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Introduction

Motivation

Recent interest in developing distributed algorithms for solving convex optimization
problems in multi-agent networked systems.

Motivated by resource allocation problems and net-
worked decision/data-processing problems among users
with heterogeneous performance objectives in wireless
networks.

Key feature of such problems is the decentralized
nature of information: Global objective is a
combination of each agent’s local objectives,
feasibility is given by the intersection of agents’
local constraints.

Algorithms designed for such systems should:

Rely on local information and involve simple computations.
Robust to dynamic changes in network topology (due to link or node
failures).
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Literature
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Introduction

This Talk

“Consensus-based" schemes assume agents exchange information with their
neighbors over an exogenous (fixed or time-varying) network topology

In many of the applications, network topology
configured endogenously as a function of the
agent states

Examples: Location optimization problems,
rendezvous problems, sensor coverage.

• Sensor coverage: The agents are mobile sensors. The actions are sensor locations. The global
objective is to maximize detection probabilities (Figure 2).

• Rendezvous/consensus: The agents are mobile platforms. The actions are geographic locations.
The global objective is for agents to collocate in an a priori unknown environment, possibly in
the presence of obstacles.

• Distributed routing: Agents are mobile vehicles. The actions are paths from sources to destina-
tion. The global objective is to minimize network traffic congestion.

• Ad hoc networking: The agents are mobile communication nodes. The actions are to form a
network structure. Global objectives include establishing connectivity while optimizing perfor-
mance specifications such as required power or communication hop lengths (Figure 3).
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Figure 2: Sensor coverage.

Figure 3: Network deployment.

These problems can be represented in game theoretic terms as
follows. Let P = {1, 2, ..., p} denote the set of agents; Ai denote
the set of actions for agent i; A = A1 × ... × Ap denote the set
of joint actions; and φ : A → R the global objective function to
be optimized over joint actions. In an iterative algorithm, agents
select actions, ai(t) over stages t = 1, 2, .... These actions may be
randomly generated according to probability distributions pi(t) ∈
∆[Ai], where pi(t) is the strategy of agent i at stage t. Let RAND[p]
denote a random realization according to distribution p. Then

ai(t) = RAND[pi(t)].

We wish to design algorithms so that a(t) represents a desir-
able global configuration (i.e., maximizes φ(a(t)) as t → ∞). To-
wards this end, we can endow each agent with a utility function
Ui(ai, a−i) : A → R. For engineered systems, utility functions
may reflect design choices, i.e., they are specified by a system plan-
ner. A (pure) Nash equilibrium is an action profile a∗ ∈ A such
that:

Ui(a
∗
i , a

∗
−i) ≥ Ui(a

′
i, a

∗
−i)

for all i ∈ P and a′i ∈ Ai. With utility functions specified, we are
now in the domain of game theoretic learning. A learning algo-
rithm specifies how pi(t) evolves, i.e.,

pi(t) = Fi(available information up to stage t)

for some learning algorithm function Fi(·).
In short, the distributed learning problem requires both design-

ing learning algorithms and specifying agent utility functions that
lead to desirable global behavior. The relevance of Nash equilib-
rium is that optimal global behavior can be designed to be a Nash
equilibrium of the induced game.

The following are important performance measures for a distributed learning approach:
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Distributed multi-agent optimization with state-dependent communication
[Lobel, Ozdaglar, Feijer 10]

The communication network varies as the location of mobile agents
changes in response to the objective they are trying to achieve.
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Model

Model

We consider a set of nodes (or agents)M = {1, . . . ,m}.
The goal of the agents is to cooperatively solve the problem

minimize
∑
i∈M

fi(x)

subject to x ∈
⋂

i∈M

Xi,

fi(x) : Rn → R is a convex function and Xi ⊂ Rn is a convex set known only to agent i.
State xi(k) represents agent i’s estimate of the solution at time k.
At each time k, agent i updates its estimate as

xi(k + 1) = PXi

∑
j∈M

aij(k)xj(k)− α(k)di(k)

 ,
where [aij(k)]j∈M is a weight vector, α(k) > 0 is a stepsize, and di(k) is a subgradient

of fi(x) at vi(k) =
∑m

j=1 aij(k)xj(k).
We assume that the subgradients of each fi are uniformly bounded, i.e., there exists some
L > 0 such that for every i ∈M and any x ∈ Rn, we have

‖d‖ ≤ L for all d ∈ ∂fi(x).
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Model

State-Dependent Communication

Consider a location optimization problem for mobile agents.

