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Outline

• Capacity limits for finite blocklength:

Strassen (1962), Polyanskiy et al. (2008), Hayashi (2009)

• Universal coding (unknown channel):

Csiszar and Körner (1981)

• Let’s consummate the union
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Capacity for finite blocklength

• Discrete memoryless channel {W (y|x), x ∈ X , y ∈ Y}
• Codewords x(m) ∈ Xn for m = 1, 2, · · · ,Mn

• Code rate Rn � 1
n logMn

• Decoding rule m̂ = φ(y)

• Average error probability

Pe(W ) =
1

M

Mn∑
m=1

∑
y∈Yn

Wn(y|x(m))1{φ(y) �= m}

• ε-capacity for blocklength n:

Cn(W, ε) = sup{Rn : Pe(W ) ≤ ε}
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• Shannon (1948):

C(W ) = lim
ε↓0

lim
n→∞Cn(W, ε) = max

PX

I(PX ;W )

• Strassen (1962) and Polyanskiy (2008):

Cn(W, ε) = C(W )− σ(W )√
n

Q−1(ε) +O

(
logn

n

)

• They showed that the first two terms giving Cn(W, ε) are

achieved by standard random codes and ML decoding:

max
1≤m≤Mn

Wn(y|x(m)) ⇔ max
1≤m≤Mn

i(x(m);y)

where i(x(m);y) is the information density defined by

i(x;y) � log
p(x,y)

p(x)p(y)
= log

Wn(y|x)
p(y)
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• For iid random codes, p(y) factors and thus

1

n
i(x;y) =

1

n

n∑
i=1

log
W (yi|xi)

PY (yi)︸ ︷︷ ︸
li=l(xi,yi)=iid rv′s

• Mutual information I(PX ,W ) = E [l(X, Y )]

• Channel dispersion σ(PX ,W ) = s.d. [l(X, Y )]

• Can thus write

1

n
i(x(m);y) = I(PX ,W ) +

σ(P,W )√
n

Zn

where Zn
d→ N (0, 1) by the Central Limit Theorem. Hence

lim
n→∞Pr[

1

n
i(x(m);y) < I(PX ,W )− σ(P,W )√

n
Q−1(ε)

︸ ︷︷ ︸
=Rn

] = ε
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• Using union bound and large deviations, can show that

Pr[∃m′ �= m :
1

n
i(x(m′);y) ≥ Rn]

≤ (2nRn − 1)Pr[
1

n
i(x(m′);y) ≥ Rn] ↓ 0 as n → ∞

[Polyanskiy (2010) used a different approach]

0

s.d. = O(─)1
√n

≈

-D(PXPY||PXY)

s.d. = 
σ(Px,W)
√n

I(Px,W)=
D(PXY||PXPY)

1
n

i(x,y)
Rn

ε

incorrect
message

true
message
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Unknown Channel / Informed Decoder

• Channel W belong to a compound class W of DMCs.

Encoder does not know W but decoder does.

• Denote by P ∗
X the best input distribution and by W ∗ the worst

channel achieving compound capacity

C(W ) = max
PX∈P(X )

min
W∈W

I(PX ,W )

and compound dispersion

σ2(W ) = min
PX∈P∗

max
W∈W ∗

σ(PX ,W )

• It is straightforward to extend the previous results to show

that compound ε-capacity for blocklength n is given by

Cn(W , ε) = C(W )− σ(W )√
n

Q−1(ε) +O

(
logn

n

)
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Universal Coding

• Channel W (y|x) is unknown, can’t do ML decoding

• Universal code (if exists) achieves Shannon capacity C(W )

• For finite X ,Y, define the joint type

P̂xy(x, y) �
1

n

N∑
i=1

1{xi = x, yi = y}, x ∈ X , y ∈ Y

associated with length-n sequences x and y

• Empirical mutual information

I(P̂xy) =
∑
x,y

P̂xy(x, y)
P̂xy(x, y)

P̂x(x)P̂y(y)

• Use random constant-composition codes: x(m) have the same

type P for all 1 ≤ m ≤ Mn

8



�

�

�

�

• Maximum Mutual Information (MMI) decoder:

max
1≤m≤Mn

I(P̂x(m)y)

• Probability of error analysis:

0

s.d. = O(─)1
√n

≈

s.d. = 
σ(Px,W)
√n

I(Px,W) I(PXY)

incorrect
message

true
message

Rn

ε

Note that I(P̂ ) is not a sum of iid rv’s

• Csiszár and Körner (1981) have shown that this code achieves

C(W ) as well as optimal error exponents at high rates.
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Connection to Cn(W, ε)?

