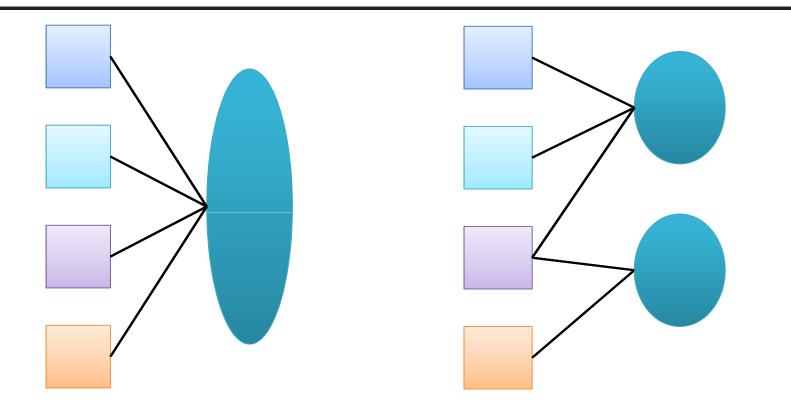
Medium Access using Queues

Devavrat Shah Jinwoo Shin

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

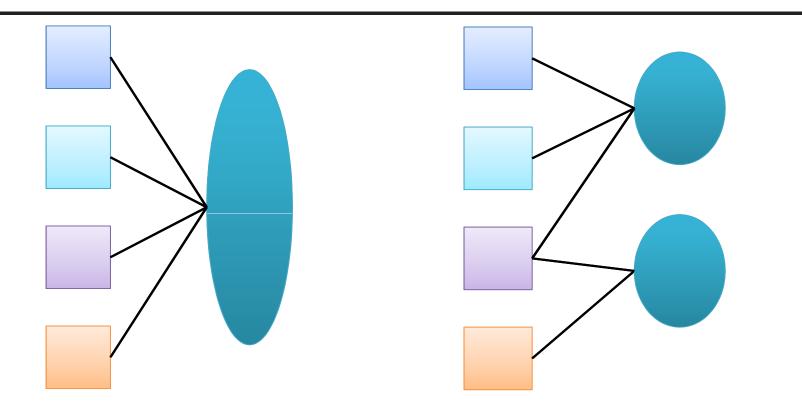
> DARPA ITMANET Project Meeting Austin 2010

Contention resolution

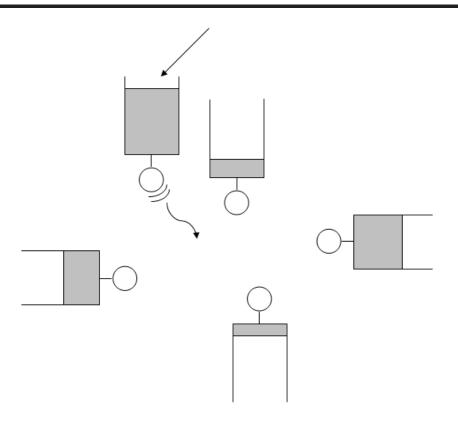


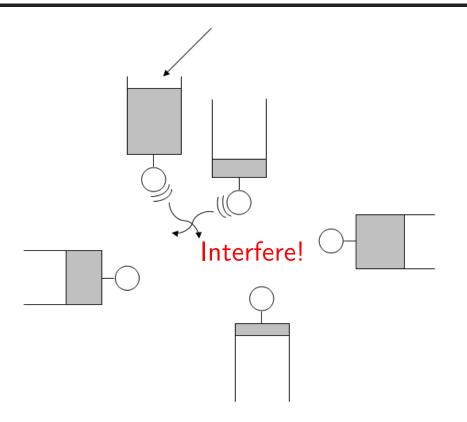
- Examples
 - (Old) Ethernet, wireless network, large software systems, parallel computation, distributed database system,...

