successfully trans-
mitted. If retransmission of components does not take place,
then we should consider a capacity definition centered around
expected received rate rather than reliably transmitted rate (to
within probability of error).

From our discussion, we may state the following coding the-
orem companion to Theorem 2.

Theorem 4: For any and sufficiently large , there
exists a coding and decoding policy which is ( ) capacity
achieving for all in the interior of the Cover–Wyner multiple
access capacity region.

V. DELAY ISSUES

Our results indicate that there is a family of transmission
strategies that achieve rates arbitrarily close to the multiple ac-
cess channel capacity region boundary without sharing queue
information and without adapting the strategy to the burstiness
of the traffic. One cannot, however, interpret our results to mean
that it is useless for users to have queue information or to adapt
coding to traffic arrival characteristics, such as burstiness. Our
analysis has not considered the issue of delay. Recent work has
considered power and delay tradeoffs in fading channels [10].
However, in that analysis, users had perfect knowledge of each
others’ queues. Our results indicate that queue information and
adaptive coding are not important from a capacity point of view,
but it is reasonable to assume they are useful from a delay point
of view. In particular, there exists a tradeoff between delay and
energy. This tradeoff is explored in [10] for fading channels,
but under the assumption of perfect knowledge of all the queues
and centralized control. Such centralized control is not appro-
priate for our ALOHA-style model, in which transmissions are
essentially uncoordinated. The tradeoff between delay and en-
ergy in the case of no or very limited queue information in the
same system setting as this paper is investigated in [2]. Queue
information need not be detailed and coding may not need to
be designed to depend as closely on channel and queue knowl-
edge as in Section III. Consider the following family of poli-
cies, partially explored in [2]. Each user transmits a single bit
when its queue passes above or below a certain threshold of bits,
say sufficient to transmit the maximum single user rate over a
single time slot. In a manner similar to that in Section III, the
users adapt their coding to the known conditions of the other
queues, for instance transmitting in multiple access mode when
all users are above the queue threshold. This family of policies
is optimal with respect to many slot capacity. For this family of
policies, there is a tradeoff between, on the one hand, delay, in
terms of time slots, and, on the other hand, energy, rate, queue
information, and coding complexity. A topic of further interest
when considering delay is determining to what extent placing
constraints on average delay, for instance in terms of expected
number of slots, affects our achievable rates.

VI. DISCUSSION AND CONCLUSION

We have considered the case of ALOHA systems where some
measure of interference cancellation can occur at the receiver.
We have shown one such scheme, for the case of a single time
slot. This scheme works by combining notions from broadcast
codes and rate splitting and adapts coding to the burstiness of
the system. This method in effect relies on having several over-
laid codes. When we consider many slots, we have seen that
the capacity region, in the sense we defined, is the same as the
Cover–Wyner multiple-access capacity region. Moreover, we
have shown that there is a family of policies that achieve ca-
pacity without any queue information being shared among users
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Fig. 5. Representation of the proposed new coding scheme.

and without adapting coding to burstiness of the system. In ef-
fect, our results indicate that burstiness does not affect capacity.
Interestingly, this insight, without the capacity and coding con-
structs in this paper, has been present in some of Abramson’s
work for many years [3], [4].

Our results make several assumptions regarding data arrival,
coding, lack of channel fading, etc. Several extensions are pos-
sible. For instance, we may consider different types of data ar-
rival, with some constant streams and some bursty arrivals as
in [18]. The coding methods can be readily adapted for dif-
ferent arrival distributions, and the stability results should only
depend, for well-behaved distributions, on the average arrival
rate of data. We may consider shorter time slots and coding
over more than a single slot, either with interleaving or without.
The results of Section III would then be changed considerably,
but those of Section VI would not be affected, since we could
create super slots by amalgamating time slots. Fading, particu-
larly block-fading where fading intervals are an integer number
of time slots and the fading parameters are known at the sender
and the receiver, may be easily included in the coding method.
Stability would then have to take into account the type of time
variations of the channel. The values of would also vary with
fading and time slots.

APPENDIX A

In this approach, we reverse the order of the rate splitting and
do not rate split multiple access for the high-resolution users.
As in broadcast channels, each of the users we have constructed
sends two messages on two separate signals. That is, sends
signals and , which are independent WGN signals
with variance and , respectively. sends
signal and , which are independent WGN signals with
variance and , respectively. The low-resolution
component of user 1 is then divided into two independent vir-
tual users for multiple access purposes. Hence, we have
and , which send independent WGN signals with vari-
ance and , respectively. There is no rate
splitting for the low-resolution component of user 2. Each ,

, lies in [0, 1].
Fig. 5 illustrates this coding scheme.
The notations and are the abbreviations of low res-

olution and high resolution, respectively, since we are in effect

using a broadcast code within our multiple access scheme. We
decode signals one after the other in the following order:

First then and finally

If one of the five signals is not present, the receiver proceeds
to the next one. Each signal is decoded so that all signals not
yet decoded are considered noise, and signals that have been
decoded and reconstructed are cancelled. Here, we assume the
signal can be decoded with over a time slot of length with
probability of error less than or equal to .

