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/ ‘ Outline I

e (Capacity limits for finite blocklength:
Strassen (1962), Polyanskiy et al. (2008), Hayashi (2009)

e Universal coding (unknown channel):
Csiszar and Korner (1981)

e [et’s consummate the union
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Capacity for finite blocklength'

Discrete memoryless channel {W (y|x), x € X, y € Y}
Codewords x(m) € X" form=1,2,--- , M,

Code rate R,, = %log M,

Decoding rule m = ¢(y)

Average error probability

Z > W(ylx(m)) 1{(y) #

m=1yeyn

e-capacity for blocklength n:

Cr(W,e) =sup{R, : P.(W) <e}

my

~
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/ e Shannon (1948):
C(W) =1lim lim C),(W,e) = maxI(Px;W)

€0 n—o00 Px

e Strassen (1962) and Polyanskiy (2008):

e They showed that the first two terms giving C,, (W, €) are
achieved by standard random codes and ML decoding:

mn : .
) SrggﬁnW (y|x(m)) <« ) S{ggﬁn@(X(m),y)

where i(x(m);y) is the information density defined by

pxy) _  W"(ylx)
p(x)p(y) p(y)

i(x;y) = log

.




For iid random codes, p(y) factors and thus

%z = —Z log

Mutual information I(Px, W)

yz|371)

PY yz)/

Li=l(x;, yz) iid rv’s

=E[I(X,Y)]

Channel dispersion o(Px, W) = s.d. [[(X,Y)]

Can thus write

1

n

i(x(m);y) = I(Px, W) +

a(P,W)
Vn

Zin

where Z, % N (0,1) by the Central Limit Theorem. Hence

lim Pr|—i(x(m);y) < I[(Px,W) —

n—oo

1
n

A

o(P,W) | _.
NG Q™ (e)] =

—R,, /




/ e Using union bound and large deviations, can show that \

Pr[3m’ #m : %i(x(m’);y) > R,]
< (2 _ 1)Pr[%i(x(m’); ¥) > Ro] L0 asn— oo

[Polyanskiy (2010) used a different approach]

o=

)) ]
« Rn
-D(PxPy|[Pxv)




/ ‘Unknown Channel / Informed Decoder' \

e Channel W belong to a compound class # of DMCs.
Encoder does not know W but decoder does.

e Denote by Py the best input distribution and by W* the worst

channel achieving compound capacity

= in I[(P
) erélgz}%xmrpeu"/lﬂ (Px, W)

and compound dispersion

2 .
W) = Px, W
7= s . o )

e It is straightforward to extend the previous results to show
that compound e-capacity for blocklength n is given by

Co(We)=C(W) - 0%)62—1(6) +0 (bin)
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‘ Universal Coding I \

Channel W (y|x) is unknown, can’t do ML decoding

Universal code (if exists) achieves Shannon capacity C(W)

For finite X', ), define the joint type

A

1
ny<x7y>égz]l{xzzxay’b:y}a xEXayéy
associated with length-n sequences x and y
Empirical mutual information

A

P(Ay)
Py(x) Py (y)

Use random constant-composition codes: x(m) have the same
type P forall1 <m < M, /

I( xy ) pryxw
.y




/ e Maximum Mutual Information (MMI) decoder: \

| Jmax 1 (Px(m)y)

e Probability of error analysis:

_0(P,W)

s.d. = O()

incorrect true

& Message message T,

A

Note that I(P) is not a sum of iid rv’s

e Csiszar and Korner (1981) have shown that this code achieves

C' (W) as well as optimal error exponents at high rates.
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Connection to C,(W,¢)?

In unpublished notes entitled “Behavior Near Channel
Capacity”, Shannon showed that the reliability function may

be approximated as E(W, R) = <C2(ZQV_V];°)2 for R~ C(W)

t. t.
Try the approximation e = e~ "E(W.Bn)t+o(n) %5 o—nE(W,Rn)

where w.t. denotes wishful thinking

E/M,/) VIn(2/€) for “very large’n
n

o(W)
NG

same as C), (W, €) given previously

o

YL R, ~ C(W)-—

C(W) — Q '(e) forelO

too much w.t. to be convincing

~
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Towards a legal union' \

Methodology: choose a random code and decoder and conduct

precise analysis of error probability

Use Shannon’s iid random codes with P = P* and rate
P,W*)
vV

R, = 1(P.w*) — 2 Q1 (e)

and Csiszar-Korner’s MMI decoder

Main result: The compound e-capacity for blocklength n is

the same as in the informed decoder case

In other words, there is no penalty (neither in the first nor even

/

in the second order) for the decoder not knowing channel W

11



/o Error analysis: see distributions for e.m.i. statistic (P ) \

x(m)y
for true message m and for incorrect message

s.d. = 0(7171)

incorrect true

& Message message T,

e Decision rule: variable-size list decoders outputs list of all m

A

such that I(Px(m)y) = Rn

A

e Erasure probability: Py(W) = Pr{I(Px(m)y) < R]
Expected # of incorrect messages on list:

EW[NZ] — <2an — 1>PT[I<px(m’)y) > Rn]

\_ /
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/o True message m: the joint type f’x<m)y follows multinomial \
distribution with probabilities Px (z)W (y|z), z € X, y € V.

e Asymptotics are given by

) 1
P(z,y) = P(x)W(y|lz) + —=Gn(z,y), z€X, ye)

B

where

E[G 0
Cov|G,] = X (rank deficient)

G, % N(0,%)

n] —
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/o Since P = P+

d

\}—G and G, % N(0,%), we have \

I(P) = I(P,W)+ T\G VI(P W2+% gvn

a4 N(O,a2(P,W)) %4 N(0,a(P,W))

7

e Indeed o2(P,W) = [VI(P,W)]" ¥ [VI(P,W)]. Thus I(P) has

the same asymptotic distribution as normalized info density!

: : ~ o o(PLWT)
= nh_}nglo Py(W) = nh_)ng() Pr|I(Px(m)y) < I(P,W7) — T Q ()]
R,
< €

with equality if W = W*

\_ /
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/o Incorrect message: for m’ % m, the joint type f’x(m

.

)y

multinomial distribution with probabilities
Px(a?)Py(y), reX, yey

e Using large deviations (tilted distributions), can show that the

expected # of incorrect messages

Ew N;] <

<

1 A

(2™ — 1) Pr[=I(Py(mr)y) > Rn

n
2—7’LI(P)(,W>

\/27T77,C2(Px, W)
9—Vno Q7 (e)
\/27rn C?(Px, W)

(2Fn 1)

(with equality for W = W*) vanishes as n — oc.

follows a\

]
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/ e Geometric interpretation (where P* is the tilted distribution \
and 7 = R,):
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Conclusion I \

Combining Shannon’s iid random codes with Csiszar and Korner’s

MMI decoder yields the same first and second order coding rate as

in the case of an informed decoder.
Hence there is no penalty for not knowing the channel!

The bounds are independent of alphabet size. There is no large
subexponential term of the form (n 4+ 1)/*!1%l as in the error

probability derivations of Csiszar and Korner

The Gaussian approximation and the large-deviations approach
based on tilted distributions and precise asymptotics are applicable
to arbitrary large as well as continuous alphabets (by application of

empirical process theory).

Future work will explore more complicated channels (with memory)
and multiterminal extensions /
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