Agent i’s estimate xi(k) at time k is also its physical location.

The network topology is a (random) function of the agent states.
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Model

Network Communication Model

We define the communication matrix for the network at time k as
A(k) = [aij(k)]i,j∈M.

We assume that A(k) satisfies the following:

The communication matrix A(k) is doubly stochastic for all k ≥ 0 with
probability one.
There exists some γ > 0 such that ai,i(k) ≥ γ for all i ∈M and all k ≥ 0
with probability one.

We further assume that the probability of communication between two agents is
potentially small if their estimates are far apart: There exists some C > 0,
K > 0 and δ ∈ (0, 1) such that for all (i, j), all k ≥ 0 and all x ∈ Rm×n,

P(aij(k) ≥ γ|x(k) = x) ≥ min
{
δ,

K
‖xi − xj‖C

}
.
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Counterexample

Counterexample

Two agents solve a one dimensional minimization problem over X1 = X2 = [0,∞).

Agent objective functions given by f1(x) = 2x and f2(x) = −x.

Global objective function is f (x) = x and global optimum is x∗ = 0.

Let C > 1, α(k) = α > 0 and, for simplicity, assume x1(0) = 0.

For any k ≥ 0,

P(agents don’t communicate after k) =

∞∏
j=0

(
1−min

{
δ, (αj)−C

})
≥ ε > 0.

Consider all periods k immediately after the agents communicated.

By the Borel-Cantelli Lemma, limk→∞ x2(k) =∞ with probability 1

8



Counterexample

Counterexample

Two agents solve a one dimensional minimization problem over X1 = X2 = [0,∞).

Agent objective functions given by f1(x) = 2x and f2(x) = −x.

Global objective function is f (x) = x and global optimum is x∗ = 0.

Let C > 1, α(k) = α > 0 and, for simplicity, assume x1(0) = 0.

For any k ≥ 0,

P(agents don’t communicate after k) =

∞∏
j=0

(
1−min

{
δ, (αj)−C

})
≥ ε > 0.

Consider all periods k immediately after the agents communicated.

By the Borel-Cantelli Lemma, limk→∞ x2(k) =∞ with probability 1

8



Counterexample

Counterexample

Two agents solve a one dimensional minimization problem over X1 = X2 = [0,∞).

Agent objective functions given by f1(x) = 2x and f2(x) = −x.

Global objective function is f (x) = x and global optimum is x∗ = 0.

Let C > 1, α(k) = α > 0 and, for simplicity, assume x1(0) = 0.

For any k ≥ 0,

P(agents don’t communicate after k) =

∞∏
j=0

(
1−min

{
δ, (αj)−C

})
≥ ε > 0.

1 2 

x2(k) 

Period k 

Consider all periods k immediately after the agents communicated.

By the Borel-Cantelli Lemma, limk→∞ x2(k) =∞ with probability 1

8



Counterexample

Counterexample

Two agents solve a one dimensional minimization problem over X1 = X2 = [0,∞).

Agent objective functions given by f1(x) = 2x and f2(x) = −x.

Global objective function is f (x) = x and global optimum is x∗ = 0.

Let C > 1, α(k) = α > 0 and, for simplicity, assume x1(0) = 0.

For any k ≥ 0,

P(agents don’t communicate after k) =

∞∏
j=0

(
1−min

{
δ, (αj)−C

})
≥ ε > 0.

1 2 

x2(k)+1 

Period k+1 

Consider all periods k immediately after the agents communicated.

By the Borel-Cantelli Lemma, limk→∞ x2(k) =∞ with probability 1

8



Counterexample

Counterexample

Two agents solve a one dimensional minimization problem over X1 = X2 = [0,∞).

Agent objective functions given by f1(x) = 2x and f2(x) = −x.

Global objective function is f (x) = x and global optimum is x∗ = 0.

Let C > 1, α(k) = α > 0 and, for simplicity, assume x1(0) = 0.

For any k ≥ 0,

P(agents don’t communicate after k) =

∞∏
j=0

(
1−min

{
δ, (αj)−C

})
≥ ε > 0.

1 2 

x2(k)+2 

Period k+2 

Consider all periods k immediately after the agents communicated.