Contention resolution



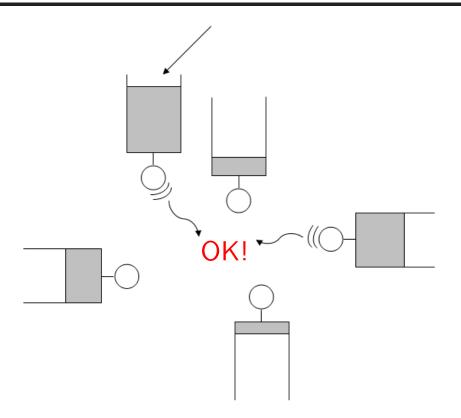
- Key challenge: efficient algorithm design under stringent constraint
 - Minimal co-operation to reduce 'protocol overhead', e.g.
 - $\ensuremath{\cdot}$ nodes know if resource is BUSY or FREE
 - or, their attempt to access was SUCCESS or FAILURE





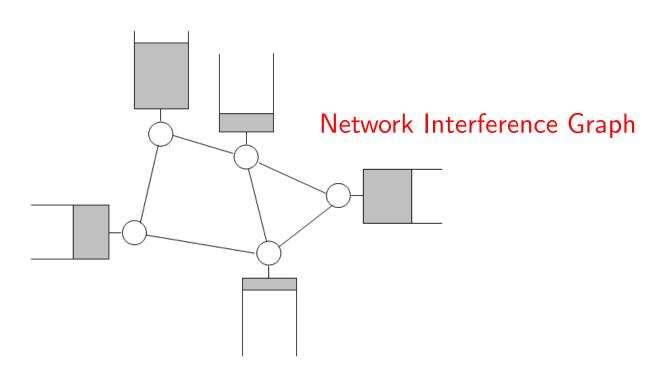
• Constraints

 \circ Interfering nodes can not transmit simultaneously



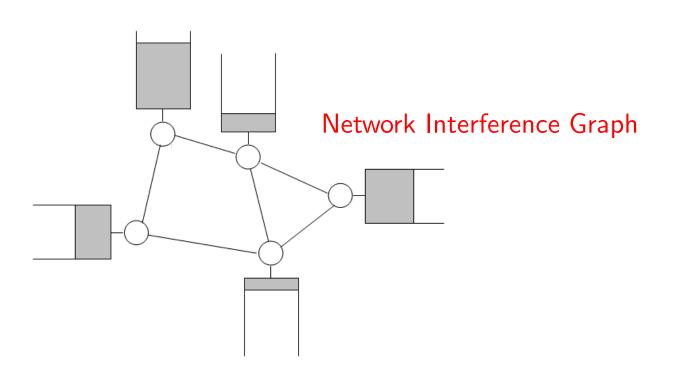
• Constraints

 \circ Interfering nodes can not transmit simultaneously



• Constraints

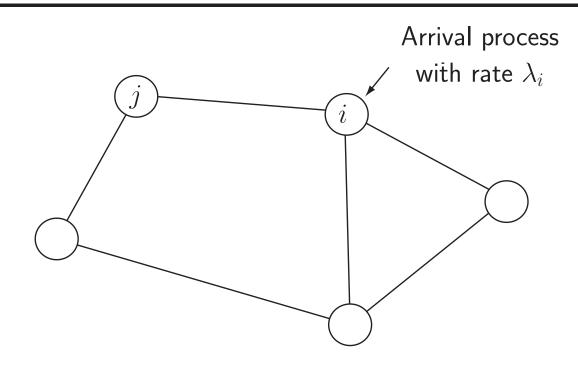
- \circ Interfering nodes can not transmit simultaneously
- \circ Nodes have only local information
 - \circ Contending simultaneous transmissions



• Medium access

 \circ When to transmit subject to inference constraints

- using local information
- with an aim to maximize utilization of wireless medium

