Instantaneously Efficiency of Dynamic Communications

Lizhong Zheng

ITMANET Program Review, Stanford, January 27, 2011

How to Describe Communication in One Time Instance

- Nothing is communicated reliably, so cannot say how many "bits" is transmitted.
- Mutual Information?
- Directions matters?

How is This Different From Achieving Capacity

 Capacity achieving random coding maximizes instantaneous mutual information.

$$I(M; Y^n) = \sum_t I(M; Y_t | Y^{t-1}) \rightarrow n \cdot \max_{P_X} I(X; Y)$$

How is This Different From Achieving Capacity

 Capacity achieving random coding maximizes instantaneous mutual information.

$$I(M; Y^n) = \sum_t I(M; Y_t | Y^{t-1}) \to n \cdot \max_{P_X} I(X; Y)$$

Random coding: re-shaping input distribution at each time:

$$\sum_{m} P_{M|\mathcal{H}}(m) \cdot D(P_{Y|M}(\cdot|m)||P_{Y})$$

$$= \sum_{x \in \mathcal{X}} \underbrace{\sum_{m: f(m) = x} P_{M|\mathcal{H}}(m) \cdot D(W_{Y|X}(\cdot|x)||P_{Y})}_{P_{X}^{*}(x)}$$

How is This Different From Achieving Capacity

Capacity achieving random coding maximizes instantaneous mutual information.

$$I(M; Y^n) = \sum_t I(M; Y_t | Y^{t-1}) \to n \cdot \max_{P_X} I(X; Y)$$

Random coding: re-shaping input distribution at each time:

$$= \sum_{x \in \mathcal{X}} P_{M|\mathcal{H}}(m) \cdot D(P_{Y|M}(\cdot|m)||P_Y)$$

$$= \sum_{x \in \mathcal{X}} \underbrace{\sum_{m:f(m)=x} P_{M|\mathcal{H}}(m) \cdot D(W_{Y|X}(\cdot|x)||P_Y)}_{P_X^*(x)}$$

• Only an approximate solution, for a dominating fraction of the time.

Is Error Exponent a "True" Dynamic Metric

Renyi entropy and divergence

$$H_{\alpha}(P) = \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} P^{\alpha}(x); \qquad D_{\alpha}(P||Q) = \frac{1}{\alpha-1} \log \sum_{x \in \mathcal{X}} P^{\alpha}(x) Q^{1-\alpha}(x)$$

Mutual information and Decision making:

$$H_1 =$$
 Shannon entropy; $H_{\infty}(P) = -\log \max_{x} P(x)$

Is Error Exponent a "True" Dynamic Metric

Renyi entropy and divergence

$$H_{\alpha}(P) = \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} P^{\alpha}(x); \qquad D_{\alpha}(P||Q) = \frac{1}{\alpha-1} \log \sum_{x \in \mathcal{X}} P^{\alpha}(x) Q^{1-\alpha}(x)$$

Mutual information and Decision making:

$$H_1 = \text{Shannon entropy}; \qquad H_{\infty}(P) = -\log \max_{x} P(x)$$

• Instantaneous optimization:

$$\max_{f:M\to\mathcal{X}} \sum_y P(y) \left(\sum_m P_M^{1-\alpha}(m) P_{M|Y}^\alpha(m|y) \right)^{\frac{1}{\alpha}}$$
 Random Coding $\Rightarrow \max_{P_X} \sum_y P(y) \left(\sum_x P_X^{1-\alpha}(x) P_{X|Y}^\alpha(x|y) \right)^{\frac{1}{\alpha}}$ Bayes Rule $\Rightarrow \max_{P_X} \sum_y \left(\sum_x P_X(x) W_{Y|X}^\alpha(y|x) \right)^{\frac{1}{\alpha}}$ $= \max_{P_X} E_0(\rho, P_X)$ with $\rho = \frac{1}{\alpha} - 1$

Why Should We Care About Instantaneous Efficiency

- In both capacity and error exponent optimization:
 - An instantaneous optimization is implicitly solved;
 - \bullet As $P_{M|\mathcal{H}}$ deviates from uniform, random coding deviates from the optimal solution:
 - With average-over-n performance metrics, the sub-optimality can be ignored.

Why Should We Care About Instantaneous Efficiency

- In both capacity and error exponent optimization:
 - An instantaneous optimization is implicitly solved;
 - As $P_{M|\mathcal{H}}$ deviates from uniform, random coding deviates from the optimal solution;
 - With average-over-n performance metrics, the sub-optimality can be ignored.
- Communication optimized over every single time instance:
 - Only marginal gains in conventional metrics;
 - Better insights: finite time horizon, interference, soft information;
 - Easy implementation: greedy algorithms, approximate DP.

How to Measure Instantaneous Efficiency

 There is no unique metric: the value of soft information depends on how it would be used.

Example: $H([0.6, 0.2, 0.2]) \approx 1.38 > H([0.5, 0.5, 0]) = 1$

How to Measure Instantaneous Efficiency

 There is no unique metric: the value of soft information depends on how it would be used.

Example: $H([0.6, 0.2, 0.2]) \approx 1.38 > H([0.5, 0.5, 0]) = 1$

• Renyi Divergence, α -divergence, etc..

