Positive Recurrent Medium Access Algorithm

Devavrat Shah* Jinwoo Shin[†] Prasad Tetali[†]

*LIDS, Massachusetts Institute of Technology

[†]Algorithms & Randomness Center, Georgia Institute of Technology

Constraints

• Interfering nodes can not transmit simultaneously.

Constraints

• Interfering nodes can not transmit simultaneously.

Constraints

- Interfering nodes can not transmit simultaneously.
- Nodes have only "local" information
 - Is any interfering neighbor transmitting ?

Question

- Which nodes should transmit simultaneously using local information.
- So that performance is not compromised.

Goal

- Design an 'distributed', 'efficient' scheduling algorithm of 'high performance'
 - Decides transmission of non-interfering nodes

- Network interference graph G = (V, E) with *n* queues as nodes
 - $E = \{(i,j) : i \text{ and } j \text{ cannot transmit simultaneously} \}$.
 - A packet arrives at queue *i* with probability λ_i at time $t \in \mathbb{Z}_+$.

- Network interference graph G = (V, E) with *n* queues as nodes
 - $E = \{(i,j) : i \text{ and } j \text{ cannot transmit simultaneously} \}$.
 - A packet arrives at queue *i* with probability λ_i at time $t \in \mathbb{Z}_+$.
- Scheduling algorithm: at each time instance t ∈ Z₊
 - \circ Selects non-interfering queues (to transmit) i.e. an independent set of G.
 - A packet in each selected queue departs (or serviced) from the network.

- Network interference graph G = (V, E) with *n* queues as nodes
 - $E = \{(i, j) : i \text{ and } j \text{ cannot transmit simultaneously} \}$.
 - A packet arrives at queue *i* with probability λ_i at time $t \in \mathbb{Z}_+$.
- Scheduling algorithm: at each time instance t ∈ Z₊
 - \circ Selects non-interfering queues (to transmit) i.e. an independent set of G.
 - A packet in each selected queue departs (or serviced) from the network.

- Network interference graph G = (V, E) with *n* queues as nodes
 - $E = \{(i,j) : i \text{ and } j \text{ cannot transmit simultaneously} \}$.
 - A packet arrives at queue *i* with probability λ_i at time $t \in \mathbb{Z}_+$.
- Scheduling algorithm: at each time instance t ∈ Z₊
 - \circ Selects non-interfering queues (to transmit) i.e. an independent set of G.
 - A packet in each selected queue departs (or serviced) from the network.

- Network interference graph G = (V, E) with *n* queues as nodes
 - $E = \{(i, j) : i \text{ and } j \text{ cannot transmit simultaneously} \}$.
 - A packet arrives at queue *i* with probability λ_i at time $t \in \mathbb{Z}_+$.
- Scheduling algorithm: at each time instance t ∈ Z₊
 - \circ Selects non-interfering queues (to transmit) i.e. an independent set of G.
 - A packet in each selected queue departs (or serviced) from the network.

- Network interference graph G = (V, E) with *n* queues as nodes
 - $E = \{(i, j) : i \text{ and } j \text{ cannot transmit simultaneously} \}$.
 - A packet arrives at queue *i* with probability λ_i at time $t \in \mathbb{Z}_+$.
- Scheduling algorithm: at each time instance t ∈ Z₊
 - \circ Selects non-interfering queues (to transmit) i.e. an independent set of G.
 - A packet in each selected queue departs (or serviced) from the network.

- Network interference graph G = (V, E) with *n* queues as nodes
 - $E = \{(i, j) : i \text{ and } j \text{ cannot transmit simultaneously} \}$.
 - A packet arrives at queue *i* with probability λ_i at time $t \in \mathbb{Z}_+$.
- Scheduling algorithm: at each time instance t ∈ Z₊
 - \circ Selects non-interfering queues (to transmit) i.e. an independent set of G.
 - A packet in each selected queue departs (or serviced) from the network.
 - Our primary interest is to design a distributed algorithm minimizing cooperations.

Queueing Evolution

Notations

- $\mathbf{Q}(t) = [Q_i(t)]$ be the queue-sizes at time t.
- $\sigma_i(t) = \begin{cases} 1 & \text{if queue } i \text{ is transmitting (successfully) at time } t \\ 0 & \text{otherwise} \end{cases}$.
 - $\circ \sigma(t) = [\sigma_i(t)] \in \mathfrak{I}(G) :=$ Collection of all independent sets in G.

$$Q_i(t+1) = Q_i(t) + A_i(t) - \sigma_i(t) \cdot \mathbb{1}_{\{Q_i(t) > 0\}}$$

Performance Metric

No common notion in the literature

- Want queues to be kept small under large arrival rate $\lambda = [\lambda_i]$.
- In our model, $\lambda \in \operatorname{conv}(\mathfrak{I}(G))$.
 - Otherwise, queues should grow linearly over time.