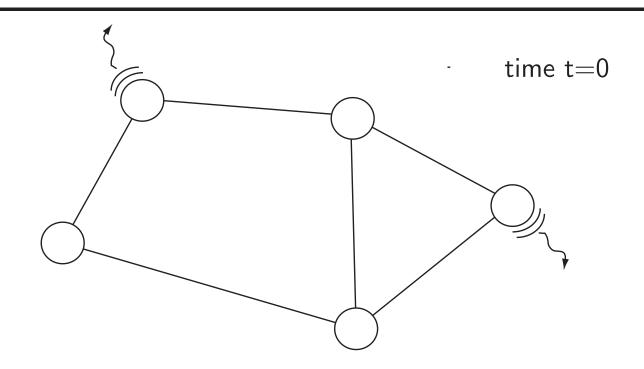


• Network interference graph G = (V, E) with n queues

 $\circ E = \{(i, j) : i \text{ and } j \text{ can't tx simultaneously} \}$

 \circ Packets arrive at rate λ_i for queue i

• Medium access: at each time instance

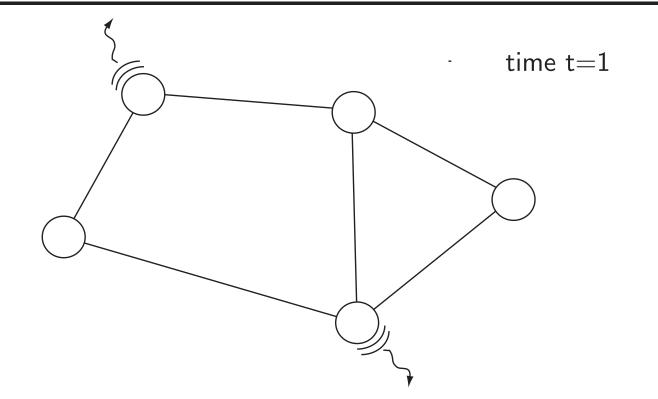


• Network interference graph G = (V, E) with n queues

 $\circ E = \{(i, j) : i \text{ and } j \text{ can't tx simultaneously} \}$

 \circ Packets arrive at rate λ_i for queue i

• Medium access: at each time instance

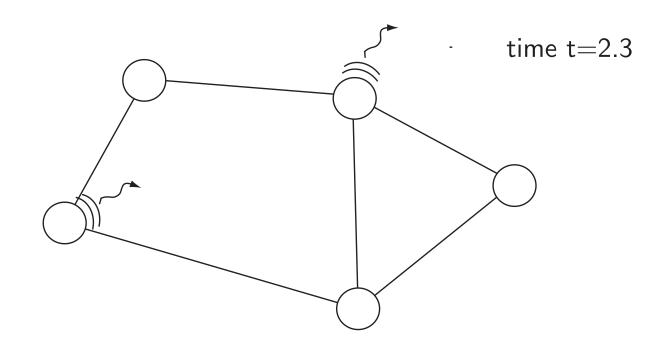


 \bullet Network interference graph G=(V,E) with n queues

 $\circ E = \{(i, j) : i \text{ and } j \text{ can't tx simultaneously}\}$

 \circ Packets arrive at rate λ_i for queue i

• Medium access: at each time instance



• Network interference graph G = (V, E) with n queues

 $\circ E = \{(i, j) : i \text{ and } j \text{ can't tx simultaneously} \}$

 \circ Packets arrive at rate λ_i for queue i

• Medium access: at each time instance

• Let $\mathcal{I}(G)$ be set of independent sets of G \circ That is, $\mathcal{I}(G) = \{ \boldsymbol{\sigma} \in \{0,1\}^n : \sigma_i + \sigma_j \leq 1 \text{ for all } (i,j) \in E \}$

• Effective service rate vector $\mu = [\mu_i]$ is s.t.

$$\circ \mu = \sum_{\sigma \in \mathcal{I}(G)} \alpha_{\sigma} \sigma, \text{ with } \alpha_{\sigma} \ge 0$$
$$\cdot \sum_{\sigma} \alpha_{\sigma} \le 1$$

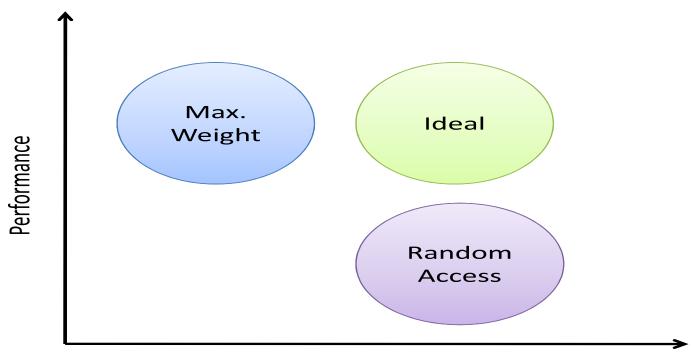
• Therefore, effective resource or 'capacity region'

