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Motivation

Recent interest in developing distributed algorithms for solving convex optimization
problems in multi-agent networked systems.

Motivated by resource allocation problems and net-
worked decision/data-processing problems among users
with heterogeneous performance objectives in wireless
networks.

~_
@ Key feature of such problems is the decentralized / \
nature of information: Global objective is a

combination of each agent’s local objectives, \ /
feasibility is given by the intersection of agents’ TN

local constraints.

@ Algorithms designed for such systems should:

o Rely on local information and involve simple computations.
o Robust to dynamic changes in network topology (due to link or node
failures).



Introduction

Literature

@ Decomposition methods: Dual and primal-dual subgradient algorithms.

@ Consensus-based schemes:

e Parallel computation and optimization among different processors.

o Tsitsiklis (84), Bertsekas and Tsitsiklis (95)

o Consensus and cooperative control.

o Jadbabaie et al. (03), Olfati-Saber and Murray (04), Boyd er al. (05),
Olshevsky and Tsitsiklis (07), Tahbaz-Salehi, Jadbabaie (08), Fagnani,
Zampieri (09)

e Multi-agent optimization.
@ Deterministic communication models: Nedic, Ozdaglar (07), Nedic,

Ozdaglar, Parrilo (08), Nedic, Olshevsky, Ozdaglar, Tsitsiklis (09),Zhu,
Martinez (10)

@ Random communication models: Lobel, Ozdaglar (09), Baras and Matei
(10), Agarwal, Duchi, Wainwright (10)

o Incremental subgradient methods: Ram, Nedic, Veeravalli (09), Johansson,
Rabi, Johansson (09)



This Talk

@ “Consensus-based” schemes assume agents exchange information with their
neighbors over an exogenous (fixed or time-varying) network topology

o In many of the applications, network topology
configured endogenously as a function of the
agent states

o Examples: Location optimization problems,
rendezvous problems, sensor coverage.

@ Distributed multi-agent optimization with state-dependent communication
[Lobel, Ozdaglar, Feijer 10]

e The communication network varies as the location of mobile agents
changes in response to the objective they are trying to achieve.



Model

@ We consider a set of nodes (or agents) M = {1,...,m}.
@ The goal of the agents is to cooperatively solve the problem

minimize Zﬁ(x)

iem
subject to x € ﬂ X,
ieM
fi(x) : R" — Ris a convex function and X; C R" is a convex set known only to agent i.

@ State x;(k) represents agent i’s estimate of the solution at time .
@ Ateach time k, agent i updates its estimate as

xi(k+1) =Py, | Y aglk)x(k) — a(k)di(k) |

JEM

where [a;j(k)]jem is a weight vector, a(k) > O is a stepsize, and d;(k) is a subgradient
of fi(x) atvi(k) = 3712, ai(k)x;(k).

@ We assume that the subgradients of each f; are uniformly bounded, i.e., there exists some
L > 0 such that for every i € M and any x € R", we have

ld]] <L  foralld € dfi(x).



State-Dependent Communication

@ Consider a location optimization problem for mobile agents.

o Agent i’s estimate x;(k) at time k is also its physical location.
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State-Dependent Communication

@ Consider a location optimization problem for mobile agents.

o Agent i’s estimate x;(k) at time k is also its physical location.

xy(k) = (1,5)

)) x(k) = (10,3)
( : ) D
@xz(k) =(3,1)

@ xy(k) = (4,-1)

@ The network topology is a (random) function of the agent states.



Network Communication Model

@ We define the communication matrix for the network at time k as
A(k) = [ay(k)]ijem-
@ We assume that A(k) satisfies the following:

o The communication matrix A(k) is doubly stochastic for all k > 0 with
probability one.

o There exists some y > 0 such that a; ;(k) > ~ foralli € M and allk > 0
with probability one.

@ We further assume that the probability of communication between two agents is
potentially small if their estimates are far apart: There exists some C > 0,
K > 0and 0 € (0, 1) such that for all (,j), all k > 0 and all ¥ € R"*",

Play) = ) =) 2 min {0, = |

0y T=——
% = %11



Counterexample

Counterexample

@ Two agents solve a one dimensional minimization problem over X; = X> = [0, 00).
@ Agent objective functions given by fi (x) = 2x and f>(x) = —x.
@ Global objective function is f(x) = x and global optimum is x* = 0.

@ Let C > 1, a(k) = o > 0 and, for simplicity, assume x; (0) = 0.
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l [ [ [ [ [ |
X, (k)+2

@ Consider all periods k immediately after the agents communicated.

@ By the Borel-Cantelli Lemma, lim;—o x2(k) = oo with probability 1



Convergence Analysis

Analysis of Updates

@ We rewrite the estimate update as
x(k+1) = vi(k) — a(k)di(k) + ei(k),
al) = Pylik) — o (k)] - (w0 — oK),
where vi(k) = 37| a;(k)x;(k) and e;(k) is the projection error at time k.
@ For any s > 0 and any k > s, we define the transition matrices
D(k,s) =A(s)A(s+1)---A(k — 1)A(k) for all s and k with k > s,

and relate the estimates at k and s with k > s,

m

wlk+1) =Y [@ks)xi(s) — D Y (@K Njalr — D)di(r — 1) — a(k)di(k)

Jj=1 r=s+1 j=l1

+ Z Z[(I) (k, r)]gej(r — 1) + ei(k).

r=s+1 j=1

@ We introduce the disagreement metric p,

k.s) =
plk,s) = max

[®(k,s)]; — l' forallk > s> 0.
m



Convergence Analysis

Analysis of Updates

Lemma
Forallk > 0,
k—1 k—1 m
7 k) = (R < 8+ 2L alr) +2 3, 3l
r= r=0 j=

where A = 2mmax;e ¢ || x;(0)].

