

Information Theory for Mobile Ad-Hoc Networks (ITMANET): The FLoWS Project

FLoWS Update

Andrea Goldsmith

FLoWS Program Objectives

- Develop tractable and insightful metrics and models for MANET information theory.
- Define fundamental performance limits for MANETs in terms of desired objective metrics.
- Obtain upper and lower performance bounds for these metrics for a given set of MANET models.
- Define the negotiation between the application and network for resource allocation and performance optimization of our given metrics
- Bound the cost of using our set of metrics as the interface between the network and applications.

Thrust Objectives and Scope

- Models and Metrics (Leads:Effros and Goldsmith):
 - Objective: Develop a set of metrics for dynamic networks that capture requirements of current and future applications
 - Scope: Develop a set of models for MANETs that are tractable yet lead to general design and performance insights
- New Paradigms for Upper Bounds (Leads:Koetter and Medard)
 - Objective: Obtain bounds on a diversity of objectively-defined metrics for complex interconnected systems.
 - Scope: A comprehensive theory for upper bounding the performance limits of MANETs

• Layerless Dynamic Networks (Lead:Zheng)

- Objective: Design for networks as a single dynamic probabilistic mapping, without pre-assigned layered structure
- Scope: Remove layering and statics from MANET information theory.

• Application Metrics and Network Performance (Lead:Ozdaglar)

- Objective: Provide an interface between application metrics and network performance
- Scope: Develop a generalized theory of generalized rate distortion, separation, and network optimization for MANETs

State-of-the-art Today

- Small isolated successes on narrowly-defined information theory of wireless networks.
- There is a large body of wireless (and wired) network theory that is ad-hoc, lacks a basis in fundamentals, and lacks an objective success criteria.
- Control theory and optimization very mature, with well-defined techniques and metrics.
- No cross-disciplinary ideas or synergies spanning these fields, except recent research that applies optimization and control techniques to existing wireless network designs.

- Develop a unified information theory of MANETs by:
 - Expanding the definition of information theory to encompass the nature and constraints inherent to wireless networks
 - Exploiting the powerful tools of control and optimization into this new theory
 - Obtaining fundamental capacity results and bounds under this broader definition
 - Using the new capacity theory and its associated insights to obtain fundamental breakthroughs in the theory of wireless network design.
 - Developing a generalized theory of rate distortion and network utilization to optimize the interface between networks and applications

Progress since January

- A wealth of results developing new paradigms and new synergies within and between our thrust areas
- New and ongoing collaborations among PIs, including student/postdoc exchanges
- Website online; design updated
 - Overview of the project as well as each thrust area
 - Summary of key program accomplishments to date, including the addressed challenge, potential impact, and key results
 - Presentations and posters from the January meeting
 - Publications
- Two PI Meetings
 - Advisory Board Meeting w/ Chan and Gallager (April 1, MIT)
 - Research Meeting (June 28, ISIT, Nice)
- ISIT Student Paper Award (Ng, Gunduz, et. al.)

Advisory Board Meeting Takeaways: General

- Want our research to provide challenges and solutions to the people that invent and build things.
- Fundamental research will have much greater impact on MANET design and performance than incremental research.
- Need to develop "Nuggets" about fundamental research in FLoWS and find a good way to desseminate them

Specific Areas of Importance (meeting notes)

- Reliability: How and when to ensure a packet gets through (Goldsmith, Zheng, Coleman)
- Encoding/decoding: code size, a which node to decode, delay impact (Koetter, Medard, Effros, Goldsmith)
- Dynamics: impact of dynamics in networks. (distributed) algorithm convergence, overhead, game theory, imperfect CSI (Meyn, Ozdaglar, Shah, Boyd, Johari)

Delay: Queuing fundamental to network design and is a big part of delay (added this to subtask 3, Shah)

- Priorities in Networks: Handle with kid gloves, Apps must chose where to operate (Ozdaglar, Shah, Johari)
- Control: Should not distort the real network problem to fit the existing optimization and control tools (All of thrust 3)
- Asymptotics: Try to see what can work asymptotically, what should go to infinity?

Thrust 1 Synergies and Results

Thrust 2 Synergies and Results

Network Information Theory

Goldsmith, Medard, Katabi: Joint relaying, combine symbols in PHY, bits, or network layer

Koetter: likelihood forwarding, relay information before decoding

Moulin: covert channel by timing information

Meyn, Zheng, Medard: mismatched receiver, online robust algorithm to combat imperfect channel info.

Goldsmith: Interference channel with cognitive user, "asymmetric" cooperation

Effros, Goldsmith: Generalized capacity, distortion, and joint source/channel coding.

Coleman: correlated source over BC, reduce coordination by separate encoding/ joint decoding

Goldsmith: broadcasting with layered source code, graceful degradation for weaker users

Zheng: error exponents unequal error protection, embedded control messages to reduce overhead.

Structured coding

Assumptions and overhead

Thrust 3 Synergies and Results

Boyd: Efficient second order methods for flow control

Shah: Throughput analysis of flow-level models with heterogeneous users

Shah: Low complexity throughput and delay efficient scheduling

Meyn: Generalized Max-Weight to tradeoff information and performance

Ozdaglar, Shah: Distributed scheduling and flow control to balance user and network performance

<u>Stochastic Network Analysis</u> Flow-based models and queuing dynamics <u>Optimization Theory</u> Distributed efficient algorithms for resource allocation

Ozdaglar: Distributed asynchronous optimization algorithms for general metrics and time-varying connectivity

Goldsmith, Johari: Game-theoretic model for cognitive radio design in the presence of incomplete channel information

Johari: Topology formation model with application goals such as connectivity and cost of routing and link maintenance

Game Theory

New resource allocation paradigm that focuses on hetereogeneity and competition

Progress Criteria: Phase 1

- Develop tractable and insightful metrics and models that expand the definition of information theory to encompass the degrees of freedom, constraints, and dynamics inherent to wireless networks
- Develop new upper bounding techniques for MANET capacity and other performance metrics and evaluate these bounds for small to medium sized networks under relatively simple assumptions.
- Develop new achievability results for key performance metrics by optimizing dynamic node cooperation and resource allocation over v available degrees of freedom.
- Use rate distortion theory and network utilization to optimize the interface between networks and applications.
- Use new theory along all three thrusts to characterize trade-offs between delay, energy and capacity, and possibly other metrics.
- Demonstrate significant performance gains in key performance metrics based on our developed theory in each thrust area.
- Use the new MANET information theory and its associated insights to obtain breakthroughs in wireless network design.