 \circ Convex hull of $\mathcal{I}(G)$, say $\mathrm{conv}(\mathcal{I}(G))$

• Throughput optimal medium access

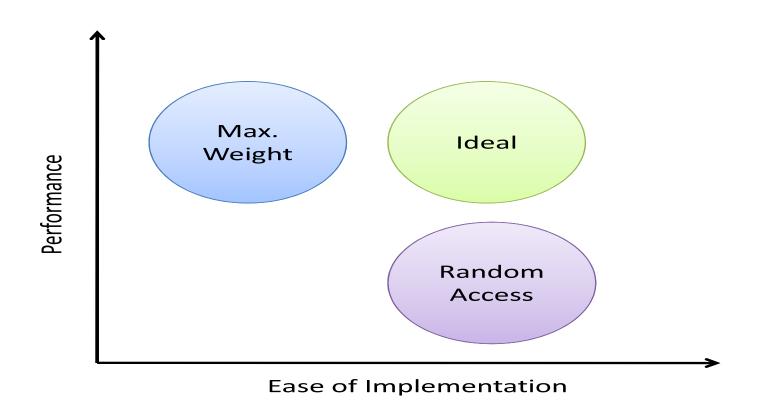
 \circ Queues remain finite for any $\lambda \in \operatorname{conv}(\mathcal{I}(G))^o$

Status quo



Ease of Implementation

Status quo



• Our algorithm

- \circ Adaptive random access based on queue-size
- \circ 'Simulates' maximum weight algorithm

• Each queue *i* checks medium 'regularly'

 \circ Whether any 'neighboring' node is txing or not

 \circ If medium is free, attempts transmission with prob. p_i

- upon being successful, tx for time duration W_i

 \circ Else

- do nothing
- Our choice

 $\circ p_i = 1$ and $\mathbb{E}[W_i] = f(Q_i)$

- $\mbox{ \ }$ choice of f determines performance crucially
- $\mbox{ }$ a reasonable choice of f is \log

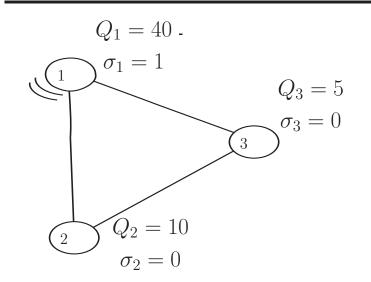
- Each queue has an independent Exponential clock of rate 1/2
- \bullet When clock of queue i ticks, say at time t

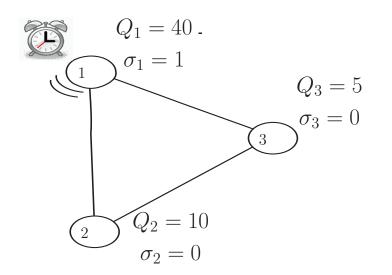
 \circ If $\sigma_i(t^-)=1$, $\sigma_i(t)=\begin{cases} 0 & \text{with probability } \frac{1}{f(Q_i(\lfloor t \rfloor))}\\ 1 & \text{otherwise} \end{cases}$

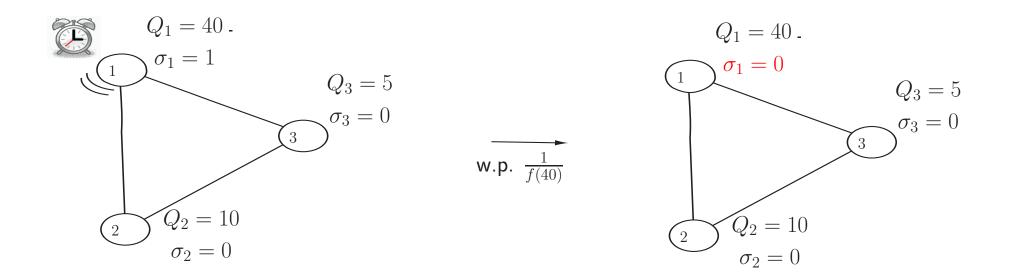
 \circ Else, i check if medium is free at time t^- and if so,

$$\sigma_i(t) = \begin{cases} 1 & \text{with probability} \ 1 \\ 0 & \text{otherwise} \end{cases}$$

