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Distributed Asynchronous Optimization Methods

Performance Metrics
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Existing methodology based on
Lagrangian relaxation and duality
does not lend itself to distributed
algorithms for general non-
separable (coupled) user perfor-
mance metrics in wireless networks
with time-varying connectivity
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ACHIEVEMENT DESCRIPTION

[MAIN RESULT:

Subgradient methods with
simple consensus (averaging)
policies lead to decentralized
algorithms that

*optimize general performance
metrics,

«are robust against changes in
network topology

HT

NEW_IN

* Development of a distributed computa-
tional method for optimizing the sum of
performance measures of users

* The method operates asynchronously
under time-varying connectivity

» We provide convergence rate results that
explicitly characterize the impact of the
system and algorithm parameters on the
quality of generated solutions.

HOW IT WORKS:

* Each user maintains an information state,
which is an estimate of the optimal
solution.

* The update rule for each user involves
combining his information state with that
of his current neighbors and performing a
subgradient step using his local
performance measure.

ASSUMPTIONS AND LIMITATIONS:
» The model is unconstrained.

* The communication bandwidth constraints
have not been taken into account.
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END-OF-PHASE GOAL

COMMUNITY CHALLENGE
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*We will extend the
model to include local
(potentially time-varying)
constraints for each user.
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*We will explore the
effect of bandwidth
constraints (i.e.,
quantized information
exchange) on the
performance of the

algorithms.
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Design of optimization
algorithms that address
the challenges and
constraints associated
with large-scale time-
varying networks
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connectivity

Distributed optimization algorithms for general performance metrics and time-varying




* Increasing interest in distributed optimization and control
of ad hoc wireless networks, which are characterized by:
— Lack of centralized control and access to information

— Time-varying connectivity

Control-optimization algorithms deployed in such
networks should be:

— Distributed relying on local information
— Robust against changes in the network topology
— Easily implementable

Existing theory does not lend itself to distributed algo-
rithms for general non-separable user performance
metrics in wireless networks with time-varying connec-
tivity



Consider a network with node set

V = {1,...,77?,} fl(i'«"l:---;iﬁn) o

Y<’\f2(1‘.l7 7$7L)
Agents want to cooperatively solve the / \0\
problem i

Function fi(z) : R" — R isa ful1,... z)
performance measure known only by
node i

Examples:
*Performance measure: Utility-latency

Parameter estimation from local sensor measurements



Agents update and exchange information at discrete times
to,t1,. ..

Agent i information state is denoted by z'(k) € R" at time tk

Agent | updates his information state according to:( x = r»)
=1 Z a’ — o' (k)d' (k)

ag-(k) are weights, o(k) is stepsize, d*(k) is subgradient of f; at x*(k)

Time-varying communication is modeled by matrix A(k)
[columns o' (k) ]

Main Novelty:

Approximate subgradient step and consensus policy




Assumption (Weights Rule):
(a) There exists a scalar n € (0,1) s.t. for alli € {1,...,m},

(1) aj(k) =n
(ii) a%(k) > n for all j communicating directly with ¢ in (t, trs1).
(iii) a;(k) = 0 for all 5 otherwise.

(b) The vectors a’(k) are stochastic, i.e., > -, a%(k) = 1 for all i.

j=1%j
Example: Equal neighbor weights
7 _ 1
a'j(k) — n;(k)+1
where IS the number of agents communicating with i (his

neighbdtd)Fat slot k



» Information state of agent i

influences information state of © ¢
any other agent infinitely often —
connectivity /

e Agent | send his information to ®

neighboring agent i within a
bounded time interval — ‘/0\
bounded intercommunications

*At slot k, information exchange may be represented by a directed graph
(V, Ex) with By, = {(j,1) | a%(k) > 0}

*Assumption (Connectivity) The graph (V, E ) is connected, where
Es ={(j,7) | (,i) € E) for infinitely many indices k}
*Assumption (Bounded Intercommunication Interval) Thereis B > 1 s.t.

(j,i) € ExUEp 1 U---UEr 1 for all (7,i) € Eoo and k > 0



- Compact representation of agent local-update relation: for & > s

r'(k+1) = Z[@(k,s)];ixj(s)

k—1 m
- > (:[fb(kﬂ“ + 1)]§-aj(7“)dj(7“)) — o' (k)d; (k).

r=s \j=1
where ®(k,s) are transition matrices from time s to k:

O(k,s) = A(s)A(s+1)--- A(k — 1)A(k) for all k > s

 We analyze convergence properties of the distributed method
by establishing:
— Convergence of transition matrices
— Convergence of stopped “subgradient updates”



Proposition: Let weights rule, connectivity, and bounded intercommu-
nication interval assumptions hold:

e The limit ®(s) = limy_, o ®(k, s) exists for each s.

e The limit matrix ®(s) has identical columns and the columns are stochas-
tic, 1.e., )
O(s) = o(s)e’,
where ¢(s) € R™ is a stochastic vector for each s.

e For every i, [®(k,s) Z, j = 1,...,m, converge to the same limit ¢;(s) as
k — oo with a geometric rate, i.e., for all 7,7 and all & > s,

1+ n—Bo k—s

[(I)(k, S)B — @(8) < 2 1 — 7730 (1 _ nBo) By

where 7 is the lower bound on weights, B is the intercommunication in-
terval bound, and By = (m — 1)B.



« Consider the Iocal-update relation with o' (k) = o for k > s

Hk+1) Z

— aZ (Z (k,r + 1))’ dj(r)) — ad; (k).

* Suppose agents cease computing subgradients but keep
exchanging their estimates: for a k > 0, d;(k) = 0 for all j and k > k

» It can be seen that the stopped process takes the form:

"(k+1) ZZ[q)kO]"xJ —ay‘ 7 kr)]J e —1)

Jj=1j=1 =1\ =

Using limy, oo [®(k, 5)]%¢;(s) for all i, we see that the limit vector limy oo Z;(k)
exists and is independent of i, but dependent on k



These iterations would correspond to an “approximate”
subgradient method for minimizing >_, f;(x) provided
that the values ¢(k); are the same for all j.

This is true for example when the following holds:
— Assumption (Double Stochasticity)
The matrices A(k) are doubly stochastic

Can be ensured when the agents exchange their
iInformation simultaneously and coordinate the selection
of the weights ' (k)

J



Proposition: Let the subgradients of fi be uniformly bounded
by a constant L. Then for every i/, the averages iti(k)of estimates
2*(0),...,2%(k — 1) are such that

m dist?(y(0), X*) I al*C

2amL, L
20k 2 Pl

F@ (k) < f*+

where f = ). fi, f* is the optimal value, and X* is the optimal set of the
problem, y(0) = -+ > 2%(0), C =1+ 8mC; and

T m

with 7 minimal weight, By = (m — 1)B, B intercommunication bound.

 Estimates are per iteration
» Capture tradeoffs between accuracy and computational complexity



onciusions

 We presented a general distributed computational model
for general performance measures

 We provided convergence analysis and convergence
rate estimates

— For unconstrained problem
— Without communication delays in the system

e Future Work:

— Extension of the method to constrained optimization
— Effects of delay and quantization of information states

e Paper:

— Nedic and Ozdaglar “Distributed Asynchronous Subgradient
methods for Multi-Agent Optimization,” MIT LIDS Technical
Report 2575, submitted for publication May 2007