By the Borel-Cantelli Lemma, limk→∞ x2(k) =∞ with probability 1

8



Counterexample

Counterexample

Two agents solve a one dimensional minimization problem over X1 = X2 = [0,∞).

Agent objective functions given by f1(x) = 2x and f2(x) = −x.

Global objective function is f (x) = x and global optimum is x∗ = 0.

Let C > 1, α(k) = α > 0 and, for simplicity, assume x1(0) = 0.

For any k ≥ 0,

P(agents don’t communicate after k) =

∞∏
j=0

(
1−min

{
δ, (αj)−C

})
≥ ε > 0.

1 2 

x2(k)+2 

Period k+2 

Consider all periods k immediately after the agents communicated.

By the Borel-Cantelli Lemma, limk→∞ x2(k) =∞ with probability 1

8



Convergence Analysis

Analysis of Updates

We rewrite the estimate update as

xi(k + 1) = vi(k)− α(k)di(k) + ei(k),

ei(k) = PXi [vi(k)− α(k)di(k)]−
(

vi(k)− α(k)di(k)
)
,

where vi(k) =
∑m

j=1 aij(k)xj(k) and ei(k) is the projection error at time k.
For any s ≥ 0 and any k ≥ s, we define the transition matrices

Φ(k, s) = A(s)A(s + 1) · · ·A(k − 1)A(k) for all s and k with k ≥ s,

and relate the estimates at k and s with k > s,

xi(k + 1) =

m∑
j=1

[Φ(k, s)]ijxj(s) −
k∑

r=s+1

m∑
j=1

[Φ(k, r)]ijα(r − 1)dj(r − 1)− α(k)di(k)

+

k∑
r=s+1

m∑
j=1

[Φ(k, r)]ijej(r − 1) + ei(k).

We introduce the disagreement metric ρ,

ρ(k, s) = max
i,j∈M

∣∣∣∣[Φ(k, s)]ij −
1
m

∣∣∣∣ for all k ≥ s ≥ 0.
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Convergence Analysis

Analysis of Updates

Lemma
For all k ≥ 0,

max
i,h∈M

‖xi(k)− xh(k)‖ ≤ ∆ + 2mL
k−1∑
r=0

α(r) + 2
k−1∑
r=0

m∑
j=1

‖ej(r)‖,

where ∆ = 2m maxj∈M ‖xj(0)‖.

The lemma establishes a bound on the distance between the agents’ estimates.

If there exists some M > 0 such that ‖ei(k)‖ ≤ Mα(k) for all i and k ≥ 0, then
with probability 1, maxi,h∈M ‖xi(k)− xh(k)‖ ≤ ∆ + 2m(L + M)

∑k−1
r=0 α(r).

For all k, we define the reachable set

RM(k) =

{
x ∈ Rm×n | max

i,h∈M
‖xi − xh‖ ≤ ∆ + 2m(L + M)

k−1∑
r=0

α(r)

}
.
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Convergence Analysis

Propagation of Information

We next construct an even in which edges among the agents are activated sequentially
over time, so that information propagates from every agent to every other agent.

To define this event, we fix a node w ∈M and consider two directed spanning trees
rooted at w with a specific order.

Let G(k) denote the event in which each edge in the spanning trees Tin,w and Tout,w are
activated sequentially following time k in this order.

If the event G(k) occurs, then information from every agent reaches every other agent by
period k + 2(m− 1).

Implies a contraction in the disagreement metric ρ(k, s).
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Convergence Analysis

Propagation of Information

Lemma
Assume that there exists some M > 0 such that ‖ei(k)‖ ≤ Mα(k) for all i and k ≥ 0.
For all k ≥ s and any x ∈ RM(s),

P(G(k)|x(s) = x) ≥ min

{
δ,

1

(∆ + 2m(L + M)
∑k+2m−3

r=1 α(r))C

}2(m−1)

Lemma
For any k > s > 0, let t be a positive integer such that s < s1 < s2 < · · · < st < k
and si+1 − si ≥ 2(m− 1) for all i = 1, . . . , t− 1. Suppose that events G(si) occur for
each i = 1, . . . , t. Then,

ρ(k, s) ≤ 2
(

1 +
1

γ2(m−1)

)(
1− γ2(m−1)

)t
.

12



Convergence Analysis

Contraction Bound

Assumption
The stepsize sequence {α(k)}k∈N satisfies

lim
k→∞

k logp(k)α(k) = 0 for all p < 1.