Example 1: the Feedback Channel

• Encoder:

$$\mathbb{X}_t(m, Y^{t-1}) : \mathcal{M} \times \mathcal{Y}^{t-1} \to \mathcal{X} \qquad t \leq n$$

Decoder:

$$\hat{m}(Y^n): \qquad \mathcal{Y}^n \to \mathcal{M}$$

- Knowledge at time t, $\varphi_t(\cdot) = \mathbf{P}\left[m = \cdot | y^t\right]$
- Feedback does not increase channel capacity for DMC, but can improve error probability.

Instantaneous Formulation

 \bullet At each time t, the history is summarized in $\varphi_t(\cdot),$

Instantaneous Formulation

- At each time t, the history is summarized in $\varphi_t(\cdot)$,
- Define a score function

$$\zeta_n \triangleq \sum_k \varphi_n(k)^{1-\rho\eta} (\sum_{l \neq k} \varphi_n(l)^{\eta})^{\rho}$$

- Chosen from an exponential upper bound of P_e ;
- $\eta = \frac{1}{1+\rho}$ gives Renyi entropy;
- In general, weighted sum of two Renyi entropies;

Instantaneous Formulation

- At each time t, the history is summarized in $\varphi_t(\cdot)$,
- Define a score function

$$\zeta_n \triangleq \sum_k \varphi_n(k)^{1-\rho\eta} (\sum_{l \neq k} \varphi_n(l)^{\eta})^{\rho}$$

- Chosen from an exponential upper bound of P_e ;
- $\eta = \frac{1}{1+\rho}$ gives Renyi entropy;
- In general, weighted sum of two Renyi entropies;
- Greedy optimization problem:

$$\max_{\mathbb{X}} \min_{t,y^t} E[\zeta_{t+1}|y^t]$$

Solution: tilted posterior matching.

Extensions

- Posterior tilting: $P_{M|\mathcal{H}} \to P_{M|\mathcal{H}}^{\eta}$, slow down the process of decision making;
- Parameter η depends on the subject choice of the metric;
 - η can be optimized separately
 - \bullet but the assumption of same η for all t,y^t is artificial;

Extensions

- Posterior tilting: $P_{M|\mathcal{H}} \to P_{M|\mathcal{H}}^{\eta}$, slow down the process of decision making;
- Parameter η depends on the subject choice of the metric;
 - η can be optimized separately
 - \bullet but the assumption of same η for all t,y^t is artificial;
- Vary η based on t, y^t
 - Slow down if committed to a message too early, vice versa;
 - Balance progress for different outputs;

Extensions

- Posterior tilting: $P_{M|\mathcal{H}} \to P_{M|\mathcal{H}}^{\eta}$, slow down the process of decision making;
- Parameter η depends on the subject choice of the metric;
 - η can be optimized separately
 - but the assumption of same η for all t, y^t is artificial;
- Vary η based on t, y^t
 - Slow down if committed to a message too early, vice versa;
 - · Balance progress for different outputs;
- General greedy instantaneous communication: at each time t
 - given a history: \mathcal{H}_t ;
 - choose a metric: mutual information, Renyi divergence, etc.
 - design a few parameters: encoding, resource allocation, receiver designs, ...

Example: Quantum Detection

- Direct detection measure the intensity of light, resulting in Poisson channel, well studied:
- Theoretical optimization of coherent quantum detectors far more general than practical devices today;
- Realistic receivers can only use a few kinds of devices as building blocks

Example of Coherent Detector

• Design of local signal *l* changes the detection problem:

$$\begin{array}{ll} M=0: & \operatorname{Poisson}(|S_0|^2) \\ M=1: & \operatorname{Poisson}(|S_1|^2) \end{array} \longrightarrow \begin{array}{ll} \operatorname{Poisson}(\lambda_0=|S_0+l|^2) \\ \operatorname{Poisson}(\lambda_1=|S_1+l|^2) \end{array}$$

Example of Coherent Detector

• Design of local signal *l* changes the detection problem:

$$\begin{array}{ll} M=0: & \operatorname{Poisson}(|S_0|^2) \\ M=1: & \operatorname{Poisson}(|S_1|^2) \end{array} \longrightarrow \begin{array}{ll} \operatorname{Poisson}(\lambda_0=|S_0+l|^2) \\ \operatorname{Poisson}(\lambda_1=|S_1+l|^2) \end{array}$$

More general case requires a couple of more parameters;

Example of Coherent Detector

• Design of local signal *l* changes the detection problem:

$$\begin{array}{ll} M=0: & \operatorname{Poisson}(|S_0|^2) \\ M=1: & \operatorname{Poisson}(|S_1|^2) \end{array} \longrightarrow \begin{array}{ll} \operatorname{Poisson}(\lambda_0=|S_0+l|^2) \\ \operatorname{Poisson}(\lambda_1=|S_1+l|^2) \end{array}$$

- More general case requires a couple of more parameters;
- What is the sufficient statistic?

Instantaneous Design

• At time t, given the current knowledge $P_{M|\mathcal{H}_t}$, design l(t) to be used for $[t,t+\Delta)$, to maximize mutual information;

Instantaneous Design

- At time t, given the current knowledge $P_{M|\mathcal{H}_t}$, design l(t) to be used for $[t,t+\Delta)$, to maximize mutual information;
- Optimal performance for binary detection;
 - All metrics over 1-D space are equivalent;
 - Balanced progress;

