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How to Describe Communication in One Time Instance

Miy=y,

o PM(')

MIY=y; MiY=y,

e Nothing is communicated reliably, so cannot say how many "bits" is
transmitted.

e Mutual Information?
e Directions matters?



How is This Different From Achieving Capacity

e Capacity achieving random coding maximizes instantaneous mutual
information.
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How is This Different From Achieving Capacity
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e Random coding: re-shaping input distribution at each time:

ZPJ\/I\H D( Py (-lm)||Py)

Z ST Pup(m) -D(Wy x (-|2)]| Py)

z€X  m:f(m)=z

P%(x)

e Only an approximate solution, for a dominating fraction of the time.



Is Error Exponent a "True" Dynamic Metric
e Renyi entropy and divergence

Tolog S PR Da(PQ) = s log 3 P

reEX reEX
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e Mutual information and Decision making:

H;, = Shannon entropy; H(P) = —logmax P(z)
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Is Error Exponent a "True" Dynamic Metric

e Renyi entropy and divergence

Slog S P Da(PlQ) =

zeX

H,(P) =

e Mutual information and Decision making:

H;, = Shannon entropy; Ho(P) =

¢ Instantaneous optimization:

fT]rV}an Py (Z Pk/; P]\/I|Y(my)>
Random Coding = H;?(XZP (Z Py ( PXy(ac|y))
Yy

Bayes Rule = maxz <Z Px (x)Wy x ( y|x)>

zeX
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Why Should We Care About Instantaneous Efficiency

e In both capacity and error exponent optimization:
e An instantaneous optimization is implicitly solved;
o As Py 5 deviates from uniform, random coding deviates from the optimal
solution;
o With average-over-n performance metrics, the sub-optimality can be
ignored.



Why Should We Care About Instantaneous Efficiency

e In both capacity and error exponent optimization:
e An instantaneous optimization is implicitly solved;
o As Py 5 deviates from uniform, random coding deviates from the optimal
solution;
o With average-over-n performance metrics, the sub-optimality can be
ignored.
o Communication optimized over every single time instance:
e Only marginal gains in conventional metrics;
o Better insights: finite time horizon, interference, soft information;
o Easy implementation: greedy algorithms, approximate DP.



How to Measure Instantaneous Efficiency

e There is no unique metric: the value of soft information depends on how
it would be used.
Example: H([0.6,0.2,0.2]) ~ 1.38 > H([0.5,0.5,0]) = 1



How to Measure Instantaneous Efficiency

e There is no unique metric: the value of soft information depends on how
it would be used.
Example: H([0.6,0.2,0.2]) ~ 1.38 > H([0.5,0.5,0]) =1

e Renyi Divergence, a-divergence, efc..
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Example 1: the Feedback Channel

J/ Y!L
Encoder Decod .
- Xn,) OMC L Yy cooder |
X (m, Y1) W (Y| X) A
e Encoder:
Xe(m, YY) - Mx Y - x t<n
e Decoder:

m(Y") : yr—-M
o Knowledge attime ¢, ¢:(-) =P [m = | y]

o Feedback does not increase channel capacity for DMC, but can improve

error probability.



Instantaneous Formulation

o At each time ¢, the history is summarized in ¢ (-),
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e Chosen from an exponential upper bound of P.;
o= ﬁ gives Renyi entropy;
e In general, weighted sum of two Renyi entropies;



Instantaneous Formulation

At each time ¢, the history is summarized in o+ (-),
Define a score function

G2 S o) (S pu))Y?

k 14k

e Chosen from an exponential upper bound of P.;
o= ﬁ gives Renyi entropy;
e In general, weighted sum of two Renyi entropies;

Greedy optimization problem:

max min E[Ce11]y’]
X t,yt

Solution: tilted posterior matching.
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o Posterior tilting: Parjzc — Py
making;
o Parameter n depends on the subject choice of the metric;
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o but the assumption of same 7 for all t, y¢ is artificial;
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Extensions

Posterior tilting: Purjz — Py 5, Slow down the process of decision
making;
Parameter n depends on the subject choice of the metric;
e 7 can be optimized separately
o but the assumption of same 7 for all ¢, 3¢ is artificial;
Vary n based on t, y*

o Slow down if committed to a message too early, vice versa;
e Balance progress for different outputs;

General greedy instantaneous communication: at each time ¢

e given a history: Hy;
e choose a metric: mutual information, Renyi divergence, etc.

o design a few parameters: encoding, resource allocation, receiver designs, ...



Example: Quantum Detection

Photon counter

SEC i()isson (]sr)

e Direct detection measure the intensity of light, resulting in Poisson
channel, well studied;

e Theoretical optimization of coherent quantum detectors far more general
than practical devices today;

o Realistic receivers can only use a few kinds of devices as building blocks



Example of Coherent Detector

Photon counter

Input Light: § S+l Poisson(‘s"'l‘Z)
y : 4 L

. mixer (beam splitter)
Local signal: Z

o Design of local signal I changes the detection problem:

M=0: Poisson(]So|?) __, Poisson(Xo = |So + 1)
M=1: Poisson(|S1]?) Poisson(\; = |S1 +1]?)
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Example of Coherent Detector

Photon counter

Input Light: § S+1 [ Poisson (|S + 1\2)
y » ’r—)
ﬁ

mixer (beam splitter)
Local signal: Z

o Design of local signal I changes the detection problem:
M=0: Poisson(]So|?) __, Poisson(Xo = |So + 1)
M=1: Poisson(|S1]?) Poisson(\; = |S1 +1]?)

o More general case requires a couple of more parameters;
o What is the sufficient statistic?



Instantaneous Design

o Attime ¢, given the current knowledge
Puw,, design [(t) to be used for
[t,t + A), to maximize mutual
information;



Instantaneous Design

o Attime ¢, given the current knowledge

Paryr,, design i(t) to be used for 0 ol
[t,t + A), to maximize mutual B, M
information; \ ¥ 1
e Optimal performance for binary 1-HA
detection;
o All metrics over 1-D space are
equivalent;

Photon Arrivals

T

Optimum Feedback

o Balanced progress;

PMH':U