Each signal of the and type has a rate such that it can
be decoded within the required probability of error if the SNR
is at least

SNR for

SNR for

SNR for

SNR for

SNR for

Hence, the low-resolution and high-resolution rates that may
be achieved are as follows:

SNR SNR

SNR

SNR

SNR

It can be shown that any rate achieved with the first scheme
given in the paper can be achieved with this scheme. Consider a
set of allocations of , , , for the first scheme. We may
choose , , so that

Proof: Let us first set by setting

(11)

Next, we may attempt to set . Note that
from the properties of the AWGN channel capacity function,

, where
. Hence

and we may allow by setting
, or equivalently

(12)
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Next, we attempt to set by choosing our final
degree of freedom, , accordingly. Note that

Hence, we may equate these two rates by setting
, or equivalently

(13)

We still must check that with these values of , , and , we
in fact arrive at our final set of rates matching: .
Let us now verify

(14)

(15)

(16)

(17)

(18)

where (14) is due to (11), (15) and (16) are due to (12) and
(13), (17) is due to (12), and (18) is due to (12). Note that this
collapses the previous virtual users into

virtual users.

APPENDIX B

In this appendix, we maximize expected capacity for all the
remaining cases of and .

A. Maximum Total Expected Rate for Boundary Probabilities

Case 1: Only one .
We first consider the case where , and .

By the general expression for the total expected rate in (5), we
obtain (omitting certain algebraic steps)

We achieve equality when , and
(i.e., ). So, the

total expected rate for this case is

(19)
where , , can take any value in [0, 1].

For the case where , , we obtain in a similar
fashion that

where , can take any value in [0, 1].
Case 2: and .
The total expected rate can be shown to be the same as the

maximum total rate for the multiple access channel, thus satis-
fying our conditions for stability discussed in Section II. Hence

(20)

where , .

B. Maximum Total Expected Rate for Interior Probabilities

We now consider the case where the vector lies in the inte-
rior of the simplex: and . By the general
expression for the total expected rate in (5) (omitting algebraic
steps), we have the equation shown at the bottom of the page.

For simplicity, we consider in detail only the special case
when . For the case , see [35]. We note that
the conclusion in either case is the same. The optimum ( )
occurs on the boundary of its domain.

For the special case , the total expected
rate can be written as

Given the definition in Section III-A, i.e.,
, , we obtain

(21)

According to their definitions, and are independent and
may take values in [0, 1], so we get a maximization problem
of a two-variable function over a closed region. The maximum
points are either on the boundary or the relative maxima inside
the region. Next, we prove that there are no relative maxima
inside the region.

Take the derivatives of in (21) over and , we get
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(22)

(23)

By letting and ,
we determine an extreme point: ,

. Taking the second order derivatives of
at this point yields

(24)

(25)

(26)

(27)

From

we have

(28)

The results in (24)–(28) imply ( ) is not a relative ex-
tremum, and the maximum points are on the boundary, i.e,

, or , or , or . We consider four cases.

Case 1) If , then from (23) we know that, for this case

then is a decreasing function of .
So, when , we achieve the relative max-

imum of on line .
Case 2) If , then from (22) we know that, for this case

So, when , we achieve the relative max-
imum of on line . From Cases 1 and
2, the relative maximum on the boundary or

is

(29)

Case 3) If , then from (23) we know that, for this case

(30)

For different in [0, 1], we have the following
three possibilities.

1)
implies that, when

, we get the relative maximum

(31)
2)

implies that, when
, we get the relative

maximum

(32)

3)
implies that, when

, we get the relative maximum

(33)
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Case 4) If , then from (22) we know that, for this case

(34)

For different in [0, 1], we have the following
three possibilities.

1)
implies that, when

, we get the relative maximum

(35)
2)

, hence when
, we get the relative

maximum

(36)

3)
, hence when

, we get the relative maximum

(37)

Based on the discussions above, the maximum expected rate
for the case is

Case 1)
A) , ,

where (29) and (31) are the equation numbers.
B) ,

.
C) , .
Case 2)
A)

a) ,
.

b)
,

.
c) ,

.
d) ,

.
e) , .

B)

a) ,
.

b) ,
.

c) ,
.

d) ,
.

e) , .

Case 3) , and our conclusions are similar to those
of 2).

We can see, for the extreme case where
and

which is the capacity of the multiple-access channel.
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