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Constraints

• Interfering nodes can not transmit simultaneously.

• Nodes have only “local” information

◦ Is any interfering neighbor transmitting ?
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Question

• Which nodes should transmit simultaneously using local information.

• So that performance is not compromised.



Medium Access Control (MAC) in Wireless Network

Network Interference Graph

Goal

• Design an ‘distributed’, ‘efficient’ scheduling algorithm of ‘high performance’

◦ Decides transmission of non-interfering nodes
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Model

time t=3

• Network interference graph G = (V ,E ) with n queues as nodes

◦ E = {(i , j) : i and j cannot transmit simultaneously} .

◦ A packet arrives at queue i with probability λi at time t ∈ Z+.

• Scheduling algorithm: at each time instance t ∈ Z+

◦ Selects non-interfering queues (to transmit) i.e. an independent set of G .

◦ A packet in each selected queue departs (or serviced) from the network.

◦ Our primary interest is to design a distributed algorithm minimizing cooperations.



Queueing Evolution

Notations

• Q(t) = [Qi (t)] be the queue-sizes at time t.

• σi (t) =

{

1 if queue i is transmitting (successfully) at time t

0 otherwise
.

◦ σ(t) = [σi (t)] ∈ I(G) := Collection of all independent sets in G .

Qi (t + 1) = Qi (t) + Ai (t)− σi (t) · 1{Qi (t)>0}

• A(t) = [Ai (t)] be the number of arrival packets at queue i at time t.

◦ E[Ai (t)] = λi .
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• Want queues to be kept small under large arrival rate λ = [λi ].

• In our model, λ ∈ conv(I(G )).
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Performance Metric

No common notion in the literature

• Want queues to be kept small under large arrival rate λ = [λi ].

• In our model, λ ∈ conv(I(G )).

◦ Otherwise, queues should grow linearly over time.

Scheduling algorithm is

• Positive recurrent if Markov chain (Q(t),σ(t)) is pos. rec. for λ ∈ convo(I(G )).

◦ Hence, queues remain finite with probability 1.

• Rate stable if Q(t)/t → 0 with probability 1 for λ ∈ convo(I(G )).



Prior MAC Algorithms

Two Recent Research Directions

I. Starting from [Jiang and Walrand 08]

◦ Based on arrival-rate information λ

II. Starting from [Rajagopalan, Shah and Shin 09]

◦ Based on queueing information Q(t)
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Each individual queue i makes her own decision as

Attempt to transmit with probability pi (t) at time t.

• The transmission of i is successful at time t i.e. σi (t) = 1 if

◦ i attempts to transmit at time t &

◦ no collision i.e. no (interfering) neighbors of i attempts to transmit at time t

• Known to be positive recurrent if

◦ pi (t) is some polynomial of # prior consecutive collisions of i &

◦ interference graph G is complete [Hastad et al. 96], bipartite [Goldberg et al. 99].

• Open question: How about general G?

◦ Next: some positive answers utilizing additional local information



MAC Algorithm using Carrier Sensing (CSMA)

Each individual queue i makes her own decision as

Attempt to transmit with probability pi (t) at time t.

pi (t) =











0 if some (interfering) neighbor attempted at time t − 1

1− 1
Wi (t)

else if i attempted (to transmit) at time t − 1
1
2

otherwise

.

• Carrier Sensing Information

◦ Knowledge whether neighbors attempted to transmit (at the previous time-slot).
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Each individual queue i makes her own decision as

Attempt to transmit with probability pi (t) at time t.

pi (t) =











0 if some (interfering) neighbor attempted at time t − 1

1− 1
Wi (t)

else if i attempted (to transmit) at time t − 1
1
2

otherwise

.

• Carrier Sensing Information

◦ Knowledge whether neighbors attempted to transmit (at the previous time-slot).