@ The lemma establishes a bound on the distance between the agents’ estimates.

@ If there exists some M > 0 such that ||¢;(k)|| < Ma(k) for all i and k > 0, then
with probability 1, max; se pq || xi(k) — xn(k)|| < A+ 2m(L + M) Zr 0 a(r).
@ For all k, we define the reachable set

k—1
Ry (k) = {x € R™" | max i — x| < A+ 2m(L + M) Za(r)} .

r=0




Convergence Analysis

Propagation of Information

@ We next construct an even in which edges among the agents are activated sequentially
over time, so that information propagates from every agent to every other agent.

@ To define this event, we fix a node w € M and consider two directed spanning trees
rooted at w with a specific order.

=7 T2 7K

@] o O
’rz'n'-w

Tou:.‘w
@ Let G(k) denote the event in which each edge in the spanning trees Ti,,,» and T, are
activated sequentially following time £ in this order.

@ If the event G(k) occurs, then information from every agent reaches every other agent by
period k + 2(m — 1).

@ Implies a contraction in the disagreement metric p(k, s).



Convergence Analysis

Propagation of Information

Lemma

Assume that there exists some M > 0 such that ||e;(k)|| < Ma(k) for all i and k > 0.
Forall k > s and any X € Ry (s),

| 2(m—1)
(A +2m(L+M) 5" (r))C}

P(G(k)|x(s) = X) > min {5

Lemma

Forany k > s > 0, let t be a positive integer such that s < 51 < 55 < --- <58, <k
and siyy —s; > 2(m—1) foralli=1,...,t— 1. Suppose that events G(s;) occur for
eachi=1,...,t Then,

1 2m—1))’
p(k7s)§2(1+,y2(m_l)>(l_'7 )




Convergence Analysis

Contraction Bound

Assumption

The stepsize sequence {a(k) hren satisfies

klim klog’(k)a(k) =0 forallp < 1.

@ Example: a(k) = m (satisfies: S0 a(k) = 00, >.p2,a’(k) < 00).

Proposition
Assume that there exists some M > 0 such that ||le;(k)|| < Ma(k) foralli € M and k € N.

Then, there exists a scalar . > 0, an increasing function 3(s) : N — R4 and a function
S(q) : N — N such that

B(s) < s? forallg > 0andalls > S(q)

and Elp(k,s)|x(s) =x] < [)’(s)e_“"/m forallk > s >0, X € Ry(s).

(e))

@ A time-nonhomogeneous contraction bound.




Convergence Analysis

Agent Disagreements

@ To measure the agent disagreements ||x;(k) — x;(k)||, we consider their average and
measure disagreement with respect to this average:

1 m
=— i for all .
y(k) - g x;i(k) or all k

.
Il

@ We have

Q

D= LA+ 53 )

3

Lemma
For all i and k > 0, we have

k—2

Ixi(k) = y(k)|| < mp(k—1,0) an,(o | +mL> " plk— 1,7+ Da(r) + 2a(k — 1)L

j=1 r=0

k—2
+> pk—1,r+1 ZHe, )M + lleik — D] + — ZHe,k—l
r=0




Convergence Analysis

Analysis of the Distributed Subgradient Method

Assumption: Constraint set X; = X for all i.

Lemma
For all i and k,
[lei(k)|| < 2La(k)

@ Relies on nonexpansiveness of projection.

@ The state x(k) is in the reachable set R,; (k) with probability one.
@ Simplifies the preceding bound:

lxi(k) = y(®)|| < mp(k—1,0) " [Ix(0)] +
JEN
k—2

3mLY " p(k—1,r + 1a(r) + 6a(k — 1)L
r=0
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Convergence Analysis

Taking Expectations

@ Using the contraction bound, we have

k— k—2

E|S ot 14 D) | <3 8+ e =0

r=0 r=0
@ Using the Stepsize Assumption,

k—2
: puNk—r—2 _
klggo 20 B(r+1)e alr)=0

Proposition

For all i, we have
Jim E[|[u(6) ~ y(®)] =0, and

likm inf||x;(k) — y(k)]| =0 with probability one.




Convergence Analysis

Convergence

Using supermartingale convergence results, we obtain the following:
Proposition
For all i, we have:

(@) Dope,alk)|lxi(k) — y(k)|| < co with probability one.

(b)  limg_ o ||%i(k) — y(k)|| = O with probability one.

Theorem

There exists an optimal solution x* € X* such that for all i

klim xi(k) = x* with probability one.

— 00




Convergence Analysis

When the Constraint Sets X; are Different

Assumption: The constraint sets X; are compact.

Lemma

Assume that the stepsize sequence satisfies a.(k) — 0 as k goes to infinity. The
projection errors e;(k) converge to zero as k — o, ie.,

klim lle:(K)|| =0  foralli.

Theorem

Assume that the stepsize sequence satisfies >, (k) = oo and Y, (k) < oc. Then,

there exists an optimal solution x* € X* such that for all i

lim x;(k) = x™ with probability one.

k—o00




Conclusions

@ We presented distributed algorithms for solving convex optimization problems
over networks.

@ We studied a projected multi-agent subgradient algorithm under state-dependent
communication among networked agents.

o We showed the iterates with constant stepsize may diverge.
o We proposed a method based on fast diminishing stepsizes and showed
convergence using a time non-homogeneous contraction bound.

@ Future Directions:

o Network effects.
e Second-order methods for general multi-agent optimization problems.
o Primal-dual methods for global constraints.
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