Adaptive Modulation with Smoothed Flow Utility

Ekine Akuiyibo **Stephen Boyd**

Electrical Engineering Department, Stanford University

The problem

- choose transmit power(s) and flow rate(s) to optimally trade off average utility and power
- utilities are functions of time-smoothed flow rates
- with each flow we associate a
 - smoothing time scale
 - concave increasing utility function
- our model:
 - channel gains are random
 - no interference

1TMANET 05/24/10

Smoothed flow utility

- wireless link supports n flows in period t
- $f_t \in \mathbf{R}^n$ is flow rate vector
- $s_t \in \mathbf{R}^n$ is smoothed flow rate vector: $s_{t+1} = \Theta s_t + (I \Theta) f_t$
 - $-\Theta = \mathbf{diag}(\theta), \quad \theta_j \in [0,1)$
 - $T_i = 1/\log(1/\theta_j)$ is smoothing time for flow j
- $U: \mathbb{R}^n \to \mathbb{R}$: separable concave utility function
- smoothed flow utility is

$$\bar{U} = \lim_{N \to \infty} \mathbf{E} \frac{1}{N} \sum_{\tau=0}^{N-1} U(s_{\tau})$$

Channel model and average power

- capacity in period t is (up to a constant) $\log(1+g_tp_t)$
 - $p_t \ge 0$ is transmit power
 - g_t is channel gain (up to constant)
- power required to support flow f_t : $p_t = \phi(\mathbf{1}^T f_t, g_t) = (e^{\mathbf{1}^T f_t} 1)/g_t$
- average power is $\bar{P} = \lim_{N \to \infty} \mathbf{E} \frac{1}{N} \sum_{\tau=0}^{N-1} p_{\tau}$
- g_t IID exponential (for example)
- f_t (and therefore p_t) can depend on g_t , but not g_{t+1}, g_{t+2}, \ldots

Optimal policy

- (state feedback) policy: $f_t = \varphi(s_t, g_t)$
- ullet goal: choose policy arphi to maximize $\bar{U}-\lambda\bar{P}$
- $\lambda > 0$ is used to trade off average utility and power
- a convex stochastic control problem
- optimal value is J^*

General 'solution' via dynamic programming

optimal policy is

$$\varphi^{\star}(z,g) = \underset{w>0}{\operatorname{argmax}} \{ V^{\star}(\Theta z + (I - \Theta)w) - \lambda \phi(\mathbf{1}^{T}w, g) \}$$

• V^* is value function, (any) solution of Bellman equation

$$J^{\star} + V^{\star}(z) = \mathbf{E} \left\{ U(z) + \max_{w \ge 0} \left\{ V(\Theta z + (I - \Theta)w) - \lambda \phi(\mathbf{1}^T w, g) \right\} \right\}$$

Value iteration

1. update unnormalized estimate of V^* :

$$\tilde{V}^{(k+1)}(z) := \mathbf{E} \left\{ U(z) + \max_{w \ge 0} \left\{ V^{(k)}(\Theta z + (I - \Theta)w) - \lambda \phi(\mathbf{1}^T w, g) \right\} \right\}$$

2. normalize (and get new estimate of J^*):

$$J^{(k+1)}(z) := \tilde{V}^{(k+1)}(0); \qquad V^{(k+1)}(z) := \tilde{V}^{(k+1)}(z) - J^{(k+1)}(z)$$

- $V^{(k)} \rightarrow V^{\star}$. $J^{(k)} \rightarrow J^{\star}$
- ullet iteration preserves concavity, monotonicity, so V^{\star} is concave, increasing
- ullet can carry out numerically for n very small (say, 1 or 2)

No transmit region

• from convex analysis, $\varphi^{\star}(z,g)=0$ if and only if

$$g\nabla V^{\star}(\Theta z) \leq \left(\frac{\lambda}{1-\theta_1}, \dots, \frac{\lambda}{1-\theta_n}\right)$$

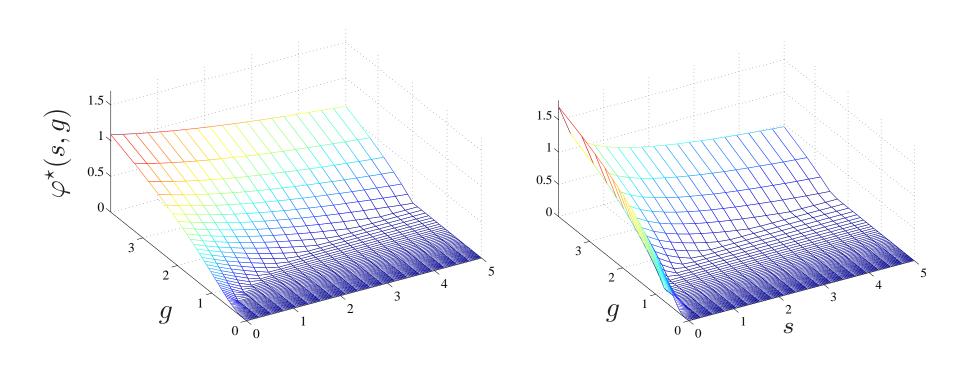
(assuming here V^* is differentiable)