Performance Metric

No common notion in the literature

- Want queues to be kept small under large arrival rate $\lambda = [\lambda_i]$.
- In our model, $\lambda \in \operatorname{conv}(\mathfrak{I}(G))$.
 - Otherwise, queues should grow linearly over time.

Scheduling algorithm is

- Positive recurrent if Markov chain $(\mathbf{Q}(t), \sigma(t))$ is pos. rec. for $\lambda \in \operatorname{conv}^{\circ}(\mathcal{I}(G))$.
 - Hence, queues remain finite with probability 1.
- Rate stable if $\mathbf{Q}(t)/t \to 0$ with probability 1 for $\lambda \in \operatorname{conv}^{\circ}(\mathfrak{I}(G))$.

Prior MAC Algorithms

Two Recent Research Directions

- I. Starting from [Jiang and Walrand 08]
 - $\circ~$ Based on arrival-rate information λ
- II. Starting from [Rajagopalan, Shah and Shin 09]
 - Based on queueing information $\mathbf{Q}(t)$

Each individual queue *i* makes her own decision as

Each individual queue i makes her own decision as

- The transmission of *i* is successful at time *t* i.e. $\sigma_i(t) = 1$ if
 - \circ *i* attempts to transmit at time *t* &
 - \circ no collision i.e. no (interfering) neighbors of *i* attempts to transmit at time *t*

Each individual queue *i* makes her own decision as

- The transmission of *i* is successful at time *t* i.e. $\sigma_i(t) = 1$ if
 - *i* attempts to transmit at time *t* &
 - no collision i.e. no (interfering) neighbors of i attempts to transmit at time t
- Known to be positive recurrent if
 - $p_i(t)$ is some polynomial of # prior consecutive collisions of i & i
 - interference graph G is complete [Hastad et al. 96], bipartite [Goldberg et al. 99].

Each individual queue *i* makes her own decision as

- The transmission of *i* is successful at time *t* i.e. $\sigma_i(t) = 1$ if
 - *i* attempts to transmit at time *t* &
 - \circ no collision i.e. no (interfering) neighbors of *i* attempts to transmit at time *t*
- Known to be positive recurrent if
 - $p_i(t)$ is some polynomial of # prior consecutive collisions of i & i
 - interference graph G is complete [Hastad et al. 96], bipartite [Goldberg et al. 99].
- Open question: How about general G?

Each individual queue *i* makes her own decision as

- The transmission of *i* is successful at time *t* i.e. $\sigma_i(t) = 1$ if
 - *i* attempts to transmit at time *t* &
 - no collision i.e. no (interfering) neighbors of i attempts to transmit at time t
- Known to be positive recurrent if
 - $p_i(t)$ is some polynomial of # prior consecutive collisions of i & i
 - interference graph G is complete [Hastad et al. 96], bipartite [Goldberg et al. 99].
- Open question: How about general G?
 - Next: some positive answers utilizing additional local information

MAC Algorithm using Carrier Sensing (CSMA)

Each individual queue *i* makes her own decision as

Attempt to transmit with probability $p_i(t)$ at time t.

 $p_i(t) = \begin{cases} 0 & ext{if some (interfering) neighbor attempted at time } t-1 \\ 1 - rac{1}{W_i(t)} & ext{else if } i ext{ attempted (to transmit) at time } t-1 \\ rac{1}{2} & ext{otherwise} \end{cases}$

- Carrier Sensing Information
 - Knowledge whether neighbors attempted to transmit (at the previous time-slot).

MAC Algorithm using Carrier Sensing (CSMA)

Each individual queue *i* makes her own decision as

Attempt to transmit with probability $p_i(t)$ at time t.

 $p_i(t) = \begin{cases} 0 & ext{if some (interfering) neighbor attempted at time } t-1 \\ 1 - rac{1}{W_i(t)} & ext{else if } i ext{ attempted (to transmit) at time } t-1 \\ rac{1}{2} & ext{otherwise} \end{cases}$

• Carrier Sensing Information

• Knowledge whether neighbors attempted to transmit (at the previous time-slot).

