
An Interior-Point Method for Large-Scale

Network Utility Maximization

Argyrios Zymnis Nikolaos Trichakis
Stephen Boyd Dan O’ Neill

Electrical Engineering Department, Stanford University

ITMANET PI Meeting 07/26/07

Basic NUM Problem

primal problem

maximize U(f) =
∑n

j=1
Uj(fj)

subject to Rf ≤ c, f ≥ 0

with variable f

• f ∈ Rn
+ is vector of flow rates

• Uj : R → R concave and twice differentiable

• R ∈ Rm×n is route matrix (Rij ∈ {0, 1})

• c ∈ Rm is vector of capacities

ITMANET PI Meeting 07/26/07 1

Dual Decomposition

dual problem

minimize λT c +
∑n

j=1
(−Uj)

∗(−rT
j λ)

subject to λ ≥ 0

with variable λ ∈ Rm

• assume Uj are strictly concave

• projected subgradient method update:

λ := (λ − α(c − Rf))
+

fj := argmax
z

(

Uj(z) − (RTλ)jz
)

• first order method, decentralized

ITMANET PI Meeting 07/26/07 2

Primal-Dual Interior-Point Method

• basic approach:

– compute Newton step for (modified) optimality conditions
– carry out line search and update

• typically converges in a few tens of steps, independent of problem
dimensions or data (!!)

• for extremely large-scale problems, compute search direction
approximately via iterative method (PCG)

• not decentralized (requires a few inner products each step)

ITMANET PI Meeting 07/26/07 3

Modified Optimality Conditions

−∇U(f) + RTλ − µ = 0

diag(λ)(c − Rf) = (1/t)1

diag(µ)f = (1/t)1,

• t > 0 controls quality of approximation

• for t → ∞ we recover the optimality conditions

• write as rt(f, λ, µ) = 0, where

rt(f, λ, µ) =





−∇U(f) + RTλ − µ
diag(λ)(c − Rf) − (1/t)1

diag(µ)f − (1/t)1





ITMANET PI Meeting 07/26/07 4

Primal-Dual Algorithm Outline

given initial strictly feasible point (Rf < c, λ > 0, µ > 0)

• update t (based on duality gap estimate)

• compute search direction from Drt





∆f
∆λ
∆µ



 = −rt

• compute step length γ via line search on ‖rt‖

• update variables:





f
λ
µ



 :=





f
λ
µ



 + γ





∆f
∆λ
∆µ





ITMANET PI Meeting 07/26/07 5

Computing the Search Direction

reduces to solving
(RTDR + D̃)∆f = b

• D, D̃ diagonal, positive

• for 104 or fewer links, can solve via direct (sparse) methods

• for very large problems, solve approximately via PCG

– simple diagonal preconditioner
– not fully decentralized: requires two inner products per iteration

ITMANET PI Meeting 07/26/07 6

Simple Example

• n = 105 users and m = 2 × 105 links

• log utilities: Uj = log fj

• capacities ci chosen randomly in [0.1, 1]

• random routes, each passing through approximately 10 links

ITMANET PI Meeting 07/26/07 7

Convergence

dashed: dual decomposition; solid: primal-dual method

0 100 200 300 400 500 600 700 800
10

−4

10
−3

10
−2

10
−1

10
0

10
1

D
u
al

it
y

ga
p

p
er

u
se

r

Iteration

ITMANET PI Meeting 07/26/07 8

More Interesting Example

• add bottlenecks: 0.1% of links are used by 30% of users

• add long routes: 0.1% of users have route length
√

m

• same as adding some dense(r) rows and columns to R

ITMANET PI Meeting 07/26/07 9

Convergence

dashed: dual decomposition; solid: primal-dual method

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

D
u
al

it
y

ga
p

p
er

u
se

r
Iteration

ITMANET PI Meeting 07/26/07 10

Example with Linear Utilities

• 60% of users have log utility Uj = log fj

• 40% of users have linear utility Uj = wjfj,
weights wj random in [10, 30]

• cannot solve using dual decomposition

• for users with linear utility, optimal flow rate can be zero

ITMANET PI Meeting 07/26/07 11

Convergence

0 500 1000 1500 2000 2500 3000
10

−4

10
−3

10
−2

10
−1

10
0

D
u
al

it
y

ga
p

p
er

u
se

r

Iteration

ITMANET PI Meeting 07/26/07 12

Distribution of (Almost) Optimal Flow Rates

dashed: linear utility users; solid: log utility users

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N
u
m

b
er

of
u
se

rs

Flow rate

ITMANET PI Meeting 07/26/07 13

Conclusions

• we can reliably and very efficiently solve very large NUM problems,
including those with non strictly concave utility (linear, piecewise-linear)

• in many cases, (very much) outperforms dual decomposition

• method is not decentralized; it requires a few inner products each step
(but, inner products can be approximately computed in decentralized
way via distributed averaging or gossip algorithms)

ITMANET PI Meeting 07/26/07 14