• In unpublished notes entitled “Behavior Near Channel

Capacity”, Shannon showed that the reliability function may

be approximated as E(W,R) = (C(W )−R)2

2σ2(W ) for R ≈ C(W )

• Try the approximation ε
w.t.≈ e−nE(W,Rn)+o(n) w.t.≈ e−nE(W,Rn)

where w.t. denotes wishful thinking

w.t.
=⇒ Rn ≈ C(W )− σ(W )√

n

√
ln(2/ε) for “very large′′n

∼ C(W )− σ(W )√
n

Q−1(ε) for ε ↓ 0

• same as Cn(W, ε) given previously

• too much w.t. to be convincing
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Towards a legal union

• Methodology: choose a random code and decoder and conduct

precise analysis of error probability

• Use Shannon’s iid random codes with P = P ∗ and rate

Rn = I(P,W ∗)− σ(P,W ∗)√
n

Q−1(ε)

and Csiszár-Körner’s MMI decoder

• Main result: The compound ε-capacity for blocklength n is

the same as in the informed decoder case

• In other words, there is no penalty (neither in the first nor even

in the second order) for the decoder not knowing channel W
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• Error analysis: see distributions for e.m.i. statistic I(P̂x(m)y)

for true message m and for incorrect message

0

s.d. = O(─)1
√n

≈

s.d. = 
σ(Px,W)
√n

I(Px,W) I(PXY)

incorrect
message

true
message

Rn

ε

• Decision rule: variable-size list decoders outputs list of all m

such that I(P̂x(m)y) ≥ Rn

• Erasure probability: P∅(W ) = Pr[I(P̂x(m)y) < Rn]

Expected # of incorrect messages on list:

EW [Ni] = (2nRn − 1)Pr[I(P̂x(m′)y) ≥ Rn]
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• True message m: the joint type P̂x(m)y follows multinomial

distribution with probabilities PX(x)W (y|x), x ∈ X , y ∈ Y.
• Asymptotics are given by

P̂ (x, y) = P (x)W (y|x) + 1√
n
Gn(x, y), x ∈ X , y ∈ Y

where

E[Gn] = 0

Cov[Gn] = Σ (rank deficient)

Gn
d→ N (0,Σ)
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• Since P̂ = P + 1√
n
Gn and Gn

d→ N (0,Σ), we have

I(P̂ )
d−→ I(P,W ) +

1√
n
Gn · ∇I(P,W )︸ ︷︷ ︸
d→N(0,σ2(P,W ))

+
1

n
ξn︸ ︷︷ ︸

d→N(0,α(P,W ))

• Indeed σ2(P,W ) = [∇I(P,W )]T Σ [∇I(P,W )]. Thus I(P̂ ) has

the same asymptotic distribution as normalized info density!

⇒ lim
n→∞P∅(W ) = lim

n→∞Pr[I(P̂x(m)y) < I(P,W ∗)− σ(P,W ∗)√
n

Q−1(ε)

︸ ︷︷ ︸

=Rn

]

≤ ε

with equality if W = W ∗
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• Incorrect message: for m′ �= m, the joint type P̂x(m′)y follows a

multinomial distribution with probabilities

PX(x)PY (y), x ∈ X , y ∈ Y
• Using large deviations (tilted distributions), can show that the

expected # of incorrect messages

EW [Ni] ≤ (2nRn − 1)Pr[
1

n
I(P̂x(m′)y) ≥ Rn]

∼ (2nRn − 1)
2−nI(PX ,W )√
2πn ζ2(PX ,W )

≤ 2−
√
nσ∗Q−1(ε)√

2πn ζ2(PX ,W )

(with equality for W = W ∗) vanishes as n → ∞.
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• Geometric interpretation (where P ∗ is the tilted distribution

and τ = Rn):

tangent 
plane

I(P*)=D(P*||PXPY)

PXPY

I(P*)=τ

I(P*)>τ

P(X x Y)

I(P*)=t*

P*

∆
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Conclusion

• Combining Shannon’s iid random codes with Csiszár and Körner’s

MMI decoder yields the same first and second order coding rate as

in the case of an informed decoder.

• Hence there is no penalty for not knowing the channel!

• The bounds are independent of alphabet size. There is no large

subexponential term of the form (n+ 1)|X| |Y| as in the error

probability derivations of Csiszár and Körner

• The Gaussian approximation and the large-deviations approach

based on tilted distributions and precise asymptotics are applicable

to arbitrary large as well as continuous alphabets (by application of

empirical process theory).

• Future work will explore more complicated channels (with memory)

and multiterminal extensions
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