- Next: Two known successful designs of $W_i(t)$
 - $\circ~$ Using arrival-rate information λ [Jiang and Walrand 08]
 - Using queueing information $\mathbf{Q}(t)$ [Rajagopalan, Shah and Shin 09]

Theorem (Jiang and Walrand 08) For given arrival rate $\lambda \in conv^{\circ}(\mathfrak{I}(G))$, there exists $\mathbf{W}^* = \mathbf{W}^*(\lambda, G)$ such that

CSMA using $W_i(t) = W_i^*$ is rate stable.

Theorem (Jiang and Walrand 08) For given arrival rate $\lambda \in conv^{\circ}(\mathfrak{I}(G))$, there exists $\mathbf{W}^* = \mathbf{W}^*(\lambda, G)$ such that

CSMA using $W_i(t) = W_i^*$ is rate stable.

- To find W_i^* at node *i* (in a distributed manner, without message-passing)
 - Require appropriate updating rule/period of $W_i(t)$
 - So that $W_i(t)$ converges to W_i^* .

Theorem (Jiang and Walrand 08) For given arrival rate $\lambda \in conv^{\circ}(\mathfrak{I}(G))$, there exists $\mathbf{W}^* = \mathbf{W}^*(\lambda, G)$ such that

CSMA using $W_i(t) = W_i^*$ is rate stable.

- To find W_i^* at node *i* (in a distributed manner, without message-passing)
 - Require appropriate updating rule/period of $W_i(t)$
 - So that $W_i(t)$ converges to W_i^* .
 - Design such an updating period for rate stability.
 [Jiang, Shah, Shin and Walrand 09]

Theorem (Jiang and Walrand 08) For given arrival rate $\lambda \in conv^{\circ}(\mathfrak{I}(G))$, there exists $\mathbf{W}^* = \mathbf{W}^*(\lambda, G)$ such that

CSMA using $W_i(t) = W_i^*$ is rate stable.

• To find W_i^* at node *i* (in a distributed manner, without message-passing)

- Require appropriate updating rule/period of $W_i(t)$
- So that $W_i(t)$ converges to W_i^* .
- Design such an updating period for rate stability.
 [Jiang, Shah, Shin and Walrand 09]
- However, should assume that λ is possible to estimate.
 - $\circ~$ In practice, λ is difficult to collect/know in many applications.

Theorem (Jiang and Walrand 08) For given arrival rate $\lambda \in conv^{\circ}(\mathfrak{I}(G))$, there exists $\mathbf{W}^* = \mathbf{W}^*(\lambda, G)$ such that

CSMA using $W_i(t) = W_i^*$ is rate stable.

• To find W_i^* at node *i* (in a distributed manner, without message-passing)

- Require appropriate updating rule/period of $W_i(t)$
- So that $W_i(t)$ converges to W_i^* .
- Design such an updating period for rate stability.
 [Jiang, Shah, Shin and Walrand 09]
- However, should assume that λ is possible to estimate.
 - $\circ~$ In practice, λ is difficult to collect/know in many applications.
- Question: Possible to design **W**(t) using queueing information?

Theorem (Shah and Shin 10)

CSMA is positive recurrent if

$$W_i(t) = \max\left\{\log Q_i(t) , e^{\sqrt{\log \log Q_{\max}(t)}}
ight\},$$

Theorem (Shah and Shin 10)

CSMA is positive recurrent if

$$W_i(t) = \max\left\{\log Q_i(t) , e^{\sqrt{\log \log Q_{\max}(t)}}
ight\},$$

where $Q_{\max}(t) = \max_i Q_i(t)$.

• Myopic & robust against the arrival assumption.

Theorem (Shah and Shin 10)

CSMA is positive recurrent if

$$W_i(t) = \max\left\{\log Q_i(t) \ , \ e^{\sqrt{\log \log Q_{\max}(t)}} \
ight\},$$

- Myopic & robust against the arrival assumption.
- To compute $W_i(t)$, it requires to know global information $Q_{\max}(t)$.

Theorem (Shah and Shin 10)

CSMA is positive recurrent if

$$W_i(t) = \max\left\{\log Q_i(t), e^{\sqrt{\log \max_{j \in \mathcal{N}(i)} W_j(t-1)}}
ight\}$$

- Myopic & robust against the arrival assumption.
- To compute $W_i(t)$, it requires to know global information $Q_{\max}(t)$.

