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Wireless Networks

• Interference: using it as a code in the high SNR case
– Code in deterministic model
– Code in analog amplify and forward
– Practical implication: coding with zig-zag decoding

• Broadcast: building subgraphs in low SNR networks
– Optimality of decode-and-forward
– Practical implication: low-SNR optimization

• Dealing with uncertainty: network combining though
coding
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Dealing with Interference

• [Avestimehr et al. ‘07]“Deterministic model” (ADT model)
– Interference
– Does not take into account channel noise
– In essence, high SNR regime
– Requires optimization over a large set of matrices
– Code construction algorithms [Amaudruz et al. ‘09][Erez et al. ’10]
– Matroidal [Goemans ‘09]

• High SNR: interference is the main issue
– Noise → 0
– Large gain
– Large transmit power
– Interference as a code
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Network Model

• Original ADT model:
– Broadcast: multiple edges (bit pipes) from the same node
– Interference: additive MAC over binary field
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Using Network Coding with
 Interference Code

• Connection to Algebraic Network Coding [Koetter and
Médard. ‘03]:
– Use of higher field size
– Model broadcast constraint with hyper-edges
– Capture ADT network problem with a single system matrix M

• Prove that min-cut of ADT networks = rank(M)
• Prove Min-cut Max-flow for unicast/multicast holds
• Extend optimality of linear operations to non-multicast sessions
• Incorporate failures and erasures
• Incorporate cycles

– Show that random linear network coding achieves capacity
– Do not prove/disprove ADT network model’s ability to approximate

the wireless networks; but show that ADT network problems can be
captured by the algebraic network coding framework



System Matrix M= A(I – F )-1BT

• Linear	
  opera7ons
– Coding	
  at	
  the	
  nodes	
  V: β(ej, ej’)

– F represents	
  physical	
  structure	
  of	
  the	
  ADT	
  network
– Fk: non-­‐zero	
  entry	
  =	
  path	
  of	
  length	
  k between	
  nodes	
  exists
– (I-F)-1 = I + F + F2 + F3 + … : connec7vity	
  of	
  the	
  network

(impulse	
  response	
  of	
  the	
  network)
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System Matrix M = A(I – F )-1BT

Z = X(S)
M
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• Input-­‐output	
  rela7onship
of	
  the	
  network

Captures rate

Captures network code, topology
(Field size as well)



Network Coding and ADT

• ADT network can be expressed with Algebraic Network Coding
Formulation [Koetter and Médard ‘03].
– Use of higher field size
– Model broadcast constraint with hyper-edge
– Capture ADT network problem with a single system matrix M

• For a unicast/multicast connection from source S to destination T, the
following are equivalent:
1. A unicast/multicast connection of rate R is feasible.
2.  mincut(S,Ti) ≥ R for all destinations Ti.
3. There exists an assignment of variables such that M is invertible.

• Show that random linear network coding achieves capacity

• Extend optimality of linear operations to non-multicast sessions
– Disjoint multicast, Two-level multicast, multiple source multicast,

generalized min-cut max-flow theorem

• Incorporate delay and failures (allows cycles within the network)

• BUT IS IT THE RIGHT MODEL?



Different Types of SNR

• Diamond network [Schein]

• As a increases: the gap between analog network coding
and cut set increases

• In networks, increasing the gain and the transmit power
are not equivalent, unlike in point-to-point links
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Let SNR Increase with Input Power
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Analog Network Coding is Optimal
at High SNR
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Practical Implications

•Interference management in wireless networks
–Simultaneous transmissions are are considered lost
(collision) in most MAC protocols

–Collisions are normally avoided using centralized scheduling
or  Aloha-type mechanisms

•Collision Recovery e.g. ZigZag decoding [Gollakota el
2008]

–Algebraic representation of the collisions
–Combine finite-field network coding with analog network
coding (in the form of collisions)
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Practical Implications

Stability Region: Achieve cut-set bound
–Exploit the diversity gain of the links to different senders by allowing
more simultaneous transmissions

–Priority-based ack
–Each sender broadcasts a random
linear combination of packets

–ACK seen packets
–Throughput and completion 
improvement without sender 
coordination
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When noise is the main issue

• Consider again hyperedges

• At high SNR, interference was the main issue and analog
network coding turned it into a code

• At low SNR, it is noise
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Peaky Binning Signal

• Non-coherence is not bothersome, unlike the high-SNR
regime
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What Min-cut?

