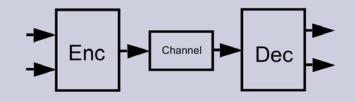
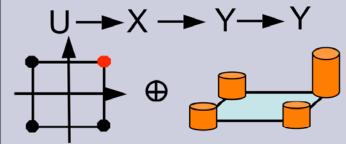
Embedding prioritized data using unequal error protection (Lizhong Zheng)



- Physical links are viewed as equally reliable bit pipes.
- High priority control messages are sent over separated channels.
- No performance limits on UEP


Embedding key messages over UEP: performance analysis by information geometry

ACHIEVEMENT DESCRIPTION

MAIN RESULT:

HOW IT WORKS:

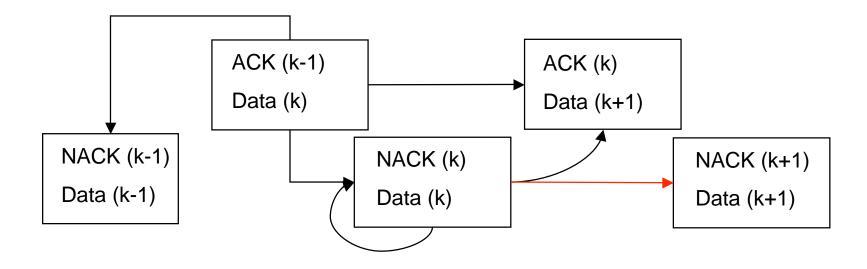
- Reduce UEP to degraded BC network
- Embed high priority message

ASSUMPTIONS AND LIMITATIONS:

- · Error prob. measured in exponents
- Limited analytical solutions

- Joint Source-Channel coding with lavered codes
- Feedbacks and two-way channels
- Data driven network controls, Layering and QoS as interface

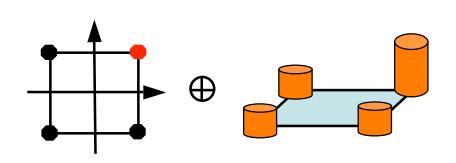
ENGE

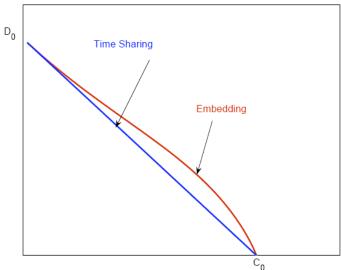

New protocols required to indicate, process, fuse, and prioritize heterogeneous data transmissions over networks

Embedding control messages/significant data with UEP

Motivating Example: Yamamoto-Ito Scheme

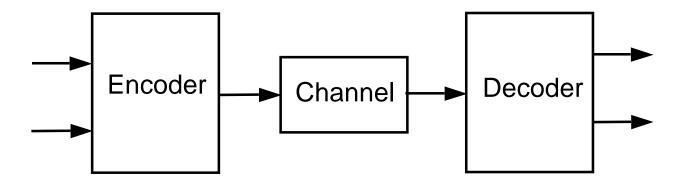
- Burnashev exponent with Yamamoto-Ito schemes with 2 phases:
 - Data communication at full capacity
 - Confirm with binary ACK/NACK with high reliability
- Encode ACK/NACK with new data
 - Both Data and ACK/NACK occupy the entire block
 - Synchronizing sequential transmission





Embedding ACK/NACK

- Special case: embedding 2 bits over QPSK data symbols
- Performance metric for hierarchical error protections:
 - Throughput of data + Reliability of control
- Tradeoff between rate and reliability: controlling the distribution of the data codes
- Strictly out-perform is surprising: better than 2 bit repetition over QPSK



Control and Data Side-by-Side

- The feedback context is not important
 - Performance measured by large data and reliable control
 - Time sharing/ orthogonal resource allocation between data and control
- Layered codes with UEP

- Studied in CS under the name "priority coding"
- Systematic design approach requires error exponents

UEP and Broadcasting Channel

UEP can be thought as board casting

$$U \xrightarrow{\Phi} X \xrightarrow{W} Y$$

Optimization problem easy to write, difficult to solve

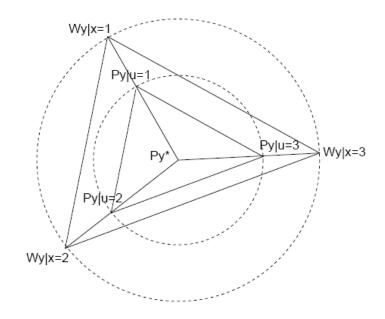
$$I(P_U,\Phi\circ V_1)>R_1 \qquad D(V_1||W|P_x)\leq E_1$$
 For all V
$$I(X;V_2|U)>R_2 \qquad D(V_2||W|P_x)\leq E_2$$

Many other network information theory results look similar

The Very Noisy Approximation

- Definition <u>very noisy</u>: distributions involved in divergence optimization are close
 - Local approximation of distribution manifold
 - Euclidean approximation of information geometry
 - Normal approximation of the distribution of information quantity
 - Quadratic approximation of divergence
- Examples of very noisy cases
 - Very noisy channel codes
 - Source coding for nearly uniform source
 - Very low rate quantization
 - Good approximation to general cases

new canonical example?


UEP for Very Noisy Channel

If the given channel has capacity C ~ 0

Optimal input (U,X)

- Px is capacity achieving
- Py|u proportional scaling

Achievable region

$$\frac{R_1}{(\sqrt{C} - \sqrt{E_1})^2} + \frac{R_2}{(\sqrt{C} - \sqrt{E_2})^2} \le 1$$

Comparison and Insights

Embedded UEP

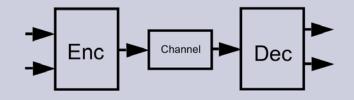
$$\frac{R_1}{(\sqrt{C} - \sqrt{E_1})^2} + \frac{R_2}{(\sqrt{C} - \sqrt{E_2})^2} \le 1$$

Time sharing

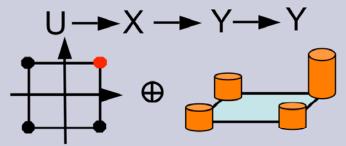
$$\frac{R_1}{\left(\sqrt{C} - \sqrt{\frac{E_1}{\alpha}}\right)^2} + \frac{R_2}{\left(\sqrt{C} - \sqrt{\frac{E_2}{1-\alpha}}\right)^2} \le 1$$

- Insights:
 - Very noisy is very nice
 - Combining control and data allows global optimization
 - Networking based on imperfect controls
 - Geometric approach for error exponent

Achievement report



- Physical links are viewed as equally reliable bit pipes.
- High priority control messages are sent over separated channels.
- No performance limits on UEP


Embedding key messages over UEP: performance analysis by information geometry

ACHIEVEMENT DESCRIPTION

MAIN RESULT:

HOW IT WORKS:

- Reduce UEP to degraded BC network
- Embed high priority message

ASSUMPTIONS AND LIMITATIONS:

- · Error prob. measured in exponents
- Limited analytical solutions

- Joint Source-Channel coding with lavered codes
- Feedbacks and two-way channels
- Data driven network controls, Layering and QoS as interface

ENGE

END-OF-PHASE

New protocols required to indicate, process, fuse, and prioritize heterogeneous data transmissions over networks

Embedding control messages/significant data with UEP