- interpretation: don't transmit if
 - channel is bad (g small)
 - or, smoothed flows are large (z large $\Rightarrow \nabla V^{\star}(\Theta z)$ small)

Single-flow examples

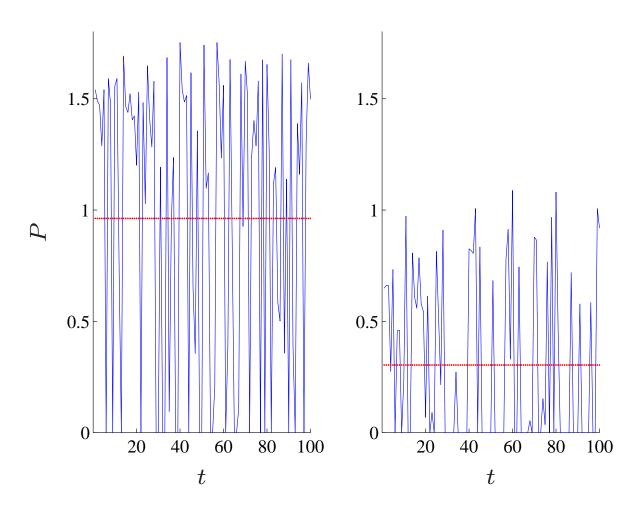
- two examples:
 - light smoothing ($T=1; \theta=0.37$)
 - heavy smoothing (T=50; $\theta=0.98$)
- $U(s) = s^{1/2}$; $g_t \sim \mathcal{E}(1)$
- $\lambda {\rm s}$ chosen to yield $\bar{U}=0.8$
- (optimal) average power is $\bar{P}=0.9$ for T=1; $\bar{P}=0.3$ for T=50
 - smoothing allows $3\times$ reduction in power

Optimal policies



ITMANET 05/24/10 9

Sample power trajectories



ITMANET 05/24/10 10

ADP policy for multiple flows

- for more than 3 flows (say), computing V^* intractable
- approximate dynamic programming (ADP) policy:

$$\varphi^{\text{adp}}(z,g) = \underset{w>0}{\operatorname{argmax}} \{ V^{\text{adp}}(\Theta z + (I - \Theta)w) - \lambda \phi(\mathbf{1}^T w, g) \}$$

- V^{adp} is an approximate or surrogate value function
- \bullet ADP can work surprisingly well, even when $V^{\rm adp}$ is not a particularly good approximation of V^\star
- some general methods for coming up with a surrogate:
 - use exact value function for simpler problem
 - learning (e.g., Q-learning) or optimization over a basis

11 ITMANET 05/24/10

Separable surrogate value function

• we propose surrogate value function

$$V^{\mathrm{adp}}(z) = V_1^{\star}(z_1) + \dots + V_n^{\star}(z_n)$$

- $V_i^{\star}: \mathbf{R} \to \mathbf{R}$ is value function for jth flow alone
- can evaluate $\varphi^{\mathrm{adp}}(z,g)$ very fast via waterfilling
- ullet V^{adp} is separable, but policy $arphi^{\mathrm{adp}}$ is not
- (optimizing over basis of separable surrogate value functions yields very little performance improvement)
- ullet policy $arphi^{
 m adp}$ seems to work well . . . but how suboptimal is it?

12 ITMANET 05/24/10

An upper bound on J^{\star}

- we relax (i.e., ignore) causality requirement, i.e., we have complete knowledge of *future* channel gains
- for each channel gain realization, results in (large, but convex)
 multi-period optimization problem
- expected value of optimal cost (obtained by Monte Carlo simulation) is upper bound on J^\star
- called *prescient bound* J^{pre} (since it assumes future is known)

13 ITMANET 05/24/10

Numerical example

• two flows on a single link, with light (T=1) and heavy (T=50) smoothing

•
$$U(s_1, s_2) = s_1^{1/2} + s_2^{1/2}; \quad \phi(f_t, g_t) = \lambda/g_t(e^{\mathbf{1}^T f_t} - 1)$$

- $g_t \sim \mathcal{E}(1)$, $\lambda = 1$
- we run 1000 realizations, each of length N=1000
- $J^{\text{adp}} = -13.9$; $J^{\text{pre}} = -13.8$
- ullet so $J^{
 m adp}$ is at most 0.1-suboptimal

Final observations

- time smoothing has great affect on
 - optimal policy
 - average power needed
- rough interpretation of optimal policy:
 - with smoothing, wait for good channel, unless desperate
 - and so, save power
 - more smoothing ⇒ more opportunistic, less power
- multi-flow ADP policy
 - surrogate is sum of single-flow value functions
 - performance is nearly optimal, as shown by upper bound on J^*

ITMANET 05/24/10 15