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The problem

e choose transmit power(s) and flow rate(s) to optimally trade off average
utility and power

e utilities are functions of time-smoothed flow rates

e with each flow we associate a

— smoothing time scale

— concave increasing utility function
e our model:

— channel gains are random
— no interference
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Smoothed flow utility

e wireless link supports n flows in period ¢
e f; € R" is flow rate vector

e s; € R" is smoothed flow rate vector: s;.1 = Os; + (I — O)f;

- © =diag(d), 6,€]0,1)
— T; =1/log(1/0,) is smoothing time for flow j

e U : R" — R: separable concave utility function

e smoothed flow utility is

| Nl
U= lim EN Ul(s;)

N —o00
7=0
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Channel model and average power

e capacity in period t is (up to a constant) log(1 + g¢p¢)

— py 2> 0 Is transmit power
— g¢ is channel gain (up to constant)

e power required to support flow fi: p; = ¢(11f;, g;) = (elet —1)/g:

N-1
_ 1
s P= lim E— E T
® average power IS Nl_f)l’(l)O N _Op

e g; IID exponential (for example)

e f; (and therefore p;) can depend on g;, but not g;11, gr+2, -
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Optimal policy

e (state feedback) policy: f; = (s¢, g¢)

e goal: choose policy ¢ to maximize U — AP

e )\ > 0 is used to trade off average utility and power
e a convex stochastic control problem

e optimal value is J*
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General ‘solution’ via dynamic programming

e optimal policy is

p*(z,9) = arggloax{V*(@z + (I - O)w) — Ap(1"w, g)}

e V/* is value function, (any) solution of Bellman equation

w>0

J "+ V*(z)=E {U(z) + max {V(@z + ([ —0O)w) — )\¢(1Tw,g)}}
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Value iteration

1. update unnormalized estimate of V'*:

w>0

VAU = E {U(z) + max {V(k)(@z + (I —O)w) — Ap(11w, g)}}
2. normalize (and get new estimate of J*):
JED () = VEHD(0), VD (g) = YEFD(5) — g+
o VB v gk 5 J*
e iteration preserves concavity, monotonicity, so V' * is concave, increasing

e can carry out numerically for n very small (say, 1 or 2)

ITMANET 05/24/10 6



No transmit region

e from convex analysis, ©*(z,g) = 0 if and only if

A A
* < .

(assuming here V* is differentiable)

e interpretation: don't transmit if

— channel is bad (g small)
— or, smoothed flows are large (z large = VV*(©z) small)
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Single-flow examples

e two examples:

— light smoothing (T'=1; § = 0.37)
— heavy smoothing (7' = 50; 6 = 0.98)

o U(s) =52 g, ~ E(1)
e )\s chosen to yield U = 0.8

e (optimal) average power is P = 0.9 for T =1; P = 0.3 for T' = 50

— smoothing allows 3% reduction in power
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ADP policy for multiple flows

e for more than 3 flows (say), computing V* intractable
e approximate dynamic programming (ADP) policy:
p*P(z2, g) = argmax{V*P(0z + (I - O)w) — Ap(1"w, g)}
w>0
— V2P is an approximate or surrogate value function

e ADP can work surprisingly well, even when V24P s not a particularly
good approximation of V'*

e some general methods for coming up with a surrogate:

— use exact value function for simpler problem
— learning (e.g., Q-learning) or optimization over a basis
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Separable surrogate value function

e we propose surrogate value function
VadP(2) = Vi(z1) + -+ + Vi (20)

— V7 : R — Ris value function for jth flow alone
— can evaluate ©?P(z, g) very fast via waterfilling

o V2P js separable, but policy ©*IP is not

e (optimizing over basis of separable surrogate value functions yields very

little performance improvement)

e policy ©*IP seems to work well . . . but how suboptimal is it?
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An upper bound on J*

e we relax (i.e., ignore) causality requirement, i.e., we have complete
knowledge of future channel gains

e for each channel gain realization, results in (large, but convex)
multi-period optimization problem

e expected value of optimal cost (obtained by Monte Carlo simulation) is
upper bound on J*

e called prescient bound JP'® (since it assumes future is known)
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Numerical example

e two flows on a single link, with light (7" = 1) and heavy (1" = 50)
smoothing

o Usi,s2) =51"" + 55" 0(fe,g0) = Magele' 71— 1)
o g ~E(1), A=1

e we run 1000 realizations, each of length N = 1000

o J3P = _13.9; JP*® = —13.8

e so J2P js at most 0.1-suboptimal
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Final observations

e time smoothing has great affect on
— optimal policy
— average power needed
e rough interpretation of optimal policy:

— with smoothing, wait for good channel, unless desperate
— and so, save power
— more smoothing = more opportunistic, less power

e multi-flow ADP policy

— surrogate is sum of single-flow value functions
— performance is nearly optimal, as shown by upper bound on J*
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