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 Interference: using it as a code in the high SNR case

— Code in deterministic model
— Code in analog amplify and forward
— Practical implication: coding with zig-zag decoding

« Broadcast: building subgraphs in low SNR networks
— Optimality of decode-and-forward
— Practical implication: low-SNR optimization

« Dealing with uncertainty: network combining though
coding



Dealing with Interference
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* [Avestimehr et al. ‘07]"Deterministic model” (ADT model)

— Interference

— Does not take into account channel noise

— In essence, high SNR regime
— Requires optimization over a large set of matrices
— Code construction algorithms [Amaudruz et al. ‘09][Erez et al. "10]

— Matroidal [Goemans ‘09]

« High SNR: interference is the main issue

— Noise = 0

— Large gain

— Large transmit power
— Interference as a code
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Network Model

* Original ADT model:

— Broadcast: multiple edges (bit pipes) from the same node
— Interference: additive MAC over binary field

I(v,) ov,) T Higher SNR: §-
a € | ¢7 O V.] .
X(S, 1)|e, @ b e, |es @ e, | Z(T, 1) Higher SNR: §-
X(S, 2)| € ® > oc. |o, @ e | 2T 2) Vv,
o(sS) € €10 @ f I(T)

e Algebraic model:

broadcast

broadcast constraint

Use hyperedges to model

I(V;) O(V,)

Sra IR Possible “codes™ at ¢, , which
e, a ey eg represents the MAC constraint
€ c f S
es €y
s €10

0/1 decision: To
transmit or not

Interference
is a code

0
0
1
|



Using Network Coding with o |
Interference Code ||-'TU

« Connection to Algebraic Network Coding [Koetter and

Medard. ‘03]:

— Use of higher field size

— Model broadcast constraint with hyper-edges

— Capture ADT network problem with a single system matrix M
* Prove that min-cut of ADT networks = rank(M)
» Prove Min-cut Max-flow for unicast/multicast holds
« Extend optimality of linear operations to non-multicast sessions
 Incorporate failures and erasures
* Incorporate cycles

— Show that random linear network coding achieves capacity

— Do not prove/disprove ADT network model’'s ability to approximate
the wireless networks; but show that ADT network problems can be
captured by the algebraic network coding framework



* Linear operations

— Coding at the nodes V: fi(e, e;)
— F represents physical structure of the ADT network
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— F*: non-zero entry = path of length k£ between nodes exists

— (I-F)'=1+F + F?> + F? + ... : connectivity of the network
(impulse response of the network)
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ADT network can be expressed with Algebraic Network Coding
Formulation [Koetter and Médard ‘03].

— Use of higher field size
— Model broadcast constraint with hyper-edge
— Capture ADT network problem with a single system matrix M

For a unicast/multicast connection from source S to destination 7, the
following are equivalent:

1. A unicast/multicast connection of rate R is feasible.

2. mincut(S,T) > R for all destinations T

3. There exists an assignment of variables such that M is invertible.

Show that random linear network coding achieves capacity

Extend optimality of linear operations to non-multicast sessions

— Disjoint multicast, Two-level multicast, multiple source multicast,
generalized min-cut max-flow theorem

Incorporate delay and failures (allows cycles within the network)
BUT IS IT THE RIGHT MODEL?
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relay 2

« Diamond network [Schein]

* As aincreases: the gap between analog network coding
and cut set increases

* In networks, increasing the gain and the transmit power
are not equivalent, unlike in point-to-point links
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Analog network coding and the upper bound
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Analog Network Coding is Optimal  y=mmws
at High SNR PO

Analog network coding and the MAC cut—set bound
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Interference management in wireless networks

—Simultaneous transmissions are are considered lost
(collision) in most MAC protocols

—Collisions are normally avoided using centralized scheduling

e .
AL 2X4) Py }%[2}» Py

Collision Recovery e.g. ZigZag decoding [Gollakota el
2008]

—Algebraic representation of the collisions

—Combine finite-field network coding with analog network
coding (in the form of collisions)
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Practical Implications

Stability Region: Achieve cut-set bound

—Exploit the diversity gain of the links to different senders by allowing

—Each sender broadcasts a random
linear combination of packets

more simultaneous transmissions
—Priority-based ack

—ACK seen packets

—Throughput and completion
iImprovement without sender
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« Consider again hyperedges

« At high SNR, interference was the main issue and analog
network coding turned it into a code

« Atlow SNR, it is noise
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Peaky Binning Signal ||.JT(:)
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* Non-coherence is not bothersome, unlike the high-SNR

regime
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Open question: Can the gap to the cut-set upper-bound be closed?