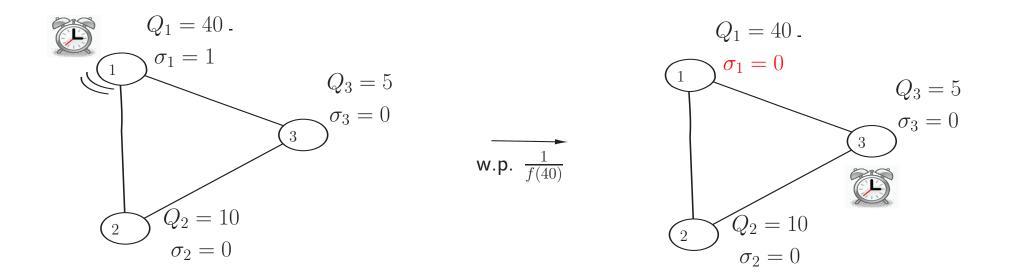
Our algorithm: example (cont time)



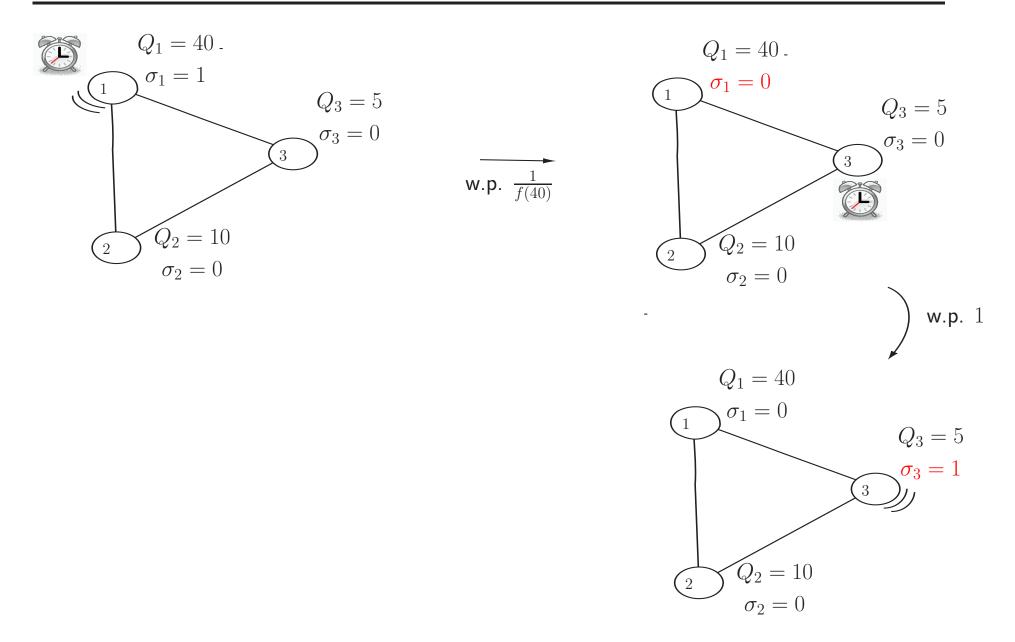


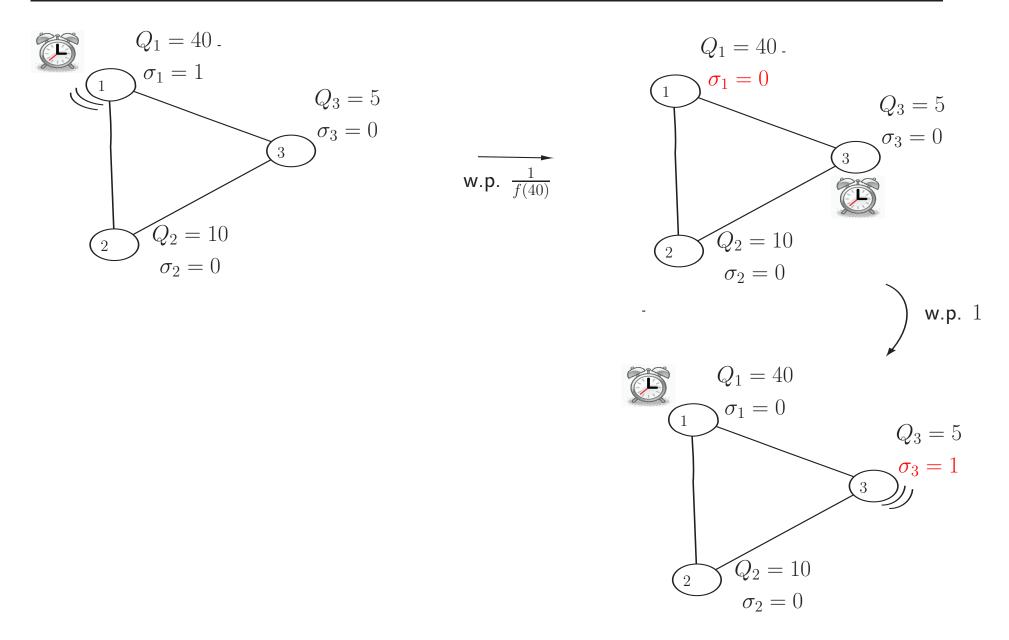


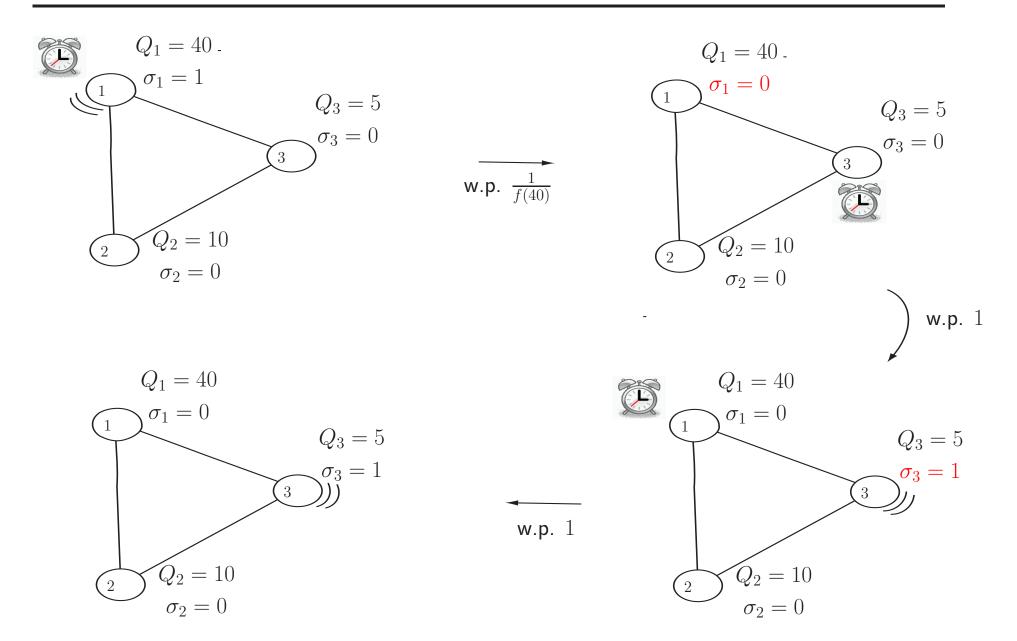
-



-







- Each queue has an independent Bernoulli clock of rate 1/2
- If clock of queue i ticks at time t, then

$$\circ$$
 If $\sigma_i(t-1)=1$,
$$\sigma_i(t)=\begin{cases} 0 & \text{with probability} \ \frac{1}{f(Q_i(t))}\\ 1 & \text{otherwise} \end{cases}$$

 \circ Else, i check if medium free at time t-1

 $\ensuremath{\bullet}$ if so, it attempts to transmit with probability 1

$$\sigma_i(t) = \begin{cases} 1 & \text{if no collision} \\ 0 & \text{otherwise} \end{cases}$$

Our algorithm: throughput optimality

• **Theorem.** [Ragagopalan-**S**-Shin 09, **S**-Shin 09, 10] The algorithm is throughput optimal.

