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The problem

• choose transmit power(s) and flow rate(s) to optimally trade off average
utility and power

• utilities are functions of time-smoothed flow rates

• with each flow we associate a

– smoothing time scale
– concave increasing utility function

• our model:

– channel gains are random
– no interference
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Smoothed flow utility

• wireless link supports n flows in period t

• ft ∈ Rn is flow rate vector

• st ∈ Rn is smoothed flow rate vector: st+1 = Θst + (I − Θ)ft

– Θ = diag(θ), θj ∈ [0, 1)
– Tj = 1/ log(1/θj) is smoothing time for flow j

• U : Rn → R: separable concave utility function

• smoothed flow utility is

Ū = lim
N→∞

E
1

N

N−1
∑

τ=0

U(sτ)
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Channel model and average power

• capacity in period t is (up to a constant) log(1 + gtpt)

– pt ≥ 0 is transmit power
– gt is channel gain (up to constant)

• power required to support flow ft: pt = φ(1Tft, gt) = (e1T ft − 1)/gt

• average power is P̄ = lim
N→∞

E
1

N

N−1
∑

τ=0

pτ

• gt IID exponential (for example)

• ft (and therefore pt) can depend on gt, but not gt+1, gt+2, . . .
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Optimal policy

• (state feedback) policy: ft = ϕ(st, gt)

• goal: choose policy ϕ to maximize Ū − λP̄

• λ > 0 is used to trade off average utility and power

• a convex stochastic control problem

• optimal value is J⋆
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General ‘solution’ via dynamic programming

• optimal policy is

ϕ⋆(z, g) = argmax
w≥0

{V ⋆(Θz + (I − Θ)w) − λφ(1Tw, g)}

• V ⋆ is value function, (any) solution of Bellman equation

J⋆ + V ⋆(z) = E

{

U(z) + max
w≥0

{

V (Θz + (I − Θ)w) − λφ(1Tw, g)

}

}
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Value iteration

1. update unnormalized estimate of V ⋆:

Ṽ (k+1)(z) := E

{

U(z) + max
w≥0

{

V (k)(Θz + (I −Θ)w)− λφ(1Tw, g)

}

}

2. normalize (and get new estimate of J⋆):

J (k+1)(z) := Ṽ (k+1)(0); V (k+1)(z) := Ṽ (k+1)(z) − J (k+1)

• V (k) → V ⋆, J (k) → J⋆

• iteration preserves concavity, monotonicity, so V ⋆ is concave, increasing

• can carry out numerically for n very small (say, 1 or 2)
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No transmit region

• from convex analysis, ϕ⋆(z, g) = 0 if and only if

g∇V ⋆(Θz) ≤

(

λ

1 − θ1
, . . . ,

λ

1 − θn

)

(assuming here V ⋆ is differentiable)

• interpretation: don’t transmit if

– channel is bad (g small)
– or, smoothed flows are large (z large ⇒ ∇V ⋆(Θz) small)
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Single-flow examples

• two examples:

– light smoothing (T = 1; θ = 0.37)
– heavy smoothing (T = 50; θ = 0.98)

• U(s) = s1/2; gt ∼ E(1)

• λs chosen to yield Ū = 0.8

• (optimal) average power is P̄ = 0.9 for T = 1; P̄ = 0.3 for T = 50

– smoothing allows 3× reduction in power
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Optimal policies
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Sample power trajectories
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ADP policy for multiple flows

• for more than 3 flows (say), computing V ⋆ intractable

• approximate dynamic programming (ADP) policy:

ϕadp(z, g) = argmax
w≥0

{V adp(Θz + (I − Θ)w) − λφ(1Tw, g)}

– V adp is an approximate or surrogate value function

• ADP can work surprisingly well, even when V adp is not a particularly
good approximation of V ⋆

• some general methods for coming up with a surrogate:

– use exact value function for simpler problem
– learning (e.g., Q-learning) or optimization over a basis
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Separable surrogate value function

• we propose surrogate value function

V adp(z) = V ⋆
1 (z1) + · · · + V ⋆

n (zn)

– V ⋆
j : R → R is value function for jth flow alone

– can evaluate ϕadp(z, g) very fast via waterfilling

• V adp is separable, but policy ϕadp is not

• (optimizing over basis of separable surrogate value functions yields very
little performance improvement)

• policy ϕadp seems to work well . . . but how suboptimal is it?
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An upper bound on J⋆

• we relax (i.e., ignore) causality requirement, i.e., we have complete
knowledge of future channel gains

• for each channel gain realization, results in (large, but convex)
multi-period optimization problem

• expected value of optimal cost (obtained by Monte Carlo simulation) is
upper bound on J⋆

• called prescient bound Jpre (since it assumes future is known)
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Numerical example

• two flows on a single link, with light (T = 1) and heavy (T = 50)
smoothing

• U(s1, s2) = s
1/2
1 + s

1/2
2 ; φ(ft, gt) = λ/gt(e

1T ft − 1)

• gt ∼ E(1), λ = 1

• we run 1000 realizations, each of length N = 1000

• Jadp = −13.9; Jpre = −13.8

• so Jadp is at most 0.1-suboptimal
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Final observations

• time smoothing has great affect on

– optimal policy
– average power needed

• rough interpretation of optimal policy:

– with smoothing, wait for good channel, unless desperate
– and so, save power
– more smoothing =⇒ more opportunistic, less power

• multi-flow ADP policy

– surrogate is sum of single-flow value functions
– performance is nearly optimal, as shown by upper bound on J⋆
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