An oo capacity on the link R-D would be sufficient to achieve the cut
like in SIMO
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Because of power limit at relay, it cannot make its observation fully available
to destination.

Implications for virtual MIMO scaling based arguments — simple arguments
based on constant quantization do not work

Relay channel in low SNR /wideband regime:

» Atlow SNR, cut-set upper-bound = virtual MIMO with perfect channel R-
D, is not achievable

» Block Markov DF/ peaky binning hypergraph lower-bound is tight =
capacity

Converse: cannot reach the cut-set upper-bound

What Min-cut? 1=TO
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«  Sketch of proof:

 Assuming that the relay cannot decode:
« Split total mutual information into two parts
«  contribution from relay

«  remaining contribution from source after deducting contribution from
relay

 Bound contributions using equivalence theory and rate
distortion theory, in particular to justify
. Gaussian input at source
. Estimation with distortion at relay
. Error-free R-D link with finite capacity

* Analyze the limit of these contributions in the low SNR regime and
show that the total converges to the direct link capacity

 Conclusion: the relay should decode in the low SNR and we do
Network Coding in the digital domain at low SNR
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« Broadcast:
— Superposition coding rates ~ time-
sharing rates

— Common rate received by both
destinations rate received only by
the most reliable destination

* Multiple access
— No interference, FDMA

— Both sources achieve same rate as
in the absence of the other user

Low-SNR Approximation ||:'TC/)
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o ~Time Sharing
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Achievable Rates |I‘_';‘|'0
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Practical Implications ||:'TC/)
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« Achievable hypergraph model: Superposition coding, FDMA.

* Network coding over the subgraph

* Multicommodity flow optimization => Linear program for simple costs
(network power, linear cost functions etc.).

» Separable dual => decentralized solutions.

* Hypergraph model facilitates network coding => power savings,
increased throughput and reliability.

Ps
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Finding tight bounds when the model is unknown may be difficult

We can still use coding to deal with uncertainty — go to higher layers
Single server, single receiver, media streaming

Media file consisting of T packets

Packet arrivals: Poisson process with rate R (bandwidth)

Media playback: Deterministic with rate R, (resolution)

Initially buffer D packets, Moo
then start the playback
Q(t) = D+ N(t) — Ryt

M/D/1 queue dynamics at the receiver

N(t) ~ Poiss(Rt)

> [



What About Other Regimes? ||:'TC/)
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* Setup: User initially buffers a fraction of the file, then starts
the playback

] Interruptions
* QoE metrics: in playback
1. Initial waiting time
2. Probability of interruption in A Initial
. L waiting
media playback P/ time
 Homogeneous access cost ™ k ,,,,,,,
D Cost T >
Py =e 1P yp >

Heterogeneous access cost: Design resource allocation
policies to minimize the access cost given QoE requirements



System Model

Two classes of servers, single receiver

Packet arrivals: Independent Poisson processes
Media playback: Deterministic with unit rate
Initially buffer D packets, then start the playback
QoE requirement: P <€

Control action:
U € {O, ]_}

Uy = 1
iff the costly server is used

Objective: Find control policy 7t to minimize

the usage cost, while meeting QoE requirements

J™(D,¢) = E[/OOO utdt]

Receiver
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 Three regimes for QoE metri( D, ¢)

1. Zero-cost e > o 1(Ro)D
2. Infeasible (infinite cost) ¢ < ¢ 1(RotR)D
3. Finite-cost _ P _
e~ [(Ro+R)D < < ~I(Ro)D
] ) 500 T T T T T T T
A\ P = = = Off-line policy
i\ 4501 i:. ----- Online safe policy (analysis)
1N +=fI= Online safe policy (simulation)
400t % = Oniline risky policy (analysis)
F \‘ = & = Online risky policy (simulation)
T e=107"]
00k ™ -
w H'h
EIZED' \.%" “‘h
\ e ' .
----------------- ook )‘F‘Ih‘* "“
m"ﬁ\.‘- *"‘h‘
. 1501 ™ te
Finite-cost .‘“‘“’::.m
100 .
I ’h':"‘uh
50 S\li
0 15 zln zls :alu B 40 45 50 ."55 .ﬂlﬂ .ﬂlﬁ '!"m



Conclusions ||:'T(:)

INFORMATION PROCESSING TECHNIQUES OFFICE

 Interference: using it as a code in the high SNR case
— Code in deterministic model
— Code in analog amplify and forward
— Practical implication: coding with zig-zag decoding

« Broadcast: building subgraphs in low SNR networks
— Optimality of decode-and-forward
— Practical implication: low-SNR optimization in node placement

« When physical channel models do not suffice:

— We can still apply information theory and optimization to the
higher layers effectively
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