 \circ For both continuous and discrete time

 \circ Weight of queue i

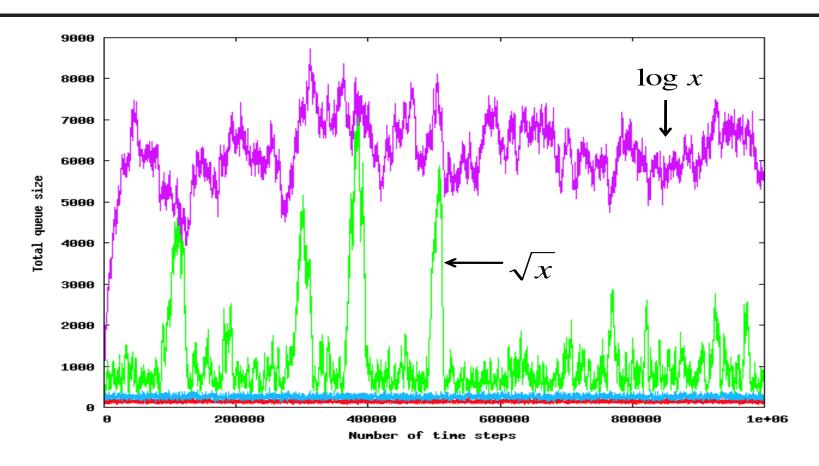
$$W_i(t) = \max\left(f(Q_i(\lfloor t \rfloor)), \sqrt{f(Q_{\max}(\lfloor t \rfloor))}\right)$$

 \circ With any $f(x) = \exp(o(\log x))$, like $\log x$, $\mathsf{poly}(\log x), \ldots$

• Specifically, we establish that

• The network Markov process is positive (Harris) recurrent

Best choice of *f*?



• Slower f leads to

Small 'variance' in queue-sizesAt the cost of higher 'average' queue-sizes

- What about queue-sizes (on avg., with high prob.) ?
 - \circ For algorithm described, queue-sizes depend on
 - mixing time of random walk on space of schedules
 - could scale exponentially in number of nodes

• But, for maximum weight schedule

- $\ensuremath{\mathbf{\cdot}}$ Queue-sizes scale polynomially in n
- Basic question: what are the tradeoffs between
 - \circ Throughput, queue-sizes and complexity of algorithm

- Basic question: what are the tradeoffs between
 - \circ Throughput, queue-sizes and complexity of algorithm
- If an algorithm achieves at least 50% throughput, then
 - \circ What is possible
 - Poly queue-size, but Exp complexity maximum weight
 - Poly complexity, but Exp queue-size our algorithm

 \circ What is not possible

• Poly queue-size and poly complexity [S-Tse-Tsitsiklis 09]

• If an algorithm achieves at least 50% throughput, then

 \circ What is possible

- Poly queue-size, but Exp complexity maximum weight
- Poly complexity, but Exp queue-size our algorithm

 \circ What is *not* possible

- Poly queue-size and poly complexity [S-Tse-Tsitsiklis 09]
- Going forward, is it possible to design
 - \circ Random access for practical networks
 - with Poly queue-size ?
 - \circ Initial attempt [S-Shin 10]
 - for network graphs with polynomial growth
 - requires localized co-operation

• If an algorithm achieves at least 50% throughput, then

 \circ What is possible

- Poly queue-size, but Exp complexity maximum weight
- Poly complexity, but Exp queue-size our algorithm

 \circ What is *not* possible

- Poly queue-size and poly complexity [S-Tse-Tsitsiklis 09]
- Going forward, is it possible to design
 - \circ Random access for practical networks
 - with Poly queue-size ?
 - \circ Initial attempt [S-Shin 10]
 - \circ Random access with interference cancellation
 - and dealing with hidden terminals

- Some of the recent related works
 - \circ Modiano-Shah-Zussman 06
 - Gupta-Stolyar 06, Marbach 06
 - ∘ Duvry-Dousse-Thiran 07
 - \circ Bordenave-McDonald-Proutiere 08
 - Jiang-Walrand 08, Rajagopalan-Shah 08
 - \circ Liu-Yi-Proutiere-Chiang-Poor 09
 - ∘ Leconte-Ni-Srikant 09
 - Jiang-Shah-Shin-Walrand 09
 - \circ Jiang-Walrand 10
 - \circ Shah-Shin 10
 - \circ van de Ven-van Leeuwaarden-Denteneer-Janssen 10
 - ο...