• Next: Two known successful designs of Wi (t)

◦ Using arrival-rate information λ [Jiang and Walrand 08]

◦ Using queueing information Q(t) [Rajagopalan, Shah and Shin 09]
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CSMA I using Arrival-rate Information

Theorem (Jiang and Walrand 08)
For given arrival rate λ ∈ convo(I(G )), there exists W∗ = W

∗(λ,G ) such that

CSMA using Wi (t) = W ∗
i is rate stable.

• To find W ∗
i at node i (in a distributed manner, without message-passing)

◦ Require appropriate updating rule/period of Wi (t)

◦ So that Wi (t) converges to W ∗
i .

◦ Design such an updating period for rate stability.

[Jiang, Shah, Shin and Walrand 09]

• However, should assume that λ is possible to estimate.

◦ In practice, λ is difficult to collect/know in many applications.

• Question: Possible to design W(t) using queueing information?
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CSMA II using Queueing Information

Theorem (Shah and Shin 10)
CSMA is positive recurrent if

Wi (t) = max
{

logQi (t) , e
√

log maxj∈N(i) Wj (t−1)
}

,

where Qmax(t) = maxi Qi (t).

• Myopic & robust against the arrival assumption.

• To compute Wi (t), it requires to know global information Qmax(t).

◦ Still require some explicit message passing (minimal though)

Main Result of This Talk

• We revise the algorithm so that it does not require such message passing.

◦ Motivation : Possible to learn Wj (t) using carrier sensing without message passing?
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Main Issue: Online Learning Problem

How to learn weights of neighbors without message passing?

• Equivalent question: how to learn access probabilities of (interfering) neighbors?

◦ since recall access probability pi (t) = 1− 1
Wi (t)

.

• May be possible using carrier sensing information since

Access probability ≈ How often attempt ≈ Carrier Sensing

• Non-trivial online learning problem since

◦ Wj (t) is changing

◦ # samples is affected by many random environments

◦ how much error is allowed for positive recurrence?
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Revise the original positive recurrent algorithm using estimator Li
j

• When the medium is free, each queue i attempts to transmit with probability

1−
1

Wi (t)
= 1−

1

max

{

logQi (t) , e

√

log maxj∈N(i) L
i
j
(t)

} .

In addition, each queue i maintains Li
j(t), S

i
j (t) for j ∈ N(i): for some function g

• If σj (t − 1) = 1, S i
j (t) = S i

j (t − 1) + 1.

• Else if S i
j (t − 1) > 0, S i

j (t) = 0 and

Lij (t) =

{

Lij (t − 1) + ∆ if S i
j (t − 1) ≥ Lij (t − 1)

Lij (t − 1)−∆ otherwise
, where ∆ =

1

g(Li
j
(t − 1))

.

⋆ Lij (t) and S i
j (t) are long-term and temporal estimators of Wj (t) at queue i , respectively.
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New Algorithm: Positive Recurrence

Theorem (Shah, Shin and Tetali)
The network Markov chain induced by the revised algorithm is positive recurrent if

λ ∈ conv
o(I(G )) and g(x) = e

e log
1/4 x

.

• In the proof, we use the following Lyapunov function

F (t) =
∑

i

h(Qi (t)) +
∑

i,j

g(Li
j(t))

2 +
∑

i,j

g(S i
j (t)),

where h =
∫

log log.

• Main additional techniques

◦ Careful martingale arguments to control Lij .

◦ ‘Hitting time’ of Markov chains.
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Summary & Wide-applicability

In summary

• We present a myopic, positive recurrent MAC algorithm, where individual queues

◦ Use only local & primitive (carrier sensing) information

◦ Performs few logical operations per each time.

◦ It essentially simulates the max weight algorithm [Tassiulas and Ephremides 92].

Our framework to design such algorithms has wide-applicability

• In the context of stochastic processing networks [Harrison 00].

High speed switch scheduling

(Matching constraints)
Scheduling in optical core networks

(Multi-commodity-type constraints)


