

Progress on General Capacity Using Network Coding

Muriel Médard Joint with Jay Kumar Sudararajan, MinJi Kim, Devavrat Shah, Ralf Koetter

Progress on General Capacity Using Network Coding

Ramification: bring problem to its combinatorial essence, which determines difficulty

- When separation holds, what is the benefit of having network coding?
- In non-multicast settings, codes are an open problem
- Time-varying nature of traffic and of network operation, *e.g.* changing codes
- Even without coding, performance is ill understood
- State of the art:
 - Pick a system (say COPE) and run experimental trials to demonstrate improvement
 - Pick a multicast example and work it out by hand

New insights / Intellectual Tool

- Transform scheduling problem into a combinatorial graph-theoretic question
- Fix family of possible codes; give systematic representation of achievable region using conflict graphs
- Obviates the need for finding clever schedules by hand
- Difficulty of problem now depends on the characteristics of conflict graph (for instance, perfection)
- Finding schedules now comes from conflict graph

Achievement

- Focus on networks of depth one (*eg.* multicast switch)
- Provide a systematic way of characterizing the achievable rate region and the benefit of coding – using a simple and intuitive graph theoretic formulation
- Scheduling algorithms using rate decomposition approach

Simulation Result

- 4 x 3 switch
- Traffic: mix of unicast and special pattern
- Used randomized variant of max weight scheduling

How it works

- Conflict graph:
 - A vertex for every network state (*i.e.* switch configuration)
 - An edge between two vertices if the two states cause conflict (*i.e.* two flows that cannot be served simultaneously)
- Map valid service configurations of the system of queues to stable sets of conflict graph

How it works

- Achievable rate region is the stable set polytope of the conflict graph
 - Closed form characterization known for several, but not all, classes of graphs
- Computing schedules based on rate decomposition maps to weighted coloring of the graph
 - Polynomial time algorithm if the graph is perfect

How it works

oriotion ori

Speedup needed for 100% throughput

 $= \min\{t \mid \mathbf{A} \subseteq t.\mathbf{NC}\}$

- Admissible region:
 - Set of rates such that no input or output node is overloaded
 - Corresponds to the clique inequality polytope of conflict graph
- Can use switch speedup to "expand" the rate region
- Speedup needed for 100% throughput = Factor of expansion for network coding region to cover admissible region
- **Result:** Imperfection ratio of conflict graph is an upper bound on the speedup needed for 100% throughput

Assumptions and limitations

- Approach is general, but the speedup results are only for a network of depth one
- Works in settings where separation holds
- The algorithms are centralized. This could be a limitation some scenarios

- To obtain general results for networks with multiple layers
- To incorporate MAC constraints into the conflict graphs, allowing mixture of MAC and scheduling
- To provide a set of systematic approaches to determine schedules
- Create online schemes, in the flavor of i-slip, to tradeoff complexity and effectiveness of schedules, with possible decentralization

 How can we approximate difficult capacity region problems?

FLoWS

- How can we create schedules from such approximations?
- What is the loss that comes from a distributed scheduling?

- New systematic approach to scheduling and rate region questions in network coding
- Transforms problem into a combinatorial graph theoretic formulation
- Incorporates time sharing among different connection states and codes – scheduling using graph coloring

Summary: Progress on General Capacity Using Network Coding

Ramification: bring problem to its combinatorial essence, which determines difficulty