• Open question: Can the gap to the cut-set upper-bound be closed?

• An ∞ capacity on the link R-D would be sufficient to achieve the cut
like in SIMO

• Because of power limit at relay, it cannot make its observation fully available
to destination.

• Implications for virtual MIMO scaling based arguments – simple arguments
based on constant quantization do not work

• Relay channel in low SNR /wideband regime:
• At low SNR, cut-set upper-bound = virtual MIMO with perfect channel R-

D, is not achievable
• Block Markov DF/ peaky binning hypergraph lower-bound is tight  =

capacity

• Converse: cannot reach the cut-set upper-bound
17
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Converse

• Sketch of proof:
• Assuming that the relay cannot decode:
• Split total mutual information into two parts

• contribution from relay
• remaining contribution from source after deducting contribution from

relay

• Bound contributions using equivalence theory and rate
distortion theory, in particular to justify
• Gaussian input at source
• Estimation with distortion at relay
• Error-free R-D link with finite capacity

• Analyze the limit of these contributions in the low SNR regime and
show that the total converges to the direct link capacity

• Conclusion: the relay should decode in the low SNR and we do
Network Coding in the digital domain at low SNR
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Low-SNR Approximation

• Broadcast:
– Superposition coding rates ∼ time-

sharing rates
– Common rate received by both

destinations rate received only by
the most reliable destination

• Multiple access
– No interference, FDMA
– Both sources achieve same rate as

in the absence of the other user
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Achievable Rates
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Practical Implications

• Achievable hypergraph model: Superposition coding, FDMA.

• Network coding over the subgraph

• Multicommodity flow optimization => Linear program for simple costs
(network power, linear cost functions etc.).

• Separable dual => decentralized solutions.

• Hypergraph model facilitates network coding  => power savings,
increased throughput and reliability.
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What About Other Regimes?

• Finding tight bounds when the model is unknown may be difficult

• We can still use coding to deal with uncertainty – go to higher layers

• Single server, single receiver, media streaming

• Media file consisting of T packets

• Packet arrivals: Poisson process with rate R (bandwidth)

• Media playback: Deterministic with rate Rp (resolution)

• Initially buffer D packets,

then start the playback

• M/D/1 queue dynamics at the receiver
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• Setup:	
  User	
  ini7ally	
  buffers	
  a	
  frac7on	
  of	
  the	
  file,	
  then	
  starts
the	
  playback

• QoE	
  metrics:

1. Ini7al	
  wai7ng	
  7me

2. Probability	
  of	
  interrup7on	
  in

media	
  playback

• Homogeneous	
  access	
  cost	
  *:

• Heterogeneous	
  access	
  cost:	
  Design	
  resource	
  alloca7on
policies	
  to	
  minimize	
  the	
  access	
  cost	
  given	
  QoE	
  requirements
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System Model

• Two classes of servers, single receiver

• Packet arrivals: Independent Poisson processes

• Media playback: Deterministic with unit rate

• Initially buffer D packets, then start the playback

• QoE requirement:

• Control action:

                    iff the costly server is used

• Objective: Find control policy     to minimize

the usage cost, while meeting QoE requirements

Free
Server

Costly
Server

Receiver



Performance Comparison

• Three regimes for QoE metrics
1. Zero-cost
2. Infeasible (infinite cost)
3. Finite-cost

zero-cost

infeasible

Finite-cost



Conclusions

• Interference: using it as a code in the high SNR case
– Code in deterministic model
– Code in analog amplify and forward
– Practical implication: coding with zig-zag decoding

• Broadcast: building subgraphs in low SNR networks
– Optimality of decode-and-forward
– Practical implication: low-SNR optimization in node placement

• When physical channel models do not suffice:
– We can still apply information theory and optimization to the

higher layers effectively
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