Mean field equilibria of dynamic auctions with learning

Ramesh Johari

Stanford University

Joint work with K. Iyer and M. Sundararajan

Overview

What tools are useful for studying

dynamic systems with many interacting agents?

One possibility: *dynamic game theory.*

Traditional game theory is impractical in this regime:

- Equilibria in dynamic games make very strong rationality assumptions
- Equilibrium computation grows in complexity with the number of players ("curse of dimensionality")

Approximate approach: mean field equilibrium

This talk

- (1) Dynamic auctions with learning
- (2) Mean field
- (3) Approximation
- (4) Conclusions

- Inspired by auction settings where agents do not know their valuation for an item a priori
- Example:

Consider N devices that compete for resources by bidding for channel use.

Devices don't know the quality of the channel, and learn about quality each time they use it.

Model:

- Consider auction setting where bidder i has valuation $v_i \in [{\rm 0,1}]$ that she does not know
- In other words:

If *i* wins, then $P(success) = 1 - P(failure) = v_i$

• Assume w.l.o.g. each successful packet transmitted is worth \$1 to the bidder

Model (cont'd):

- Suppose bidders live for geometric lifetime with parameter $\boldsymbol{\beta}$
- True v_i sampled from a beta distribution
- Initial state of bidder *i*:

($w_{i,0}$, $\ell_{i,0}$) = parameters of beta prior for agent i [Assume initial state sampled from compact set with smooth density]

• (v_i , $w_{i,0}$, $\ell_{i,0}$) independent across bidders

Goal: maximize long-run expected profit.

• Suppose $n = k \alpha$ bidders in market.

$$n = k \alpha$$

- Suppose $n = k \alpha$ bidders in market.
- At each time t, divided into k subsets of α bidders each, uniformly at random.
- Each subset bids in a second price (Vickrey) auction for one slot.

[Second price auction: review]

In a second price auction:

Each bidder submits a bid.

The highest bidder wins,

and pays the second highest price.

Easy result:

It is a *dominant strategy* for each bidder to bid their true valuation.

- Therefore a one period model is "easy": Every bidder *i* bidding $E[v_i]$ is an equilibrium.
- But a dynamic model is much harder:
 - (1) Bidders will want to overbid, to learn about their valuation.
 - (2) Rational bidders will also learn about *their competitors,* so an optimal strategy will be structurally complex.
- No insight into structure of equilibria in a game with finitely many players

Dynamic auctions with learning: mean field

We consider the limit where $n, k \rightarrow \infty$, and study (stationary) mean field equilibrium.

 $x_t = (w_t, \ell_t)$: posterior of an agent at time t $w_t =$ number of periods with win and success $\ell_t =$ number of periods with win and failure a_t : bid of an agent at time t

g : population bid distribution in mean field limit $\pi(x_t, a_t, g)$ = expected payoff given current posterior $P(\cdot \mid x_t, a_t, g)$ = posterior update

Write $\pi(x, a, g) = q(a | g) \mu(x) - p(a | g)$

- $q(a \mid g) = g(a)^{\alpha 1} = \text{probability of winning}$
- $\mu(x) = w/(w + \ell) = conditional mean valuation$
- $p(a | g) = a q(a | g) \int_0^a q(z | g) dz = expected payment$

Bellman equation given *g*:

 $\underline{V}(x|g) = \max_{a \in [0,1]} \left\{ q(a|g)\mu(x) - p(a|g) + \beta q(a|g)\mu(x)\underline{V}(x+e_1|g) + \beta q(a|g)(1-\mu(x))\underline{V}(x+e_2|g) + \beta(1-q(a|g))\underline{V}(x|g) \right\}$

Rewrite:

$$\underline{V}(x|g) = \frac{1}{1-\beta} \max_{a \in [0,1]} \{q(a|g)\xi(x|g) - p(a|g)\}$$

where:

$$\xi(x|g) = \mu(x) + \beta \mu(x)(\underline{V}(x+e_1|g) - \underline{V}(x|g)) + \beta(1-\mu(x))(\underline{V}(x+e_2|g) - \underline{V}(x|g))$$

Key observation in mean field model:

At state x, a bidder's payoff is proportional to her payoff in a standard second price auction, against α -1 i.i.d. bidders drawn from g each period, where she has "valuation" $\xi(x | g)$.

We show: $0 \le \xi(x \mid g) \le 1$ for all x \Rightarrow bidding $\xi(x \mid g)$ is optimal at state x!

Mean field equilibrium

The strategy ξ and bid distribution g constitute a mean field equilibrium (MFE) if:

(1) ξ (· | g) is an optimal strategy given g and (2) g is the steady state bid distribution given ξ

Distribution $g \mapsto \operatorname{Strategy} \xi(\cdot | g) \mapsto \operatorname{New bid}_{\operatorname{distribution} \Phi(g)}$

A MFE bid distribution g is a fixed point of Φ : $g = \Phi(g)$

Dynamic auctions: MFE

Theorem:

There exists a MFE of the dynamic auction with learning where at time t every bidder i bids their *virtual valuation* given posterior:

 $\mathbf{E}_t[v_i] + \beta \times \mathbf{E}_t[$ future marginal benefit from one additional observation]

[Iyer, Johari, Sundararajan]

A simple structural description of equilibrium!

Proof technique

We use Brouwer's fixed point theorem:

- Given g, find optimal strategy $\xi(x | g)$.
- Given g and ξ(x | g), as well as initial distribution over valuations and states, find stationary distribution of resulting state Markov process
- Find new induced bid distribution g' = F(g)
- Show: F is continuous if we endow continuous cdfs on [0,1] with the sup norm
- Show: Can restrict attention to a compact set

Approximation

Asymptotic equilibrium

Is MFE a good approximation to equilibrium behavior in a finite system? A MFE (ξ , g) has the **AE property** if as number of players $\rightarrow \infty$,

Profit under any strategy, given others play ξ Profit under ξ , given others play ξ

→ 0, almost surely

Asymptotic equilibrium

In the dynamic auction model, the same continuity properties used to establish existence also serve to establish a version of the AE property.

Conclusion

Big picture

Model of multiple interacting agents

Traditional game theory makes *the model* so complex...

Big picture

Optimization and control

Model of multiple interacting agents

Traditional game theory makes *the model* so complex...

...that optimization and control are intractable.

Big picture

Optimization and control

Model of multiple interacting agents

MFE simplifies the model, so we can gain structural insight into equilibria.

Conclusion

Ongoing work:

- Multiarmed bandit games
- Queueing games
- Other markets

Other issues of interest:

- Uniqueness of equilibrium
- Other objectives: average cost, regret, etc.
- Learning in other contexts
- Efficiency and distributed control