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Overview

What tools are useful for studying

dynamic systems with many interacting agents?

One possibility: dynamic game theory.

Traditional game theory is impractical in this regime:

• Equilibria in dynamic games make

very strong rationality assumptions

• Equilibrium computation grows in complexity with 

the number of players (“curse of dimensionality”)

Approximate approach: mean field equilibrium
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This talk

(1) Dynamic auctions with learning

(2) Mean field

(3) Approximation

(4) Conclusions



Dynamic auctions with 
learning
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Dynamic auctions with learning

• Inspired by auction settings where agents

do not know their valuation for an item a priori

• Example:

Consider N devices that compete for resources by 

bidding for channel use.

Devices don’t know the quality of the channel,

and learn about quality each time they use it.
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Dynamic auctions with learning

Model:

• Consider auction setting where bidder i has

valuation vi ∈ [0,1] that she does not know

• In other words:

If i wins, then PPPP(success) = 1 – PPPP(failure) = vi

• Assume w.l.o.g. each successful packet 

transmitted is worth $1 to the bidder
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Dynamic auctions with learning

Model (cont’d):

• Suppose bidders live for geometric lifetime with 

parameter β
• True vi sampled from a beta distribution

• Initial state of bidder i:

(wi,0, ℓi,0) = parameters of beta prior for agent i
[ Assume initial state sampled from compact set with smooth density ]

• (vi, wi,0, ℓi,0) independent across bidders

Goal:Goal:Goal:Goal: maximize longmaximize longmaximize longmaximize long----run expected profit.run expected profit.run expected profit.run expected profit.
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Dynamic auctions with learning

• Suppose n = k α bidders in market.

n = k α
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Dynamic auctions with learning

• Suppose n = k α bidders in market.

• At each time t, divided into k subsets of α bidders 

each, uniformly at random.

• Each subset bids in a second price

(Vickrey) auction for one slot.

α α α α. . .

k
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[ Second price auction: review ]

In a second price auction:

Each bidder submits a bid.

The highest bidder wins,

and pays the second highest price.

Easy result:

It is a dominant strategy for each bidder to bid

their true valuation.
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Dynamic auctions with learning

• Therefore a one period model is “easy”:

Every bidder i bidding EEEE[vi] is an equilibrium.

• But a dynamic model is much harder:

(1) Bidders will want to overbid, to learn about

their valuation.

(2) Rational bidders will also learn about

their competitors, so an optimal strategy

will be structurally complex.

No insight into structure of equilibria in a game

with finitely many players



Dynamic auctions with 
learning: mean field
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Dynamic auctions: mean field

We consider the limit where n, k→∞, and study

(stationary) mean field equilibrium.

xt = (wt, ℓt) : posterior of an agent at time t

wt = number of periods with win and success

ℓt = number of periods with win and failure

at : bid of an agent at time t

g : population bid distribution in mean field limit

π(xt, at, g) = expected payoff given current posterior

PPPP(· | xt, at, g) = posterior update
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Dynamic auctions: mean field

Write π(x,a,g) = q(a|g) µ(x) - p(a|g)

• q(a|g) = g(a)α – 1 = probability of winning

• µ(x) = w/(w + ℓ) = conditional mean valuation

• p(a|g) = a q(a|g) - ∫0
a q(z|g) dz = expected payment

Bellman equation given g:
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Dynamic auctions: mean field

Rewrite:

where:
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Dynamic auctions: mean field

Key observation in mean field model:

At state x, a bidder’s payoff is proportional to her

payoff in a standard second price auction, against 

α -1 i.i.d. bidders drawn from g each period,

where she has “valuation” ξ(x|g).

We show: 0 � ξ(x|g) � 1 for all x

⇒ bidding ξ(x|g) is optimal at state x!
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Mean field equilibrium

The strategy ξ and bid distribution g constitute a

mean field equilibrium (MFE) if:

(1) ξ (· | g) is an optimaloptimaloptimaloptimal strategystrategystrategystrategy given g and

(2) g is the steady state bid distributionsteady state bid distributionsteady state bid distributionsteady state bid distribution given ξ

A MFE bid distribution g is a fixed pointfixed pointfixed pointfixed point of Φ: g = Φ(g)

Distribution g Strategy ξ(·|g) New bid

distribution Φ(g)
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Dynamic auctions: MFE

Theorem:

There exists a MFE of the dynamic auction with 

learning where at time t every bidder i bids their 

virtual valuation given posterior:

EEEEt[vi] + β × Et[future marginal benefit from

one additional observation]
[ Iyer, Johari, Sundararajan ]

A simple structural description of equilibrium!
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Proof technique

We use Brouwer’s fixed point theorem:

• Given g, find optimal strategy ξ(x|g).

• Given g and ξ(x|g), as well as initial

distribution over valuations and states,

find stationary distribution of resulting

state Markov process

• Find new induced bid distribution g’ = FFFF(g)

• Show: FFFF is continuous if we endow

continuous cdfs on [0,1] with the sup norm

• Show: Can restrict attention to a compact set



Approximation
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Asymptotic equilibrium

Is MFE a good approximation to

equilibrium behavior in a finite system?

A MFE (ξ, g) has the AE propertyAE propertyAE propertyAE property if

as number of players →∞, 

Profit under any strategy,

given others play ξ
Profit under ξ,

given others play ξ

0, almost surely
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Asymptotic equilibrium

In the dynamic auction model, the same 

continuity properties used to establish existence

also serve to establish a version of the AE 

property.



Conclusion
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Big picture

Model of multiple
interacting agents

Traditional game theory 

makes the model so 

complex…
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Optimization
and control

Big picture

Model of multiple
interacting agents

Traditional game theory 

makes the model so 

complex…

…that optimization and 

control are intractable.
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Optimization
and control

Big picture

Model of multiple
interacting agents

MFE simplifies the 

model, so we can gain

structural insight into

equilibria.
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Conclusion

Ongoing work:

• Multiarmed bandit games

• Queueing games

• Other markets

Other issues of interest:

• Uniqueness of equilibrium

• Other objectives: average cost, regret, etc.

• Learning in other contexts

• Efficiency and distributed control