Example: α(k) = 1
k log(k) (satisfies:

∑∞
k=0 α(k) =∞,

∑∞
k=0 α

2(k) <∞) .

Proposition
Assume that there exists some M > 0 such that ‖ei(k)‖ ≤ Mα(k) for all i ∈M and k ∈ N.
Then, there exists a scalar µ > 0, an increasing function β(s) : N→ R+ and a function
S(q) : N→ N such that

β(s) ≤ sq for all q > 0 and all s ≥ S(q) (1)

and E[ρ(k, s)|x(s) = x] ≤ β(s)e−µ
√

k−s for all k ≥ s ≥ 0, x ∈ RM(s).

A time-nonhomogeneous contraction bound.
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Convergence Analysis

Agent Disagreements

To measure the agent disagreements ‖xi(k)− xj(k)‖, we consider their average and
measure disagreement with respect to this average:

y(k) =
1
m

m∑
j=1

xj(k) for all k.

We have

y(k + 1) = y(k)− α(k)

m

m∑
i=1

di(k) +
1
m

m∑
i=1

ei(k).

Lemma
For all i and k ≥ 0, we have

‖xi(k)− y(k)‖ ≤ mρ(k − 1, 0)
m∑

j=1

‖xj(0)‖+ mL
k−2∑
r=0

ρ(k − 1, r + 1)α(r) + 2α(k − 1)L

+

k−2∑
r=0

ρ(k − 1, r + 1)

m∑
j=1

‖ej(r)‖+ ‖ei(k − 1)‖+
1
m

m∑
j=1

‖ej(k − 1)‖.
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Convergence Analysis

Analysis of the Distributed Subgradient Method

Assumption: Constraint set Xi = X for all i.

Lemma
For all i and k,

‖ei(k)‖ ≤ 2Lα(k)

Relies on nonexpansiveness of projection.

The state x(k) is in the reachable set R2L(k) with probability one.

Simplifies the preceding bound:

‖xi(k)− y(k)‖ ≤ mρ(k − 1, 0)
∑
j∈N
‖xj(0)‖+

3mL
k−2∑
r=0

ρ(k − 1, r + 1)α(r) + 6α(k − 1)L
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Convergence Analysis

Taking Expectations

Using the contraction bound, we have

E

[
k−2∑
r=0

ρ(k − 1, r + 1)α(r)

]
≤

k−2∑
r=0

β(r + 1)eµ
√

k−r−2α(r)

Using the Stepsize Assumption,

lim
k→∞

k−2∑
r=0

β(r + 1)eµ
√

k−r−2α(r) = 0

Proposition
For all i, we have

lim
k→∞

E[‖xi(k)− y(k)‖] = 0, and

lim inf
k→∞

‖xi(k)− y(k)‖ = 0 with probability one.
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Convergence Analysis

Convergence

Using supermartingale convergence results, we obtain the following:

Proposition
For all i, we have:

(a)
∑∞

k=2 α(k)‖xi(k)− y(k)‖ <∞ with probability one.

(b) limk→∞ ‖xi(k)− y(k)‖ = 0 with probability one.

Theorem
There exists an optimal solution x∗ ∈ X∗ such that for all i

lim
k→∞

xi(k) = x∗ with probability one.
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Convergence Analysis

When the Constraint Sets Xi are Different

Assumption: The constraint sets Xi are compact.

Lemma
Assume that the stepsize sequence satisfies α(k)→ 0 as k goes to infinity. The
projection errors ei(k) converge to zero as k→∞, i.e.,

lim
k→∞

‖ei(k)‖ = 0 for all i.

Theorem
Assume that the stepsize sequence satisfies

∑
k α(k) =∞ and

∑
k α

2(k) <∞. Then,
there exists an optimal solution x∗ ∈ X∗ such that for all i

lim
k→∞

xi(k) = x∗ with probability one.
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Conclusions

Conclusions

We presented distributed algorithms for solving convex optimization problems
over networks.

We studied a projected multi-agent subgradient algorithm under state-dependent
communication among networked agents.

We showed the iterates with constant stepsize may diverge.
We proposed a method based on fast diminishing stepsizes and showed
convergence using a time non-homogeneous contraction bound.

Future Directions:

Network effects.
Second-order methods for general multi-agent optimization problems.
Primal-dual methods for global constraints.
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