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Contention resolution

• Examples

◦ (Old) Ethernet, wireless network, large software systems, parallel

computation, distributed database system,...
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Contention resolution

• Key challenge: efficient algorithm design under stringent constraint

◦ Minimal co-operation to reduce ‘protocol overhead’, e.g.

• nodes know if resource is BUSY or FREE

• or, their attempt to access was SUCCESS or FAILURE
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Model
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Model

Interfere!

• Constraints

◦ Interfering nodes can not transmit simultaneously
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Model

OK!

• Constraints

◦ Interfering nodes can not transmit simultaneously
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Model

Network Interference Graph

• Constraints

◦ Interfering nodes can not transmit simultaneously

◦ Nodes have only local information

◦ Contending simultaneous transmissions
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Model

Network Interference Graph

• Medium access

◦ When to transmit subject to inference constraints

• using local information

• with an aim to maximize utilization of wireless medium
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Model

Arrival process

with rate λi

i
j

• Network interference graph G = (V, E) with n queues

◦ E = {(i, j) : i and j can’t tx simultaneously}

◦ Packets arrive at rate λi for queue i

• Medium access: at each time instance

◦ Selects non-interefering queues (to tx), i.e. independent set of G
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Model

time t=0

• Network interference graph G = (V, E) with n queues

◦ E = {(i, j) : i and j can’t tx simultaneously}

◦ Packets arrive at rate λi for queue i

• Medium access: at each time instance

◦ Selects non-interefering queues (to tx), i.e. independent set of G
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Model

time t=1

• Network interference graph G = (V, E) with n queues

◦ E = {(i, j) : i and j can’t tx simultaneously}

◦ Packets arrive at rate λi for queue i

• Medium access: at each time instance

◦ Selects non-interefering queues (to tx), i.e. independent set of G
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Model

time t=2.3

• Network interference graph G = (V, E) with n queues

◦ E = {(i, j) : i and j can’t tx simultaneously}

◦ Packets arrive at rate λi for queue i

• Medium access: at each time instance

◦ Selects non-interefering queues (to tx), i.e. independent set of G
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Model

• Let I(G) be set of independent sets of G

◦ That is, I(G) = {σ ∈ {0, 1}n : σi + σj ≤ 1 for all (i, j) ∈ E}

• Effective service rate vector µ = [µi] is s.t.

◦ µ =
∑

σ∈I(G) ασσ, with ασ ≥ 0

•

∑

σ
ασ ≤ 1

• Therefore, effective resource or ‘capacity region’

◦ Convex hull of I(G), say conv(I(G))

13



Performance metric

• Throughput optimal medium access

◦ Queues remain finite for any λ ∈ conv(I(G))o
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Status quo

• Our algorithm

◦ Adaptive random access based on queue-size

◦ ‘Simulates’ maximum weight algorithm
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Status quo

• Our algorithm

◦ Adaptive random access based on queue-size

◦ ‘Simulates’ maximum weight algorithm
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Our algorithm

• Each queue i checks medium ‘regularly’

◦ Whether any ‘neighboring’ node is txing or not

◦ If medium is free, attempts transmission with prob. pi

• upon being successful, tx for time duration Wi

◦ Else

• do nothing

• Our choice

◦ pi = 1 and E[Wi] = f(Qi)

• choice of f determines performance crucially

• a reasonable choice of f is log
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Our algorithm: continuous time

• Each queue has an independent Exponential clock of rate 1/2

• When clock of queue i ticks, say at time t

◦ If σi(t
−) = 1,

σi(t) =

{

0 with probability 1
f(Qi(⌊t⌋))

1 otherwise

◦ Else, i check if medium is free at time t− and if so,

σi(t) =

{

1 with probability 1

0 otherwise
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Our algorithm: example (cont time)

1

2

3

Q1 = 40

σ1 = 1

Q2 = 10

σ2 = 0

Q3 = 5

σ3 = 0
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Our algorithm: example (cont time)
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Our algorithm: example (cont time)
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Our algorithm: discrete time

• Each queue has an independent Bernoulli clock of rate 1/2

• If clock of queue i ticks at time t, then

◦ If σi(t − 1) = 1,

σi(t) =

{

0 with probability 1
f(Qi(t))

1 otherwise

◦ Else, i check if medium free at time t − 1

• if so, it attempts to transmit with probability 1

σi(t) =

{

1 if no collision

0 otherwise

26



Our algorithm: throughput optimality

• Theorem. [Ragagopalan-S-Shin 09, S-Shin 09, 10] The algorithm is

throughput optimal.

◦ For both continuous and discrete time

◦ Weight of queue i

Wi(t) = max
(

f(Qi(⌊t⌋)),
√

f(Qmax(⌊t⌋))
)

.

◦ With any f(x) = exp(o(log x)), like log x, poly(log x),...

• Specifically, we establish that

◦ The network Markov process is positive (Harris) recurrent
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Best choice of f?

• Slower f leads to

◦ Small ‘variance’ in queue-sizes

◦ At the cost of higher ‘average’ queue-sizes
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Beyond throughput

• What about queue-sizes (on avg., with high prob.) ?

◦ For algorithm described, queue-sizes depend on

• mixing time of random walk on space of schedules

• could scale exponentially in number of nodes

◦ But, for maximum weight schedule

• Queue-sizes scale polynomially in n

• Basic question: what are the tradeoffs between

◦ Throughput, queue-sizes and complexity of algorithm
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Beyond throughput

• Basic question: what are the tradeoffs between

◦ Throughput, queue-sizes and complexity of algorithm

• If an algorithm achieves at least 50% throughput, then

◦ What is possible

• Poly queue-size, but Exp complexity – maximum weight

• Poly complexity, but Exp queue-size – our algorithm

◦ What is not possible

• Poly queue-size and poly complexity [S-Tse-Tsitsiklis 09]
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Beyond throughput

• If an algorithm achieves at least 50% throughput, then

◦ What is possible

• Poly queue-size, but Exp complexity – maximum weight

• Poly complexity, but Exp queue-size – our algorithm

◦ What is not possible

• Poly queue-size and poly complexity [S-Tse-Tsitsiklis 09]

• Going forward, is it possible to design

◦ Random access for practical networks

• with Poly queue-size ?

◦ Initial attempt [S-Shin 10]

• for network graphs with polynomial growth

• requires localized co-operation
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Beyond throughput

• If an algorithm achieves at least 50% throughput, then

◦ What is possible

• Poly queue-size, but Exp complexity – maximum weight

• Poly complexity, but Exp queue-size – our algorithm

◦ What is not possible

• Poly queue-size and poly complexity [S-Tse-Tsitsiklis 09]

• Going forward, is it possible to design

◦ Random access for practical networks

• with Poly queue-size ?

◦ Initial attempt [S-Shin 10]

◦ Random access with interference cancellation

• and dealing with hidden terminals
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