Theorem (Shah and Shin 10)

CSMA is positive recurrent if

$$W_i(t) = \max\left\{\log Q_i(t), e^{\sqrt{\log \max_{j \in \mathcal{N}(i)} W_j(t-1)}}
ight\}$$

- Myopic & robust against the arrival assumption.
- To compute $W_i(t)$, it requires to know global information $Q_{\max}(t)$.
 - Still require some explicit message passing (minimal though)

Theorem (Shah and Shin 10)

CSMA is positive recurrent if

$$W_i(t) = \max\left\{\log Q_i(t), e^{\sqrt{\log \max_{j \in \mathcal{N}(i)} W_j(t-1)}}
ight\}$$

where $Q_{\max}(t) = \max_i Q_i(t)$.

- Myopic & robust against the arrival assumption.
- To compute $W_i(t)$, it requires to know global information $Q_{\max}(t)$.
 - Still require some explicit message passing (minimal though)

Main Result of This Talk

• We revise the algorithm so that it does not require such message passing.

Theorem (Shah and Shin 10)

CSMA is positive recurrent if

$$W_i(t) = \max\left\{\log Q_i(t), e^{\sqrt{\log \max_{j \in \mathcal{N}(i)} W_j(t-1)}}
ight\}$$

where $Q_{\max}(t) = \max_i Q_i(t)$.

- Myopic & robust against the arrival assumption.
- To compute $W_i(t)$, it requires to know global information $Q_{\max}(t)$.
 - Still require some explicit message passing (minimal though)

Main Result of This Talk

- We revise the algorithm so that it does not require such message passing.
 - Motivation : Possible to learn $W_j(t)$ using carrier sensing without message passing?

How to learn weights of neighbors without message passing?

• Equivalent question: how to learn access probabilities of (interfering) neighbors?

• since recall access probability $p_i(t) = 1 - \frac{1}{W_i(t)}$.

How to learn weights of neighbors without message passing?

- Equivalent question: how to learn access probabilities of (interfering) neighbors?
 - since recall access probability $p_i(t) = 1 \frac{1}{W_i(t)}$.
- May be possible using carrier sensing information since

How to learn weights of neighbors without message passing?

- Equivalent question: how to learn access probabilities of (interfering) neighbors?
 - since recall access probability $p_i(t) = 1 \frac{1}{W_i(t)}$.
- May be possible using carrier sensing information since

- Non-trivial online learning problem since
 - $W_j(t)$ is changing

How to learn weights of neighbors without message passing?

- Equivalent question: how to learn access probabilities of (interfering) neighbors?
 - since recall access probability $p_i(t) = 1 \frac{1}{W_i(t)}$.
- May be possible using carrier sensing information since

- Non-trivial online learning problem since
 - $W_j(t)$ is changing
 - $\circ~~\#$ samples is affected by many random environments

How to learn weights of neighbors without message passing?

- Equivalent question: how to learn access probabilities of (interfering) neighbors?
 - since recall access probability $p_i(t) = 1 \frac{1}{W_i(t)}$.
- May be possible using carrier sensing information since

- Non-trivial online learning problem since
 - $W_j(t)$ is changing
 - $\circ~~\#$ samples is affected by many random environments
 - o how much error is allowed for positive recurrence?

Recall the original positive recurrent algorithm

• When the medium is free, each queue *i* attempts to transmit with probability

$$1 - rac{1}{W_i(t)} = 1 - rac{1}{\max\left\{\log Q_i(t) \,, \, e^{\sqrt{\log\max_{j \in \mathcal{N}(i)} W_j(t-1)}}
ight\}}$$

Revise the original positive recurrent algorithm using estimator L_i^i

• When the medium is free, each queue *i* attempts to transmit with probability

$$1 - \frac{1}{W_i(t)} = 1 - \frac{1}{\max\left\{\log Q_i(t), e^{\sqrt{\log \max_{j \in \mathcal{N}(i)} L_j^j(t)}}\right\}}$$

Revise the original positive recurrent algorithm using estimator L_i^i

• When the medium is free, each queue *i* attempts to transmit with probability

$$1 - \frac{1}{W_i(t)} = 1 - \frac{1}{\max\left\{\log Q_i(t), e^{\sqrt{\log \max_{j \in \mathcal{N}(i)} L_j^j(t)}}\right\}}$$

In addition, each queue i maintains $L_j^i(t)$, $S_j^i(t)$ for $j \in \mathbb{N}(i)$: for some function g

• If
$$\sigma_j(t-1) = 1$$
, $S_i^j(t) = S_i^j(t-1) + 1$.

• Else if
$$S^i_j(t-1)>0,~S^i_j(t)=0$$
 and

$$L^i_j(t) = \begin{cases} L^i_j(t-1) + \Delta & \text{if } S^i_j(t-1) \geq L^i_j(t-1) \\ L^i_j(t-1) - \Delta & \text{otherwise} \end{cases}, \quad \text{where } \Delta = \frac{1}{g(L^i_j(t-1))}.$$

* $L_j^i(t)$ and $S_j^i(t)$ are long-term and temporal estimators of $W_j(t)$ at queue *i*, respectively.

In addition, each queue *i* maintains $L_j^i(t)$, $S_j^i(t)$ for $j \in \mathcal{N}(i)$: for some function g

• If
$$\sigma_j(t-1) = 1$$
, $S_j^i(t) = S_j^i(t-1) + 1$.
• Else if $S_j^i(t-1) > 0$, $S_j^i(t) = 0$ and
 $L_j^i(t) = \begin{cases} L_j^i(t-1) + \Delta & \text{if } S_j^i(t-1) \ge L_j^i(t-1) \\ L_j^i(t-1) - \Delta & \text{otherwise} \end{cases}$, where $\Delta = \frac{1}{g(L_j^i(t-1))}$.

* $L_j^i(t)$ and $S_j^i(t)$ are long-term and temporal estimators of $W_j(t)$ at queue *i*, respectively.

Theorem (Shah, Shin and Tetali)

The network Markov chain induced by the revised algorithm is positive recurrent if

 $\lambda \in conv^{o}(\mathfrak{I}(G))$ and $g(x) = e^{e^{\log^{1/4} x}}.$

Theorem (Shah, Shin and Tetali)

The network Markov chain induced by the revised algorithm is positive recurrent if

 $\lambda \in conv^{o}(\mathfrak{I}(G))$ and $g(x) = e^{e^{\log^{1/4} x}}.$

• In the proof, we use the following Lyapunov function

$$F(t) = \sum_{i} h(Q_i(t)) + \sum_{i,j} g(L_j^i(t))^2 + \sum_{i,j} g(S_j^i(t)),$$

where $h = \int \log \log$.

Theorem (Shah, Shin and Tetali)

The network Markov chain induced by the revised algorithm is positive recurrent if

 $\lambda \in conv^{o}(\mathfrak{I}(G))$ and $g(x) = e^{e^{\log^{1/4} x}}.$

• In the proof, we use the following Lyapunov function

$$F(t) = \sum_{i} h(Q_i(t)) + \sum_{i,j} g(L_j^i(t))^2 + \sum_{i,j} g(S_j^i(t)),$$

where $h = \int \log \log$.

- Main additional techniques
 - Careful martingale arguments to control L_i^i .

Theorem (Shah, Shin and Tetali)

The network Markov chain induced by the revised algorithm is positive recurrent if

$$\lambda \in conv^{o}(\mathfrak{I}(G))$$
 and $g(x) = e^{e^{\log^{1/4} x}}$.

• In the proof, we use the following Lyapunov function

$$F(t) = \sum_{i} h(Q_i(t)) + \sum_{i,j} g(L_j^i(t))^2 + \sum_{i,j} g(S_j^i(t)),$$

where $h = \int \log \log$.

Main additional techniques

- Careful martingale arguments to control L_i^i .
- 'Hitting time' of Markov chains.

Summary & Wide-applicability

In summary

- We present a myopic, positive recurrent MAC algorithm, where individual queues
 - Use only local & primitive (carrier sensing) information
 - Performs few logical operations per each time.

Summary & Wide-applicability

In summary

- We present a myopic, positive recurrent MAC algorithm, where individual queues
 - Use only local & primitive (carrier sensing) information
 - Performs few logical operations per each time.
 - It essentially simulates the max weight algorithm [Tassiulas and Ephremides 92].

Summary & Wide-applicability

In summary

• We present a myopic, positive recurrent MAC algorithm, where individual queues

- Use only local & primitive (carrier sensing) information
- Performs few logical operations per each time.
- It essentially simulates the max weight algorithm [Tassiulas and Ephremides 92].

Our framework to design such algorithms has wide-applicability

• In the context of stochastic processing networks [Harrison 00].

High speed switch scheduling (Matching constraints)

Scheduling in optical core networks (Multi-commodity-type constraints)